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ABSTRACT

Energy systems (e.g. ventilation fans, refrigerators, and
electrical vehicle chargers) often have binary or discrete states
due to hardware limitations and efficiency characteristics. Typ-
ically, such systems have additional programmatic constraints,
such as minimum dwell times to prevent short cycling. As a
result, non-convex techniques, like dynamic programming, are
generally required for optimization. Recognizing developments
in the field of distributed convex optimization and the potential
for energy systems to participate in ancillary power system ser-
vices, it is advantageous to develop convex techniques for the
approximate optimization of energy systems. In this manuscript,
we develop the alternative control trajectory representation — a
novel approach for representing the control of a non-convex dis-
crete system as a convex program. The resulting convex program
provides a solution that can be interpreted stochastically for im-
plementation.

1 BACKGROUND AND MOTIVATION

A fundamental requirement of the electric power system is
to maintain a continuous and instantaneous balance between gen-
eration and load. The variability of renewable energy resources,
particularly wind and solar, poses a challenge for power system
operators. Namely, as renewable penetration increases, it will
be necessary for operators to procure more ancillary services,
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such as regulation and load following, to maintain balance be-
tween generation and load [1,2]. In the long-term, grid-scale
storage technologies (e.g. flywheels, batteries, etc.) are sure to
play a major role in providing these ancillary services [3,4]. In
the near-term, there is a high potential for aggregated loads, in
particular electric vehicles (EVs) and thermostatically controlled
loads (TCLs), to providing such ancillary services [?,5-7].

The advantages of responsive aggregated loads over large
storage technologies include: 1) they are distributed throughout
the power system thus providing spatially and temporally dis-
tributed actuation; 2) they employ simple and fast local actuation
well-suited for real-time control; 3) they are robust to outages of
individuals in the population; and 4) they, on the aggregate, can
produce a quasi-continuous response despite the discrete nature
of the individual controls [6, 8, 9].

Energy systems like EVs and TCLs often have binary or
discrete states due to hardware limitations and efficiency char-
acteristics. Consequently, non-convex techniques are generally
required for optimal control. This poses a challenge for load
aggregation applications since distributed optimization methods
generally require linearity or convexity in the agents. In this
manuscript, we develop the alternative control trajectory repre-
sentation — a novel approach for representing the control of a
non-convex discrete system as a convex program. This represen-
tation enables the approximate optimization of energy systems
using distributed convex algorithms, such as the alternating di-
rection method of multipliers (ADMM), and provides a solution
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that can be interpreted stochastically for implementation.

This paper is organized as follows. Section 2 briefly de-
scribes the optimization of non-convex systems and section 3
presents the alternative control trajectory representation. Section
4 overviews the incorporation of the ACT representation into a
convex program and the stochastic interpretation of the solution.
Section 5 describes the incorporation of the ACT representation
into a distributed optimization algorithm, the statistical charac-
teristics of the solution, and an iterative method for reducing
variance by inducing sparsity. Finally, Section 6 provides an il-
lustrative example of the proposed modeling and optimization
approach.

2 OPTIMIZATION OF NON-CONVEX SYSTEMS
In this section, we consider the optimization of an arbitrary
discrete-time system represented by the state-space model

6]

where G and H are known functions, x* is the state of the Sys-
tem, u* is the exogenous input, y* is the output, and k denotes
the integer-valued time step. For simplicity, this paper will only
consider the univariate case (i.e x*, uk, and yk are univariate,
G:R? 3R, and H:R> > R). Functions G and H may be
any closed deterministic function (e.g. non-convex, piece-wise,
semi-continuous, etc.) and x*, u*, and y* may be continuous or
discrete.

We would like to solve an optimization problem of the form

minimize Fy(y)
u
subjectto  Fi(x,u) <b;,i=1,....M
K =Gk, k=1,....N )

W=H W), k=1,....N

)CO:)CQ

where Fy : RV — (—o0, 0] is a closed convex objective function,
N is the number of time steps, and xy is the initial state. Functions
F;:R> = R,i=1,...,M represent the constraints of the system.
Like G and H, F; may be any closed deterministic function.

There are a number of non-convex optimization techniques,
such as dynamic programming and genetic algorithms, suitable
for solving (2) to identify a control trajectory u* that optimizes
the system. Convex optimization techniques, however, are un-
suitable given the non-convex constraints and the discrete states,
inputs, and outputs.

3 ALTERNATIVE CONTROL

TRAJECTORY REPRESENTATION

In this section, we introduce the alternative control trajec-
tory (ACT) representation, a novel approach for representing the
control of non-convex systems in a manner suitable for convex
programming. Put simply, we simulate the system under multi-
ple alternative control inputs in order to generate a discrete set
of output trajectories. These alternative control trajectories can
be incorporated into a convex program as a linear constraint,
thereby enforcing feasibility. By solving the convex program,
we produce a solution that can be interpreted stochastically for
implementation.

It should be noted that the alternative control trajectories do
not represent the full decision space of the original optimization
program (2) and that the stochastic solution has no optimality
guarantee. Rather, the contribution of the ACT representation is
to enable the optimization of a large population of non-convex
agents using distributed convex optimization. Accordingly, by
employing the ACT representation, we are accepting suboptimal-
ity in the individual objectives in order to achieve optimality in
the global objective.

To produce the alternative control trajectory representation
of a system, we first define N, input trajectories for N, time steps

PNy /A,
777 J (3)

with variable u; € RM and u’; €S, fork=1,...,N;, where S, is
the discrete or continuous constraint set of feasible inputs. Each
of the input trajectories «; must be distinct and should be selected
to produce a distinguishable change in the system’s output (i.e.
performance extremes, efficiency optimum, etc.). Regardless of
whether the input is discrete or continuous, the set of alternative
input trajectories express only a small but key portion of the true
decision space.

Next, for each input trajectory u;, we simulate the system
model (1) according to the update function G with 1% = x; while
imposing any additional constraints (represented by H; in (2)).
Given the simulation results, we generate N, alternative state and
output trajectories as defined by the x; and y;, respectively.

1 .2 N;
xj = (xj,X5,...,x;")
N
yi= 050 )
Vji=1,...,N,

The input, state, and output trajectories can be expressed
compactly as
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U= (u1,u2,...,un,)
X = (xl,xg,...,xNa) (5)
Y= ()’17)’27--~7)’Na)

with variables U, X, and Y representing the set of all u, x;, and
yj sets for j=1,...,N,. Naturally, we can also view U, X, and Y
as matrices € R¥*M guch that the rows represent the alternative
trajectories and the columns represent the time step k.

In the case that functions G and/or H are not injective/one-
to-one and the distinctness of u; does not guarantee the distinct-
ness of x; or y;, it is necessary to reduce the number of trajecto-
ries in U, X, and Y. We define the number of distinct alternative
control trajectories as N, such that N; € {1,...,N,}.

4 CONVEX OPTIMIZATION

In this section, we detail how the ACT representation de-
scribed above can be introduced into a convex program. To be-
gin, we introduce a variable w € {0, 1}V such that

1 if trajectory j is selected
wi=
! 0 otherwise (6)

Vji=1,...,N

Thus, if j =1 is the selected trajectory (i.e. w; = 1)

UTW = Ui
X"w =X
Y'w =y

The integer/binary program below demonstrates how Y and
w can be introduced to solve for the optimal trajectory

minimize F (Y w)
w
subjectto Yw; =1 )
we {0, 1}V

where F : RV — (—o0, 0] is a closed convex objective function.
The above program is an example of the generalized assignment
problem (GAP). If feasible, (7) guarantees that only one compo-
nent of minimizer w* is non-zero. Therefore, y* = YT w* is the
optimal output trajectory within the discrete set defined by Y.

However, the binary constraint makes the program non-convex
and NP-complete. By relaxing the binary constraint such that
W € RV, we can express the convex program as

minimize F(Y'W)
W
subjectto Y w;=1
w>0
W e RM

®)

The program is now convex and the decision variable con-
tinuous. By minimizing the objective function with respect to W,
we allow the convex program to form weighted averages of the
alternative output trajectories. Therefore, §* = Y7 #W* is the op-
timal weighted average of the output trajectories within the dis-
crete set defined by Y. However, for many systems, the solution
defined by #* is not realizable (e.g. #* = UT%* is not within the
feasible space, y** # H(#**,i**), etc.). To produce a realizable
solution, we can interpret w* stochastically, as described in the
next section.

4.1 STOCHASTIC SOLUTION

Due to the linear constraints, the optimal solution vf/j is
€ [0,1] for j =1,...,Ny and in practice, ¥} can be interpreted
as the probability of selecting control trajectory j. Thus, we
can implement a single trajectory ¥ € Y based on the discrete
probability distribution Ww*. Expressed alternatively, we can
generate a discrete random variable W € {1,...,N;} such that
Wi = Pr(W = j) for j =1,...,Ny. The value of W represents
the index of the stochastically selected control trajectory. Thus,
we can define a variable W € {0, 1}, representing the stochastic
solution of (8), as

_ 1 ifW=j
w; =
! 0 otherwise ©)

The selected output trajectory is therefore given by j = Y7 .
By treating w* as a discrete probability distribution, y* becomes
the probability-weighted average of possible output trajectories
(as defined by Y). Therefore, §* is the expected value of y.

E[j] =y (10)
To summarize, the optimal solution to (7) is physically real-
izable (i.e. only one component of w* is non-zero) but not solv-

able using convex optimization. By contrast, (8) is convex but
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the optimal solution is not realizable (i.e. all components of W*
may be non-zero). Using (9), we can transform w* into w, which
is realizable (i.e. only one component of W is non-zero). It should
be noted that w* and W* are guaranteed to be optimal solutions
to (7) and (8), respectively. However, w may be an optimal or
sub-optimal solution to both (7) and (8).

Throughout this paper, we refer to the optimal output tra-
jectory (y = Y7 w) produced by (7) as the discrete solution y*
(w* € {0,1}N4), by (8) as the continuous solution §* (W* € RM),
and by (8) and (9) as the stochastic solution § (o € {0, 1}"¢). Tt
should be noted that y* and y* are deterministic whereas ¥ is, of
course, stochastic.

5 DISTRIBUTED OPTIMIZATION

In this manuscript, we have detailed the ACT representation
for expressing the control of a non-convex discrete system as a
convex program and have discussed how the solution can be in-
terpreted stochastically for implementation. One of the clear lim-
itations of the ACT approach is that the optimization may only
consider a subset of the feasible decision space for a given sys-
tem. Therefore, controlling a system using the ACT approach
may result in a suboptimal solution compared to what would have
been produced using a dynamic or mixed-integer programming
approach. However, this limitation enables the distributed con-
vex optimization of a population of discrete systems. In other
words, with the ACT representation, we are choosing to accept
some degree of suboptimality in the individual agents in order to
achieve a global objective with the aggregate population. In this
section, we briefly discuss the application of the ACT represen-
tation to distributed optimization problems.

Consider the generic sharing problem of the form

mini){nize Y i) +g(Xyi) (11)

with variables y; € Siv"', the decision variable of agent i for
i=1,...,N,, where S; represents the convex constraint set of
agent i, N, the number of agents in the population, Ny is the
length of y;, f; is the convex objective function for agent i, and
g is the shared convex objective function of the population. The
function g takes as input the sum of the individual agent’s de-
cision variables, y;. The sharing problem allows each agent in
the population to minimize its individual/private cost fi(y;) as
well as the shared objective g(}y;). The problem is known to be
solvable using iterative methods of distributed convex optimiza-
tion, such as the alternating direction of multipliers algorithm
(ADMM) [7,10].

The ACT representation can be incorporated into the objec-
tive functions of (11) as given by

minimize Y. f;(Y/W:) +g(X Y7 ;)
w
subjectto Y ;=1
Wi >0 (12)
W; € RN
Vi=1,...,N,

with variables w; € RM4i | the decision variable of agent i, Y; €
RN¢.i*Ny the set of alternative output trajectories for agent i, and
Ng i, the number of distinct trajectories in Y; fori = 1,...,N,.
Because the objective function and constraints of each agent are
separable, the problem can be solved in a distributed manner.
The optimal output $} = YW} fori=1,...,N, is the continuous
solution of each agent in the population. Thus, J; = YiTvT/i is the
final stochastic solution and can be implemented by each agent.

5.1 AGGREGATED STOCHASTIC SOLUTION

When trying to optimize the behavior of a population, we
are interested in understanding the relationship between the ag-
gregate of the continuous and stochastic solutions, as given by

(953
Il
™
<
-

13)

(o]}

Il
“n ™

=

|
(96N

o
I

with variables $ € R, the sum of the continuous solutions, § €
R, the sum of the stochastic solutions, and e € R™, the error
between S and S (ideally, e € {0}%).

Because y7 is the expected value of §;, S is the expect value
of §

=Ly (14)

The error e is therefore related to the variance of S, given by
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=E[( =1 +...+3n, —N,)]
=E[(1+... +5,)7]
— (it A,
_Z ~2 (5) 2 (15)
+Z - (797)
i#]
NP
_ ZVar Vi +ZCOV Vi,5;)
i=1 i#j

Because the random variables are uncorrelated
(Cov(3,¥;) = 0,V(i # j)), the variance of S reduces to

(16)

14 Ny i
=Z<Z Wi vi) - y,)> (17

where variable y; ; is the j-th alternative output trajectory for
agent i.

In the remainder of this section, we discuss two particular
characteristics that impact the error e = S — § and the variance of
§: the homogeneity/heterogeneity of the agents in the population
and the sparsity of the discrete probability distribution W} (i.e.
the number of non-zero terms) fori =1,...,N,.

For a population of highly homogeneous agents with identi-
cal output trajectories and objective functions, solving (12) will
cause each agent to converge to the same solution w;. Effec-
tively, the output of each agent is defined by the same random

Variable )7, with the same probability distribution
value 7. This is a special case where

W7 and expected

E(S) = NpJi
Ny (18)
Var PZ sz ylj yz

and the probability mass of S becomes more and more concen-
trated about E(S) = § as the number of agents N, b inAcreases. IfN,
is very large, the distribution has a narrow peak at S regardless of
the sparsity of ;. Therefore, by the law of large numbers, § — S
and e — {0}™ as N; — . As the heterogeneity of the popula-
tion increases, this characteristic weakens as the probability mass
of § flattens. For a heterogeneous population, the output of each
agent is no longer defined by the same random variable and (12)
is less likely to converge to similar probability distributions.

The sparsity of W} also impacts the variance of J;. In the
most sparse case, only one term in W} is non-zero for every agent
in the population. Therefore, y; is a constant random variable
(Var(§;) = {O}N>) equal to its expected value (J; = ;). Accord-
ingly, Var(S) = {0} and § — §.

In the least sparse case, every agent is equally likely to im-
plement any one of its control trajectories (i.e. w =1/Ng;Vj=
I,...,Ng;). Thus

Ng,i Ak
&N (i — 57 (19)

and the aggregate behavior of the population becomes highly
stochastic, especially as heterogeneity in Y; increases.

5.2 INDUCING SPARSITY

The stochasticity of S diminishes our ability to optimally
control the behavior of the distributed population. Particularly,
in order to optimize a highly heterogeneous population, it would
be desirable to force the variance of S towards zero. In this case,
we would no longer rely on the law of large numbers to drive §
towards the expected value S.

To decrease the variance, we focus on inducing sparsity in
the continuous solution w* of a single system. In this section,
we begin by discussing the challenges of inducing sparsity and
conclude with an iterative optimization technique. This iterative
technique adds a linear cost function to (8) which drives the terms
in w towards 0 and 1.

It is important to recognize that attempting to induce sparsity
in the solution to (8) is prone to introducing non-convexity to the
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program. As mentioned previously, integer programming with a
branch and bound algorithm is non-convex. The ¢;-norm, when
added as a linear regularization penalty to an objective function,
is known to incentivize sparsity in the solution [10,11]. However,
due to the linear constraints in (8), ¢ regularization is ineffective
(i.e. |Ww||1 = 1). Direct attempts to drive the terms in W towards
0 and 1 (i.e. min F(Y"W)+Yw;(1—1;)) or to minimize the
variance of  (i.e. min F(Y7) + Y w;(y; — Y7 W)?) are concave.

In the remainder of this section, we present an iterative tech-
nique for inducing sparsity in w*. Put simply, at each iteration n,
we solve (8) with a linear weight 8" € R applied to "

minimize F(Y'W") + o (") B"

‘,’\)I‘I
subjectto  } W) =1

n

(20)

>
vV
o

Ny

m
=

Wn

where o is a scaling parameter for the sparsity-inducing cost.
The linear weight is initialized at 0 (8% € {0}") and after
each iteration n, updated according to the previous solution (W")*

A 2
Byt =ly; =Y ()13

Vji=1,...,N;

21)

Essentially, we are estimating the variance of § (which is
concave with respect to W) as a linear cost. For each successive
iteration, the terms in W" are encouraged, though not required,
to approach 0 or 1. To enable tie-breaking, we can add a small
random perturbation to the weight update

B = llyy =Y () |+ v .
Vi=1,...,N,

where v € R is a Gaussian random variable with a small covari-
ance (e.g. v~ N(0,0.01)). This will allow ties between different
output trajectories to be broken randomly.

Lastly, we define a simple procedure for updating the scaling
parameter o¢":

a"+e  if Max(Var(5)") > 62,
2
o' =$0.9a"  if Max(Var(y)") < Zau
o otherwise

(23)

where Var(5)" € R™ is the variance of § at iteration n based on
(W")*, € is the step size for increasing « (e.g. € = 0.005), and
G2, defines the maximum desired variance.

This iterative technique for minimizing variance and induc-
ing sparsity in w* can be applied to the optimization of indi-
vidual agents. While the objective of (20) is not constant, the
change in 3" from one iteration to the next is relatively small. On
the whole, the updating weight 3" introduces concavity into the
problem. Specifically, the magnitude of each weight increases
as the terms in (W")* approach 0 or 1. With each successive
iteration, (1")* is forced further away from (1°)*, the optimal

solution to (8).

6 ILLUSTRATIVE EXAMPLE

To illustrate the application of the ACT representation for
the convex optimization of a non-convex discrete energy system,
this section considers the control of a thermostatically controlled
load (TCL). Specifically, we optimize the electricity demand of a
simulated residential refrigerator using the techniques described
in this manuscript.

The TCL is modeled using the hybrid state discrete time
model [9, 12-14]

T = 0, 7% + (1 — 6))(TX + 6,m") + 65

I TR < T — S +ulk 24)
mT =00 i T* > T+ & ik
mk  otherwise

where state variables 7% € R and m* € {0,1} denote the tem-
perature of the conditioned mass and the discrete state (on or
off) of the mechanical system, respectively. Additionally, £k =
1,2,...,N, denotes the integer-valued time step, 7X € R the am-
bient temperature (°C), Ty, € R the temperature setpoint (°C),
and & € R the temperature deadband width (°C). The control in-
put u* € S, is a setpoint change at each time step where S,, defines
the discrete set of feasible values.

The parameter 6; represents the thermal characteristics of
the conditioned mass as defined by 6; = exp(—Ar/RC) where At
is the length of each time step (Ar = 1/60 hours), C is the thermal
capacitance (kWh/°C) and R is the thermal resistance (°C/kW),
6, the energy transfer to or from the mass due to the systems
operation as defined by 6, = RP where P is the rate of energy
transfer (kW), and 65 is an additive process noise accounting for
energy gain or loss not directly modeled.

The electricity demand of the TCL at each time step is de-
fined by

v 1Pl
- 25
Y= cop™ (25)
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where y* € R is the electric power demand (kW) and COP the
coefficient of performance. We now have the state and output
equations necessary to model the system ((24) serves as G and
(25) as H).

Figures 1, 2, and 3 present examples of N, = 3 alternative
trajectories for the TCL. In the examples, each alternative input
uj for j=1,2,3is € {0,—1,1}* (i.e N, = 20). While the input
trajectories are not plotted, they can be inferred from the changes
in the setpoint and temperature bounds. For trajectory j =1, u’f =
0 for k= 1,...,20. For trajectory j =2, u’é =0fork=1,...,10
and ul = —1 for k = 11,...,20. For trajectory j = 3, u§ = 0 for
k=1,...,10and ¥} = 1 for k=11,...,20.

The TCL has been simulated using (24) and (25) with a de-
fault setpoint T, of 2.5°C, a deadband width & of 2°C, an initial

0.3
S02
<
2 0.1
0.0 :
0 5 10 15 20
Minutes
FIGURE 4. Target power demand p
0.3}
202
S
< 0.1 __J——LIW——m
>
0.0
0 5 10 15 20

Minutes

FIGURE 5. Continuous solution §*

temperature 79 of 3.3°C, and an initial mechanical state m® of
0. Figures 1, 2, and 3 present the 7; and y; trajectories corre-
sponding to each input u; for j = 1,2,3. The mechanical state
trajectories m; can be inferred from the 7; and y; trajectories.
As illustrated by the figures, each distinct input u; produces a
distinct T}, m;, and y;. Therefore, in this example, N; = N, = 3.
Next, we define some optimal power demand trajectory p €
R?° which we would like the TCL to match as closely as possible.
As illustrated in Figure 4, we define p* = 0.3 fork=2,...,4 and
fork=11,...,18 and p* = 0 otherwise. The convex optimization
program is defined with a least squares objective function

minimize  |[Y"% - p|)3
w

subjectto Y Ww; =1 (26)
Ww>0
W e R

By solving (26) with Y and p as described above, we find
that w* = (0.263,0.421,0.316). The continuous solution §*, the
optimal linear combination of the alternative output trajectories,
is illustrated in Figure 5.

It should be noted that the squared error between p and yy,
v, and y3 is 0.134, 0.134, and 0.15, respectively. Thus, the utili-
ties of y; and y, are equal. However, if we apply (9), there are 3
possible outcomes for the discrete solution W,
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Pr( = (1,0,0)) = 26.3%
Pr(w = (0,1,0)) =42.1% 27)
Pr( = (0,0,1)) = 31.6%

=

By applying the sparsity inducing penalty described in (20)
and (22), we find that the (W*)" = (0,1,0) after 3 or 4 itera-
tions. Despite the random perturbation added to the weights,
we observe that, for this particular example, the program always
converges to the same solution (i.e (W*)" — (0,1,0) as n — ).
Thus, for this TCL, we would implement the control trajectory
defined by u», T, my, and y».

7 Conclusions

In this manuscript, we have developed the alternative control
trajectory (ACT) representation — a novel approach for represent-
ing the control of a non-convex discrete system as a convex pro-
gram. The resulting convex program provides a solution that can
be interpreted stochastically for implementation. This approach
enables the approximate optimal control of non-convex agents
using distributed convex optimization techniques. By inducing
sparsity in the individual agents, we can increase the predictabil-
ity (i.e. reduce the variance) of the aggregated output.
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