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Abstract6

Integrated management of Food-Energy-Water Systems (FEWS) requires a unified, flexible and reproducible

approach to incorporate the interdependence between sectors, and include the risk of non-stationary envi-

ronmental variations due to climate change. Most of the recently developed methods in the literature fall

short of one or more aspects in such integration. In this article, we propose a novel approach based upon

fundamentals of decision theory and reinforcement learning that (1) quantifies and propagates uncertainty,

(2) incorporate resource interdependence, (3) includes the impact of uncontrolled variables such as climate

variations, and (4) adaptively optimizes management decisions to minimize the costs and environmental

impacts of crop production. Moreover, the proposed method is robust to problem-specific complexities and is

easily reproducible. We illustrate the framework on a real-world case study in Ventura County, California.

Keywords: Food-energy-water systems Climate change Uncertainty quantification Decision optimization7

1 Introduction8

In recent years, there has been significant research interest in realizing sustainable infrastructure through9

integrated operation of food, energy, and water systems (FEWS) (Veldhuis and Yang 2017; Al-Saidi and10

Elagib 2017; Helmstedt et al. 2018; Liu et al. 2018). Fundamental elements of integrated FEWS include11

uncertainty, the interdependence between sectors, risk and impact of climate change, and a generalized12

framework that enables scalability to a multitude of applications (Howarth and Monasterolo 2016; Cai13

et al. 2018). A recent review paper by Albercht, Crootof, and Scott (2018) identifies two fundamental14

gaps in FEWS analysis: (1) the methods are generally not reproducible and are problem-specific; (2) they15

usually fall short of incorporating the interdependence across sectors as well as resource interdependence.16

More specifically, recent literature in FEWS management either focuses on optimizing the food process and17
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identifies optimal strategies for such management, or focuses on the flow of information and resources among18

the different sectors involved in the operations, ignoring the optimization of the process due to computational19

complexity.20

Optimizing the operations of FEWS requires identifying the management objective, constraints to21

the manager, strategies available to her, utilities corresponding to the operational costs, revenue, and22

environmental impacts, as well as the effect of exogenous (or uncontrolled) variables such as environmental23

variations. Once these are quantified, several approaches can be used to identify the management strategies24

and outcomes of such implementations on the FEWS operations in long-term, including mathematical25

programming (Yu and Nagurney 2013; Rong, Akkerman, and Grunow 2012; Bieber et al. 2018; J. Zhang et26

al. 2018), life cycle analysis (Bell, Stokes-Draut, and Horvath 2018; S. Wang, Cao, and Chen 2017; Sherwood,27

Clebeaux, and Carbajales-Dale 2017), and scenario planning (Ramaswami et al. 2017; Chaudhary, Gustafson,28

and Mathys 2018; Karan et al. 2018). Although most of these studies focus on optimizing the crop production29

or food process life cycle, recent studies have focused on utilizing similar approaches to model and optimize30

the inter-connected sectors. Examples are modeling inter-connection of energy and food sectors towards31

utilization of food bi-products for energy purposes (Cuellar and Webber 2010; Wang et al. 2018; Breunig32

et al. 2017; Boyer and Ramaswami 2017), flow of energy and water within a FEWS network, as well as33

design of network topology itself (Daher et al. 2019; Liang et al. 2019; Tsolas, Karim, and Hasan 2018;34

Kurian et al. 2018), and the interdependence with social aspects of FEWS (Givens et al. 2018). Another35

important factor in integrated FEWS analysis is risk imbued by climate change. A few recent studies have36

evaluated the effect of climate change on crop production and operation within an integrated FEWS using37

dynamic forward simulation (Bieber et al. 2018; Berardy and Chester 2017; J. S. Baker et al. 2018; Conway38

et al. 2015). Nevertheless, current efforts that incorporate climate change effects in FEWS analysis mostly39

rely on management strategy evaluation (Smith 1994), which is also known as scenario planning. Although40

management strategy evaluation can evaluate the effect of fixed management strategies on long-term FEWS41

operations under pre-defined realizations of random events, they cannot generate the optimal solution in a42

stochastic sense.43

FEWS integrated management requires a combination of economic-based management strategy evaluation,44

with optimization that incorporates environmental impacts and risk of climate change. Decision theory45

and reinforcement learning make this integration possible; recent advancements in these fields have shown46

great promise in modeling complex dynamics of interdependent systems (Littman 2015) in many real-world47

applications such as human-level control in gaming (Mnih et al. 2015; Silver et al. 2017), natural resource48
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management (Memarzadeh and Boettiger 2018; Memarzadeh and Boettiger 2019), and robotics (Francois-49

Lavet et al. 2018; Porta, Spaan, and Vlassis 2005). In this article we develop a dynamic optimization50

approach basing upon fundamentals of decision theory and model-based reinforcement learning, to adaptively51

control and optimize operation of integrated FEWS. The novelties of the proposed approach are the ability52

to (1) quantify and propagate uncertainty and stochasticity in the dynamics of each sector, (2) incorporate53

resource interdependence, (3) include the impact of the uncontrolled variables such as climate variations, and54

(4) adaptively optimize the management decisions to minimize the costs and environmental impacts of the55

agricultural production. Moreover, the proposed method is robust to problem-specific complexities and is56

easily reproducible. We evaluate its performance with a real-world case study of a FEWS in Ventura County,57

California.58

2 Methods59

In order to fill the gaps mentioned above, we develop a dynamic Bayesian network (Barber 2012) to60

optimize the management of food-energy-water systems (FEWS) under the effect of climate variability.61

Dynamic Bayesian network is a specific family of model-based reinforcement learning. When modeling a62

problem using this approach, one needs to define the state space, actions available to the manager, the63

dynamics of the system, and the utility function. We define each next (for detailed definitions refer to Table64

A4 in the appendix).65

The state space represents the time-varying condition (or status) of the FEWS. We factorize the state66

space into two sets of variables. (1) Let x ∈ X represent the status of the water and energy resources, as well67

as the food (i.e. crop production) state (it should be noted that food state in this article solely correspond to68

the agricultural production and not the state of food processes in the entire life cycle). These are controlled69

states, where X is the entire domain of the state space, which is a Cartesian product of the water and energy70

states with crop production state, i.e. X = F×E×W. (2) Let s ∈ S represent the climate and seasonal71

variations, defined as an exogenous variable (sometimes also called uncontrolled variable). For example, s72

could represent different seasons, annual changes in the temperature, or seasonal and annual changes in73

precipitation. Similarly, S represents the entire domain of the exogenous variables. Consequently, the entire74

state space is defined in a factorized space of controlled and uncontrolled variables: (X,S). The manager75

(also sometimes referred to as the decision-maker or the agent) of the system may select different actions76

corresponding to different sources of water and energy, a ∈ A, where A represents the entire domain of77

actions available to the manager.78

3
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The dynamics of the crop, energy, and water variables are modeled as a stochastic process, i.e. xt+1 =79

f (xt, at, st+1)+ζxt , where t denotes the time index, and ζtx is a random variable representing the stochasticity80

in the dynamics. It should be noted that the dynamics of the FEWS variables depend on actions taken by81

manager, as well as exogenous state variables (e.g. temperature, precipitation, season) st+1. The state of the82

uncontrolled variable st also evolves stochastically, st+1 = fs (st) + ζst . We assume that the uncontrolled83

variables affect the dynamics of the crop production, energy and water variables, but the manager has no84

control over their dynamics and as a result, the manager just observes their changes.85

The quality of the strategies that the manager takes is quantified by a pre-specified utility function that86

maps state and action spaces to real-valued numbers: u(xt, st, at) : (X,S)×A→ R. Specifically, we define87

utility as follow,88

u(xt, st, at) = Rev− C(at)− P (xt, st) (1)

where we assume that Rev is the constant revenue achieved from agricultural productions, C(at) is the89

costs of actions taken by the manager (which is comprised of energy cost (MJ/ kg of the crops produced),90

GHG emissions (kgCO2/ kg of the crops produced), and operational costs ($/ kg of the crops produced), and91

P (xt, st) is the loss of revenue (i.e. penalty) due to failure of the agricultural production and not yielding the92

crops. Since, the revenue is assumed to be constant, the optimal management strategy that maximizes the93

profit in agricultural production, i.e. the utility function defined above, is equivalent to the management94

strategy that minimizes the operational costs of the production. As a result, we define the objective of the95

optimization problem by minimization of the costs.96

Since actions taken by manager have both immediate and long-term effects on the system dynamics, the97

optimization objective need to be sensitive to both immediate and long-term outcomes. As a result, the goal98

of the optimization process is to minimize operational costs and environmental impacts, in some sense, over99

the entire FEWS network life-span. This is mathematically given by the weighted sum of costs over each100

time step:
∑T
t=0 γ

t (C(at) + P (xt, st)), where T is the life-span of the system (or management time horizon).101

Symbol γ ∈ [0, 1) is the discount factor, relating future costs to their net present value. We usually set T to102

infinity to model long-term management problems. The management strategy (sometime also referred to as103

policy) can then be defined as a mapping from the state space to the action space, π : (X,S)→ A. For an104

arbitrary strategy, π, one can calculate the long-term expected cost over the network’s life span, which we105

denote by V π, and it is calculated recursively as:106

4
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V π (xt, st) = C (π(xt, st)) + P (xt, st) +

γ
∑
st+1∈S p(st+1 | st)

[∑
xt+1∈X p (xt+1 | xt, π (xt, st) , st+1)V π (xt+1, st+1)

] (2)

where C (π(xt, st)) is the immediate costs associated with the strategy π, P (xt, st) loss in revenue (if107

incurred), and p(x | y) is the probability of event x conditioned on event y. The conditional probabil-108

ities p(st+1 | st) and p (xt+1 | xt, π (xt, st) , st+1) correspond to the respective dynamics fs (st) + ζst and109

f (xt, at, st+1) + ζxt , respectively. Figure 1 visualizes the probabilistic graphical model of the factorized110

dynamic Bayesian network.111

Figure 1: The probabilistic graphical model of a food-energy-water system. Circles represent random variables, squares represent

decision variables, and diamonds represent the utility variables. As can be seen, the state space is factorized into two sets: crop

production, energy, and water states, X, and the uncontrolled state, S, comprised of seasonal changes, λ, changes in temperature,

∆T , and precipitation, r. The expressions on the edges correspond to the dynamics of the uncontrolled variable, p(st+1 | st),

dynamics of the controlled state variables, p (xt+1 | xt, π (xt, st) , st+1), utility variables, u (xt, st, at) (as defined in Eq. 1), and

action selection according to a management strategy, π∗. For example, the action at time step t is denoted as at = π∗ (xt, st).

The difference between the method proposed here and previous attempts based on scenario planning are112

two-fold: (1) We seek to optimize the management objective and find the optimal management strategy,113

and not just evaluate a set of pre-determined strategies, and (2) uncertainty is elegantly handled by directly114
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incorporating statistics into the strategy design, instead of evaluating strategies on a finite set of randomly115

generated scenarios. The optimal strategy can be found by minimizing the long-term expected costs and116

environmental impacts of operating the system over its entire life span (defined in Eq. 2) as follows,117

π∗ (x, s) = argmina∈A

[
C (a) + P (x, s) + γ

∑
s′∈S

p (s′ | s)
[∑
x′∈X

p (x′ | x, a, s′)V ∗ (x′, s′)
]]

(3)

Eq. (3) is the well-known Bellman equation (Bellman 1957), and we use dynamic programming (Sutton118

and Barto 1998) to find the optimal solution. The algorithm is reported in Figure 2.119

Figure 2: The value iteration algorithm for solving the optimization problem in Eq. (3). It should be noted that this algorithm

is a variation of the original value iteration algorithm (Sutton and Barto 1998), as the changes of the state variables from time

step t to t+ 1, depends on the observed uncontrolled variables at time step t+ 1, i.e. st+1.

3 Results and Discussion120

We first explain the real-world case study – a food, energy, and water system in Ventura County that is121

used for illustrating the proposed method. Then we will discuss the main findings.122

6

Page 6 of 23AUTHOR SUBMITTED MANUSCRIPT - ERL-106445.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



3.1 Ventura County FEWS123

We focus on four crops in Ventura County, California – strawberry, lemon, avocado, and celery, which on124

average account for 32.75% of California’s total production of these crops and 29.54% of total US production125

for these crops, with a gross value of B$1.18 (Ross 2015) (for details refer to Table A1 in the appendix). We126

denote the water level available for irrigation at each time step t by wt ∈ [0, 1], normalized to the maximum127

capacity so it takes values between 0 and 1. Similarly, the available energy amount is denoted by et ∈ [0, 1].128

The seasonal water demand dw,t and energy demand de,t for each of the four crops are obtained from the129

work of Bell, Stokes-Draut, and Horvath (2018). The data of seasonal precipitation, rt, is obtained from the130

Western Regional Climate Center (https://wrcc.dri.edu) for Ventura County. In the first analysis we only131

focus on quantifying the effect of seasonal changes on the optimal management strategy of FEWS operations.132

Later on, we extend the formulations to incorporate the effect of climate change, specifically the changes in133

temperature and precipitation, on the optimal management strategy as well.134

The crop production state, which corresponds to the status of agricultural production, is given by135

ft ∈ {0, 1}. We assume production takes place only if the level of water and energy available are above the136

demands1, i.e.,137

ft =


0 if wt < dw,t or et < de,t

1 if wt ≥ dw,t and et ≥ de,t
(4)

Manager has four actions available corresponding to utilizing the conventional or recycled water resources,138

aw,t ∈ Aw = {Convw,Recw}, and utilizing the conventional or renewable wind energy resources, ae,t ∈139

Ae = {Conve,Rene}. We assume that the conventional water source in the region is coming from runoffs140

in the nearby river as well as local wells, and the conventional energy source is mostly natural gas (Bell,141

Stokes-Draut, and Horvath 2018). It should be noted that we aggregate the two sources of water available for142

irrigation (water from runoffs in the nearby river and groundwater resource) in this case study for simplicity.143

However, as illustrated by Marston and Konar (2017), farmers tend to switch between these two resources144

according to seasonal changes and specially in drought conditions. This effect is currently ignored in this case145

study due to lack of data. Consequently, the action vector at is given by at = (aw,t, ae,t) ∈ Aw ×Ae. The146

current capacity of recycled water in the region is estimated to be only sufficient to provide water for 25% of147

1It should be noted that, in this setting where the crop production state is binary, the state space can be implemented as
a Cartesian product of only water and energy states, however, for illustration purposes we include the crop production state
explicitly here.
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the agricultural productions for these four crops (Bell, Stokes-Draut, and Horvath 2018). Similarly, we have148

assumed that the hypothetical wind power capacity is sufficient for 25% of the total agricultural production.149

This means that, for example, action (Recw,Rene) corresponds to combining maximum amount of recycled150

water and renewable energy available (i.e. 25%) with conventional resources (75%). Of course, the projections151

indicate that we will have (or should invest on) more renewable sources of water and energy available in the152

future and we quantify the economic benefits of increasing capacity of such renewable resources later on.153

As mentioned before, the quality of the strategies that the manager takes is quantified by a pre-specified154

utility function, defined in Eq. (1). The costs associated with management actions, i.e. C(at), is comprised155

of energy cost (MJ/ kg of the crops produced), Green House Gas (GHG) emissions (kgCO2/ kg of the crops156

produced), and operational costs ($/ kg of the crops produced). We characterize costs associated with four157

actions in a normalized unit-less manner. This means that the cost associated to using conventional water is158

assumed to be 1, and the additional costs associated to using the recycled water is reported in Table A2 of159

the appendix. Similarly, costs associated with the energy resource choices is comprised of environmental160

GHG emissions and operational cost. Values are reported in Table A3 of the appendix. The penalty for not161

yielding the crops and loss in revenue, i.e. P (xt, st) in Eq. (1), due to lack of water or energy resources is set162

to a very large number. This generates management strategies that meet both water and energy demands163

at all times, and thus ensures sustainable agricultural production, i.e. ft = 1 for all t. The value of the164

penalty is an arbitrarily large number, and the results are not sensitive to the choice of penalty, as long as it165

is sufficiently large with respect to the costs.166

The interdependence of the water and energy states is characterized by the strategy that the manager167

chooses. Recycling water is assumed to consume more energy, and similarly conventional energy is assumed168

to consume more water than wind energy. The exact interdependence is quantified later on in Eqs (5-6). It169

should be noted that in this article we only model resource interdependence among the water, energy, and170

agricultural production and do not incorporate the comprehensive sectoral interdependence.171

In the next sections, we first discuss the findings at a seasonal level, where each time step of the process172

is assumed to be one day to consider the effect of seasonality on the optimal FEWS operations, ignoring the173

long-term effects of climate change. Next, we extend the formulations to incorporate the effect of climate174

change, specifically the changes in temperature and precipitation, on the optimal management strategy,175

where FEWS operation is projected to the year 2050 and each time step is assumed to be one season.176
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3.2 Seasonal changes177

In the dynamic Bayesian network formulation depicted before, we define two sets of state spaces as follows:178

(1) season is an uncontrolled variable, λ ∈ {Spring, Summer,Fall,Winter}, and (2) water, energy, and crop179

production states are controlled variables, X = F× E×W. The water level is discretized into 51 values,180

wt ∈ [0, 1] with step 0.02. The dynamics of the water state for each crop i and season λ is formulated as181

follows,182

w
(i)
t+1 = w

(i)
t − d

(i,λ)
w,t + rλt − we · 1Conve

(ae,t) + ww · 1Recw
(aw,t) + ζt (5)

where w(i)
t is the water level for crop i at time step t, d(i,λ)

w,t is the water demand at time t for crop i in183

season λ, r(λ)
t is the seasonal precipitation, we is water consumed when using conventional energy (which184

is fixed to 10%), 1Conve
(ae,t) is the indicator function which returns 1 if ae,t = Conve, and 0 otherwise,185

ww is the boost in the water state due to using a recycled water resource (which is maximum of 25%186

in Ventura County (Bell, Stokes-Draut, and Horvath 2018)), 1Recw
(aw,t) is the indicator function which187

returns 1 if recycled water is used. Finally, ζt is the stochasticity in the dynamics, which is assumed to be188

normal distribution with a known standard deviation, truncated at zero to avoid negative state values, i.e.189

ζt ∼ N[0,+∞] (0, σ = 5%). It should be noted that although the parameters ww and we are being fixed here190

based on the data obtained for Ventura County, including uncertainty in these parameters is straight-forward191

and one can treat them as random variables with a known prior probability distribution. For example, in the192

next section we incorporate the uncertainty and variability in the precipitation variable due to changes in193

climate.194

The energy level is discretized into 51 values, et ∈ [0, 1] with step 0.02. The dynamics of energy state for195

each crop i is formulated as follows,196

e
(i)
t+1 = e

(i)
t − d

(i)
e,t − ew · 1Recw

(aw,t) + ee · 1Rene
(ae,t) + ζt (6)

where e(i)
t+1 is the energy level for crop i at time step t, d(i)

e,t is the energy demand at time t for crop i,197

ew is consumed energy for using recycled water (which is fixed to 10%), and ee is the boost of energy due198

to using wind energy (which is assumed to be a maximum of 25%). It should be noted that the energy199

dynamics do not depend on seasonal variations in this case study due to lack of data, however extension to200

include such seasonal dependence is straight-forward. Figure 3 provides a schematic visualization of Ventura201

Country’s FEWS (It should be noted that, in this case study where the crop production state is binary, the202
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state space can be implemented as the Cartesian product of only water and energy states, and as a result we203

have not included the crop production state in the figure).204

Figure 3: This figure provides a schematic visualization of the dynamics of Ventura County’s FEWS operations. The controllable

states include available water wt and energy et. The actions include which water resource to use (conventional or recycled) aw,t

and which energy resource to use (conventional, i.e. natural gas, or renewable, i.e. wind) ae,t. The water and energy demand to

produce each crop is denoted by dw,t and de,t, respectively.

Figure 4 visualizes the optimal management strategy for each crop in each season. Management strategies205

are calculated by minimizing the objective function in Eq. (3) using the algorithm in Figure 2. Axes206

correspond to the energy and water states, and different shapes denote different management actions. The207

general trend is that managers tend to utilize recycled water (green triangle and magenta cross) more208

aggressively in the high water-demand seasons compared to low water-demand seasons (For example, in the209

case of strawberry, the manager uses the renewable water source 100% more in high water-demand seasons210

compared to low water-demand seasons. These differences are 133.5% for lemon, 85.2% for avocado, and211

50.81% for celery).212
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Figure 4: Visualization of the optimal management strategies as a function of the water and energy states, for each crop across

four seasons. Red dots represent conventional water and energy, green triangle represents recycled water and conventional

energy, cyan square represents conventional water and renewable energy, and magenta cross represents recycled water and

renewable energy.

In the previous section, we mentioned that the current recycling water unit in Ventura County can output213

up to 25% of the total agricultural production. Similarly, we also assumed that wind energy can provide up214

to 25% of total energy need. Figure 5 quantifies the expected economic value (EV) of doubling the size of215

both the water recycling facility as well as the wind energy capacity to allow coverage for up to 50% of the216

total agricultural production in the region. The economic value is calculated as follows,217

EV = E(x̄,s̄) [V ∗I (x̄, s̄)− V ∗II (x̄, s̄)] (7)

where, E(x̄,s̄) is the sample mean over N = 100 sampled trajectories of uncontrolled and controlled state218
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variables (x̄, s̄) = {(x0, s0) , (x1, s1) , . . . , (xT , sT )}. The time span T is set to arbitrary large number for219

the value to converge (due to discounting future costs), V ∗I is the optimal value for the 25% capacity case,220

and V ∗II is the optimal value for the 50% capacity case. As it can be seen the EV is significantly higher221

(117.8%) for high energy-demand crops (i.e. strawberry and avocado) compared to low energy-demand crops222

(i.e. lemon and celery).223

Figure 5: Economic value (EV) for doubling the size of the recycling water and renewable energy units on the operation cost of

the Ventura County FEWS. The bars show average economic value based on 100 independent simulations. Top of the bars

show the mean, the black line shows the median, the bottom and top of the boxes show 25% and 75% percentiles, and whiskers

correspond to highest and lowest values excluding the outliers.

3.3 Management under the risk of climate change224

In this section, we incorporate the effect of climate change (i.e. variations in temperature and precipitation)225

on the management strategies for operating the integrated FEWS in Ventura County. We define two climate226

change scenarios: (1) the Low climate change which models the changes in temperature according to RCP2.6227

(data obtained from IPCC (2014), Figure 6A), and changes in precipitation according to RCP4.5 (data228

obtained from Pierce, Kalansky, and Cayan (2018), Figure 6B); and (2) the High climate change which229

models the changes in temperature and precipitation both according to RCP8.5.230
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Figure 6: This figure shows the projection of the changes in (A) temperature and (B) precipitation by year 2050. The data are

obtained from IPCC (2014) for temperature and Pierce, Kalansky, and Cayan (2018) for precipitation. It should be noted that

the temporal resolution of the temperature figure (A) is seasonal. The annual variations in the precipitation are estimated

according to the projections based on three different climate models of HadGEM2-ES, CNRM-CM5, and CanESM2 (refer

to Figure A1 in the appendix). After estimating the annual variations, it is translated into the standard deviation of the

seasonal variations with a known mean fixed at the expected seasonal precipitation: r(λ, t) ∼ N[0,+∞]
(
µ = r̄λ, σ = σM,t

)
,

where M = {RCP 4.5,RCP 8.5} and r̄λ is obtained from Western Regional Climate Center, (https://wrcc.dri.edu).

In order to incorporate the changes in these climate variables, the uncontrolled variable is defined231

as the Cartesian product of temperature changes, precipitation, and seasons S = ∆T × r × λ, where232

λ ∈ {Spring,Summer,Fall,Winter} is the variable indicating the season changes. As it can be seen in Figure233

6B, the projections of the precipitation under the climate change only affects the variability of the rainfall234

amount and not its expected value (the data is for Ventura County and this trend is not general to other235

locations). As a result we model the effect of climate change on the precipitation amount in each season,236

λ, as: r(λ, t) ∼ N[0,+∞] (µ = r̄λ, σ = σM,t), where r̄λ is the average seasonal precipitation amount currently237

(obtained from Western Regional Climate Center, https://wrcc.dri.edu), and σM,t is the standard deviation238

in the precipitation projected up to 2050, t ∈ [2018, 2050], according to each model,M∈ {Low,High}. The239

values of these variations is estimated according to the projections based on three different climate models of240

HadGEM2-ES, CNRM-CM5, and CanESM2 (Pierce, Kalansky, and Cayan 2018) (Figure A1 in the appendix).241

The controlled state variables are modeled as before: X = F×E×W, as well as the actions.242

The water dynamics in Eq. (4) are re-formulated to account for trans-evaporation and other losses due to243
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temperature rise, as well as changes in the precipitation variations,244

w
(i)
t+1 = w

(i)
t − d

(i,λ)
w,t + r(λ, t)− we · 1Conve

(ae,t) + ww · 1Recw
(aw,t)− η (∆Tt)β + ζt (8)

where, symbol d(i,λ)
w,t is the seasonal water demand for crop i in season λ, r(λ, t) is the precipitation at245

time step t and season λ defined as above, we is consumed water for using conventional energy (which is246

fixed to 10%), and η (∆Tt)β is the non-linear effect of temperature change on water losses at time t, with247

constant parameters η and β fixed at 0.1 and 1.75, respectively. Effect of climate change can be similarly248

incorporated in energy dynamics as follows,249

e
(i)
t+1 = e

(i)
t − d

(i)
e,t − ew · 1Recw (aw,t) + ee · 1Rene(ae,t)− η′ (∆Tt)β

′
+ ζt (9)

where, η′ (∆Tt)β
′
models the effect of temperature rise in deterioration of energy resource due to increased250

energy demand for irrigation pumping and air conditioning. However, in this case study, we disregard this251

effect due to lack of data to adjust such effect. Once such data is available, it can be used to estimate252

parameters η′ and β′, and include the effect in energy dynamics according to Eq. (9). Moreover, the effect of253

climate change on wind energy is also ignored due to lack of data. The expectation is that the amount of254

available wind energy will be increasing, due to decreasing costs and increasing policy incentives, and we255

quantify the expected value of increasing the capacity of renewable sources later on (Figure 7B).256

As a result, the energy dynamics are equivalent to Eq. (6), assuming ew to be 10% to represent the257

energy consumption for recycling water. It is worth mentioning that, in this section, we have discretized the258

water and energy state space into 21 values wt, et ∈ [0, 1] with step 0.05 for computational efficiency.259

To understand the impact of different climate scenarios, we evaluate the risk of not adapting the260

FEWS management strategy to climate change in Figure 7A. Here, we compare the value of operating the261

network according to the optimal strategy that considers future projections of temperature rise and changes in262

precipitation (labeled as Optimal), with the strategy that assumes climate stays the same (∆Tt = 0, rt = r0,∀t,263

labeled as Ignoring, where r0 is the current observed precipitation). It is clear that ignoring climate change264

in the management strategy design results in significant increase in FEWS operational cost, on average for265

all crops around 24.15% and 115.1% more under Low and High climate scenarios, respectively 2.266

We further quantify the economic value of doubling the water recycling and renewable wind energy267

capacities, so they can provide water and energy for up to 50% of the total operational needs, calculated using268

2It should be noted that these numbers are biased based on the assumed penalty for loosing the crop production state. In
this study, we assumed the penalty to be 100.
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Eq. (7) (Figure 7B). As it can be seen, in Low climate scenario, the economic value is close to negligible across269

all crops (14.44 on average with low standard deviation). However, the economic value is significantly higher270

for all crops in the case of High climate scenario (135.78 on average with a very high standard deviation. For271

example, in the case of strawberry the economic value can be as high as 270). This is an interesting finding,272

as current policy-makers must decide whether to invest in increasing the capacity of water recycling and273

renewable energy sources or not, given the uncertainty as to which one of these (and many other) climate274

projections will best represent the future reality.275
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Figure 7: (A) Comparison of management strategies that adapt to climate change (labeled as Optimal) against ignoring climate

change (labeled as Ignoring), for each crop under both Low and High climate change scenarios, and (B) Economic value (EV) of

doubling the size of the water recycling and renewable wind energy capacities on the operational costs. The bars show average

economic value based on 100 independent forward simulations. Top of the bars show the mean, the black line shows the median,

the bottom and top of the boxes show 25% and 75% percentiles, and whiskers correspond to highest and lowest values excluding

the outliers.

4 Conclusions276

We have developed a dynamic optimization approach, based upon the fundamentals of decision theory277

and model-based reinforcement learning, to adaptively control and optimize operation of integrated food,278

energy, and water systems (FEWS). Fundamental elements to integrated FEWS management are uncer-279

tainty, connectivity of the sectors and resource interdependence, risk and impacts of climate change, and280

16

Page 16 of 23AUTHOR SUBMITTED MANUSCRIPT - ERL-106445.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



generalizability of the methods. Most of existing quantitative literature fall short of one or more of these281

aspects. The novelty of our approach is to create a flexible and reproducible method that is able to quantify282

and propagate uncertainty in the dynamics of each sector, incorporate the resource interdependence, include283

the impact of uncontrolled variables such as climate variations, and adaptively optimize the management284

decisions to minimize the costs and environmental impacts of crop production.285

We illustrated the method on a real-world case study in Ventura County, California, by evaluating286

the effects of seasonal changes and annual environmental variations (temperature rise) on the optimal287

management strategies. Generally, the intuitive observation is that the management tends to lean towards288

renewable water and energy resources more aggressively in high water-demand seasons (around 92.38 % more289

on average for all crops, Figure 4). Moreover, using a crude Monte Carlo scenario planning, we quantified290

the loss that occurs to management that deviates from the optimal strategy and ignores the future changes291

of the climate, e.g., rises in temperature and changes in precipitation (around 24.15% and 115.1% higher292

cost of management under Low and High climate scenarios, respectively, Figure 7A). We also quantified the293

economic value of increasing the capacity of alternative water and energy sources (Figures 5 and 7B) and its294

effect on the operation cost and environmental impacts. Specifically, we show that the economic value is295

significant (135.78 on average for all crops, Figure 7B) under High climate scenario.296

In practice, one can adapt the optimal management strategy by re-computing the solution to Eqs. (2)-(6)297

as new information becomes available, thus enabling optimal integrated FEWS management that adapt to298

climate change. A logical next step is to incorporate the inherent uncertainty within climate projection299

models into the optimization framework. Another future direction is to further examine the functional form300

of the deterioration models used for water and energy state variables (Eq. 5-6), and their dependence on301

climate change (Eq. 8). Moreover, the effect of energy generation as a bi-product of the crop production302

sector (such as biofuels (Breunig et al. 2017)) is ignored in this study, providing another idea for future303

direction.304
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Appendix: additional tables and figures312

Crop Gross value Ventura’s share of California California’s share of US
Strawberry $628M 27% 91%
Lemon $269M 37% 91%
Avocado $128M 36% 95%
Celery $152M 31% 83%

Table A1: Summary of Ventura County’s top crops in 2014 (source: Ross 2015).

Crop Energy GHG Operation
Strawberry +10% +14% +7%
Lemon +12% +7% +22%
Avocado +17% +9% +34%
Celery +54% +59% +25%

Table A2: Additional costs associated with using the recycled water resource in terms of energy cost (MJ/kg of the crops
produced), GHG emissions (kgCO2/kg of the crops produced), and operational costs ($/kg of the crops produced) (source: Bell,
Stokes-Draut, and Horvath 2018).

Source GHG Operation
Conventional +1800% -
Renewable - +1000%

Table A3: Assumed costs associated with different choices of energy resource.
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Variable Definition
x ∈ X Entire domain of state variables in the dynamic Bayesian network
f ∈ {0, 1} Crop production state corresponding whether yield happens or not
e ∈ [0, 1] State of energy available for crop production
w ∈ [0, 1] State of water available for crop production
s ∈ S Entire domain of exogenous variables corresponding to environmental variations
λ ∈ {Spring, Summer,Fall,Winter} Exogenous variable defining seasonal changes.
∆T Exogenous variable defining changes in the temperature
r Exogenous variable defining variations in precipitation
a ∈ A Entire domain of actions available to manager
ζ Variable defining stochasticity
u ∈ U Utility variable quantifying the quality of manager’s actions
C Cost variable defining costs of manager’s actions
P Penalty due to not yielding crops (loosing crop production state, i.e. f = 0)
γ ∈ [0, 1) Discount factor, relating future costs to their net present value
T Management time horizon, which we set to infinity in this article
V Long-term expected cost of managing the system
π Management strategy chosen for the system
d Variable representing demands of water and energy imposed by the society

Table A4: Variables used in this article and their definition.

Figure A1: This figure shows the projections of changes in precipitation by the year 2100 according to the three different climate

models of HadGEM2-ES, CNRM-CM5, and CanESM2, source: Pierce, Kalansky, and Cayan (2018).
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