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Abstract—Fast and safe charging protocols are crucial for
enhancing the practicality of batteries, especially for mobile ap-
plications such as smartphones and electric vehicles. This paper
proposes an innovative approach to devising optimally health-
conscious fast-safe charge protocols. A multi-objective optimal
control problem is mathematically formulated via a coupled
electro-thermal-aging battery model, where electrical and aging
sub-models depend upon the core temperature captured by a
two-state thermal sub-model. The Legendre-Gauss-Radau (LGR)
pseudo-spectral method with adaptive multi-mesh-interval collo-
cation is employed to solve the resulting highly nonlinear six-state
optimal control problem. Charge time and health degradation
are therefore optimally traded off, subject to both electrical
and thermal constraints. Minimum-time, minimum-aging, and
balanced charge scenarios are examined in detail. Sensitivities
to the upper voltage bound, ambient temperature, and cooling
convection resistance are investigated as well. Experimental
results are provided to compare the tradeoffs between a balanced
and traditional charge protocol.

Index Terms—Battery Management, Charge Control Optimiza-
tion, Electric Vehicles, Battery Aging, Experimental Validation.

I. INTRODUCTION

BATTERIES are widely used in mobile handsets, electric
vehicles (EVs), and electric grid energy storage. They are

an enabling technology for diversifying and securing our future
energy supplies. In contrast to simple and rapid refueling of
gasoline or diesel, battery recharge requires meticulous control
and management, owing to complex electrochemical reactions,
immeasurable internal states, and serious safety concerns [1].
Fast charging is a thriving area of research, as it increases
the practicality and consumer acceptance of battery-powered
devices (e.g., EVs). Nevertheless, it can also impair battery
longevity depending on the charging method used, particularly
due to heating. It is thus crucial to systematically study the
tradeoffs between charging time and health degradation, which
is the focus of this paper.

The traditional charging protocol for Li-ion batteries is
constant-current/constant-voltage (CCCV) [2]. In the CC stage,
the charging current is constant until a pre-specified voltage
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threshold is reached; in the CV stage the voltage threshold
is maintained until the current relaxes below a pre-specified
threshold value. This technique is simple and easily imple-
mented. The current rate and voltage threshold are, however,
almost universally selected in an ad-hoc manner.

Various methods were proposed to reduce charge times.
Examples include multi-stage CC (high CC followed by low
CC) plus CV (MCC-CV) [3], fuzzy logic [4], [5], neural
networks [6], grey system theory [7], and an ant colony
system algorithm [8]. Alternative protocols were reported to
prolong the battery lifetime as well, such as MCC-CV (low CC
followed by high CC plus CV) [9] and CCCV with negative
pulse (CCCV-NP) [10]. These protocols are almost always
heuristic. That is, they employ basic knowledge or empirical
observations of electrical properties of batteries to devise a
charging strategy. Their implementation and performance are
subject to cumbersome meta-parameter tuning. Furthermore,
there are no mathematical guarantees for fast charge optimality
or safe constraint satisfaction.

Recently, some researchers have given first insights into
model-based optimal charge control [11]–[16]. A significant
challenge for model-based charge control is numerically solving
a multi-state nonlinear calculus of variations optimal control
problem. These previous studies side-step this difficulty using
linear-quadratic formulations [11], state-independent electrical
parameters [12], piecewise constant time discretization [13],
linear input-output models [14], a one-step model predictive
control formulation [15], or a reference governor formulation
[16]. To directly face the nonlinear variational calculus problem,
orthogonal collocation enabled pseudo-spectral methods were
employed in [17] to optimize charging time and efficiency
of lithium-ion batteries. However, all of the foregoing studies
merely consider the electrical behavior of batteries, without
simultaneously accounting for thermal and aging dynamics.
Consequently, the optimized protocols may markedly deviate
from reality, as batteries invariably work at varying thermal
and aging conditions. Moreover, one cannot explore aging
minimization and temperature-related safety considerations
(e.g., thermal runaway).

This paper pursues a different approach to developing
optimally health-conscious fast-safe charging protocols. Math-
ematically, we formulate a multi-objective optimal control
problem via a coupled electro-thermal-aging model. In the
full model, a two-state thermal subsystem captures both core
and surface temperature dynamics. The core temperature feeds
into parameters within the electrical and aging subsystems
[18]. Due to the bi-directional coupling between subsystems,
the optimization problem is highly nonlinear. Consequently,
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Fig. 1. Schematic of the Electrical Model.
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Fig. 2. Electrical Parameters for Charge identified in [18]: (a) Voc, (b) R0,
(c) C1, (d) R1, (e) C2, and (f) R2.

there are no analytic solutions and numerical solutions have
been previously considered intractable. We challenge this
entrenched mindset by leveraging the Legendre-Gauss-Radau
(LGR) pseudo-spectral method with adaptive multi-mesh-
interval collocation. To the best of our knowledge, it is the first
multi-objective optimization framework for optimally trading
off charging time and battery capacity fade, subject to both
electrical and thermal limits. It is also worth highlighting
that incorporating a two-state temperature model in lieu of
the commonly-used single lumped temperature yields more
accurate predictions and safer charging protocols since it is
known that the core temperature can be higher than the surface
temperature under high current rates (experimentally shown
in [18]). Additionally, a two RC pair electrical model is used
which provides the right balance between complexity and
accuracy (as demonstrated in [18]) required to capture the
voltage dynamics under several operating conditions. This
article extends our previous work [19] with: (i) an experimental
validation of the electro-thermal model dynamics for charging,
(ii) analysis of optimal charge protocols using the aging
model coupled to the validated electro-thermal model, and
(iii) experimental comparison and tradeoff analysis of capacity
fade and charging time for a balanced charge and traditional
CCCV protocol.

The remainder of this paper is structured as follows. In
Section II, the coupled electro-thermal-aging model is described.
In Section III, the multi-objective optimal control problem is
formulated, and the LGR pseudo-spectral method is briefly
introduced. Optimization results are discussed in Section IV,
followed by experimental results in Section V. Finally, Section
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Fig. 3. Schematic of the Thermal Model (adopted from [18]).

VI summarizes the key findings.

II. COUPLED ELECTRO-THERMAL-AGING MODEL

In this section, a coupled electro-thermal-aging model is
described for cylindrical lithium-iron-phosphate batteries (A123
ANR26650M1). It consists of a second-order equivalent circuit
model for emulating voltage behavior, a two-state thermal
model for predicting the core and surface temperatures, and a
semi-empirical capacity-fade model. The electrical parameters
depend upon core temperature, SOC, and current direction.
The thermal parameters are constant. The parameters of the
aging model depend upon current rate and core temperature.
None of the individual subsystem models are new, yet their
integration into optimal charging control is novel.

A. Electrical Model

The electrical model in Fig. 1 comprises an open-circuit
voltage (OCV, Voc), two resistor-capacitor (RC) pairs (R1, C1,
R2, C2), and an ohmic resistor (R0). The state-space model is
given by:

dSOC

dt
(t) =

I(t)

Cbat
, (1)

dV1
dt

(t) = − V1(t)

R1C1
+
I(t)

C1
, (2)

dV2
dt

(t) = − V2(t)

R2C2
+
I(t)

C2
, (3)

Vt(t) = Voc(SOC) + V1(t) + V2(t) +R0I(t), (4)

where Cbat is the nominal capacity, I(t) is the current (positive
for charge), and Vt(t) denotes the terminal voltage. The three
states include SOC and voltages (V1, V2) across the two
RC pairs. Through proper experimental design, the electrical
parameters have been successfully identified in [18], and those
for charge are displayed in Fig. 2. We determine Voc using our
experimental setup as described in Section V.

B. Thermal Model

The thermal model sketched in Fig. 3 describes the radial
heat transfer dynamics of a cylindrical battery by considering
core and surface temperatures Tc and Ts as follows:

dTc(t)

dt
=

Ts(t)− Tc(t)
RcCc

+
Q(t)

Cc
, (5)



TABLE I
THERMAL PARAMETERS.

Rc(KW
−1) Ru(KW−1) Cc(JK

−1) Cs(JK
−1)

1.94 3.08 62.7 4.5

TABLE II
PRE-EXPONENTIAL FACTOR AS A FUNCTION OF THE C-RATE.

C-rate c 0.5 2 6 10
M 31630 21681 12934 15512

dTs(t)

dt
=

Tf (t)− Ts(t)
RuCs

− Ts(t)− Tc(t)
RcCs

, (6)

where Q(t) = |I(Voc − Vt)| is heat generation including joule
heating and energy dissipated by electrode over-potentials. The
heat conduction resistance, convection resistance, core heat
capacity, and surface heat capacity are represented by Rc,
Ru, Cc, and Cs, respectively. The two states are the core Tc
and surface Ts temperatures. As treated in [18], we herein
assume that the coolant flow rate is constant, and the ambient
temperature Tf is nearly constant. The thermal parameters
have been calibrated in previous work and are summarized in
Table I [18]. We determine Ru using our experimental setup
as described in Section V.

We remark that the electro-thermal model has been validated
over a broad range of loading conditions covering a maximum
current rate up to 22C. More details are furnished in [18]
regarding the model topology, parameterization, experimental
design for identification, and validations. We validate the
effectiveness of the electro-thermal model for a charging case
in Section V.

C. Aging Model

We adopt an aging model from [20] that is based upon a
matrix of cycling tests. This matrix spans different C-rates1

(C/2 to 10C), temperatures (-30◦C to +60◦C), and depths-
of-discharge (10% to 90%) for lithium iron phosphate cells
(A123 ANR26650M1). The experimental data demonstrates
that capacity fade depends strongly on C-rate and temperature
in these cells, whereas the sensitivity to depth-of-discharge
(DOD) is negligible. However, the DOD effect can be captured
by the processed ampere-hour (Ah) throughput as described in
Section 3.1 of [20]. A correlation between the capacity loss
and the discharged Ah throughput (which also captures the
effects of C-rate and temperature) has been calibrated by the
following semi-empirical model:

∆Qb = M(c) exp

(
−Ea(c)

RTc

)
A(c)z, (7)

where ∆Qb is the percentage of capacity loss in [%], c is the
C-rate, and M(c) is the pre-exponential factor as a function

1C-rate is a normalized measure of electric current, defined as the ratio of
current I(t) in Amperes, to a cell’s nominal capacity Cbat in Ampere-hours.
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Fig. 4. Battery SOH Model: (a) EOL Cycle N(c, Tc) from Eq. 10, and (b)
SOH Decay Rate from Eq. 12 as Functions of C-rate.

of the C-rate, as shown in Table II (from Table 3 of [20]).
Symbol R is the ideal gas constant and A is the discharged
Ah throughput depending on C-rate. The activation energy Ea

in [Jmol−1] and the power-law factor z are given by

Ea(c) = 31700− 370.3c, z = 0.55. (8)

A capacity loss of 20% (∆Qb = 20%) is often indicative
of the end-of-life (EOL) for an automotive battery, and the
corresponding total discharged Ah throughput Atol and number
of cycles until EOL, N are algebraically calculated from (7)
as

Atol(c, Tc) =

 20

M(c) exp
(

−Ea(c)
RTc

)
 1

z

, (9)

N(c, Tc) =
3600Atol(c, Tc)

Cbat
, (10)

where each cycle corresponds to 2Cbat charge throughput. Note
that Atol is the discharged Ah throughput used by the aging
model in [20], and thus the total throughput should be 2Atol

including both charged and discharged Ah. Based on (9) and
(10), the battery State-of-Health (SOH) can be defined below:

SOH(t) = SOH(t0)−
∫ t

t0
|I(τ)|dτ

2N(c, Tc)Cbat
, (11)

where t0 denotes the initial time. Consequently, SOH = 1
corresponds to a fresh battery and SOH = 0 corresponds
to 20% capacity loss. The time derivative of (11) yields the
battery aging model

dSOH

dt
(t) = − |I(t)|

2N(c, Tc)Cbat
. (12)

The EOL cycle and SOH decay rate, as a function of the C-rate
and core temperature, are visualized in Fig. 4. As the C-rate or
core temperature increases, the SOH decay rate increases. It is
worth pointing out that more EOL cycles can be sustained by
the battery at medium C-rates (2-5C) than at low C-rates, as the
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aging model includes calendar-life effects as well (one cycle at
a very low C-rate has a dramatically increased duration). The
effects of calendar life are embedded into the aging model in
the Ah throughput calculation which is directly proportional to
time according to [20]. Note that this model considers aging
during periods of applied current, and the results should be
understood as such. The aging model validated in [20] has
been similarly applied to health-conscious component sizing
and energy management in hybrid electric vehicles [21].

D. Full Model

Combining the above three sub-models produces the coupled
electro-thermal-aging model (block diagram in Fig. 5) used
for the subsequent charging protocol optimization. The model
dynamics are summarized in (13)-(18), with output equation
(4).

dSOC

dt
(t) =

I(t)

Cbat
, (13)

dV1
dt

(t) = − V1(t)

R1C1
+
I(t)

C1
, (14)

dV2
dt

(t) = − V2(t)

R2C2
+
I(t)

C2
, (15)

dTc
dt

(t) =
Ts(t)− Tc(t)

RcCc
(16)

+
I(t)(V1(t) + V2(t) +R0I(t))

Cc
,

dTs
dt

(t) =
Tf (t)− Ts(t)

RuCs
− Ts(t)− Tc(t)

RcCs
, (17)

dSOH

dt
(t) = − |I(t)|

2N(c, Tc)Cbat
. (18)

III. FORMULATION OF OPTIMAL CHARGE CONTROL

The objective function J combines charge time with capacity
loss (i.e. SOH decay) as follows:

min
I(t),x(t),tf

J = β· tf − t0
tmax − t0

+(1−β)·(SOH(t0)−SOH(tf )),

(19)
where tf is the final time of charge and 0 ≤ β ≤ 1
weights the relative importance between the two objectives. The

optimization variables are the input current I(t), state variables
x(t) = [SOC(t), V1(t), V2(t), Tc(t), Ts(t), SOH(t)]T , and
final time tf . The constraints include the model dynamics
(13)-(18) and the electrical, thermal, health, and time limits
below:

SOCmin ≤ SOC ≤ SOCmax, Imin ≤ I ≤ Imax, (20)
SOC(t0) = SOC0, Vt,min ≤ Vt ≤ Vt,max, (21)
SOC(tf ) = SOCf , Tc,min ≤ Tc ≤ Tc,max, (22)
SOHmin ≤ SOH ≤ SOHmax, SOH(t0) = SOH0, (23)
Tc(t0) = Tc,0, Ts(t0) = Ts,0, t0 ≤ t ≤ tmax. (24)

Since the optimal control problem has six states and is
highly nonlinear, it is difficult to use conventional optimization
techniques, e.g., dynamic programming, Pontryagin’s minimum
principle, and indirect methods, due to intractable compu-
tational burden or complexity. Instead, we pursue pseudo-
spectral methods to transcribe this infinite-dimensional optimal
control problem into a finite-dimensional optimization problem
with algebraic constraints at the discretized nodes. Then, the
optimization variables at such nodes are solved by existing
nonlinear programming (NLP) solvers, like SNOPT or IPOPT
[22]. Note that convexity is not guaranteed, and therefore these
solvers yield locally optimal solutions.

Pseudo-spectral methods are an effective tool for complex
nonlinear optimal control problems and have been extensively
applied to real-world optimization problems in engineering.
Examples include aerospace and autonomous flight systems
[23], road vehicle systems [24], energy storage [17], etc.
There are a myriad of approaches for discretizing integral
and differential equations, leading to a spectrum of pseudo-
spectral variants. In this study, we use the Legendre-Gauss-
Radau (LGR) pseudo-spectral method with adaptive multi-
mesh-interval collocation, featured by the general purpose
optimal control software (GPOPS-II) [22]. This software
incorporates an orthogonal collocation method to generate
the LGR points. Rather than a traditional fixed global mesh, an
adaptive mesh refinement algorithm is employed to iteratively
adjust the number of mesh intervals, the width of each interval,
and the polynomial degree (the number of LGR points). More
theoretical and algorithmic properties of this method and
GPOPS-II are elaborated in [25], [26] and in the Appendix of
[19].

IV. OPTIMIZATION RESULTS AND DISCUSSION

This section presents optimization results for three illustrative
charge paradigms: minimum-time charge, minimum-aging
charge, and balanced charge. These results are presented under
the assumption of no modeling, measurement, or control uncer-
tainty. Furthermore, the aging results represent the effects of
applying the resulting charge protocols during their respective
charge durations. The physical bounds in (20)-(24) and ambient
temperature Tf are specified as follows:

SOCmin = SOC0 = 0.25, SOCmax = SOCf = 0.75, (25)
Imin = 0A = 0C, Imax = 46A = 20C, (26)

Vt,min = 2V, Vt,max = 3.6V, (27)
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Tc,min = 5◦C, Tc,max = 45◦C, (28)
Tc,0 = Tf,0 = 25◦C, Tf (t) = 25◦C,∀t ≥ t0, (29)

SOHmin = 0, SOHmax = SOH0 = 1, (30)
t0 = 0sec, tmax = 36000sec. (31)

Here, the voltage limits are selected according to the manu-
facturer’s specification sheet, and the temperature and current
limits are chosen based on the validated range in [18]. The
initial condition is chosen slightly above 20% SOC since this is
where most consumer electronics begin to indicate to the user
that the battery is low, and the final condition of 75% SOC
is chosen to represent where the battery would have enough
charge to complete desired tasks before the next charge with
a minimum time charge time close to 5 minutes (e.g. time it
takes to get a cup of coffee while phone is charging or time it
takes to refuel a gasoline powered vehicle).

A. Minimum-Time Charge

By setting β = 1, the optimization produces a minimum-time
charge protocol. The optimal trajectories are shown in Fig. 6.
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It takes 5.20 minutes to achieve the target SOC. Heuristically,
the charge process follows a constant-voltage (CV) protocol.
To minimize charging time, the maximum C-rate is applied
initially, causing the maximum voltage constraint to become
active instantaneously. The core temperature increases but does
not reach its maximum value.

A comparison is made with CCCV charges with varying
C-rates (see Fig. 7). It is clear that 5C and 10C CCCV are
sub-optimal with respect to minimum time charging. The 5C
CCCV case yields a 6.04 minute charge time, while the 10C
CCCV case yields a 5.24 minute charge time. We note that
the 15C CCCV case is exactly the optimal solution. In other
words, this analysis yields the insight that CCCV with 15C
is optimal in the sense of minimizing charge time. While the
constant current rate of this protocol may seem very high, the
resulting average C rate is 5.77C which is not far from the
recommended CCCV fast charge constant current rate of 10A
(4.35C) given by the manufacturer specification sheet of this
cell.
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B. Minimum-Aging Charge

By setting β = 0, we can investigate the other extreme –
a minimum aging charge protocol. The optimization result
is illustrated in Fig. 8. Interestingly, the protocol is pulse-
like, while maintaining relatively low core temperature. The
resulting SOH decay is approximately 0.0027%, one order
of magnitude less than the SOH decay from minimum-time
charging (SOH decay of approximately 0.0180%). As shown in
Fig. 9, a comparison is performed with a C/10 CCCV charge
that is widely perceived as a minimum-aging choice. Under
the models considered here, the relatively slow C/10 CCCV
charge is in fact non-optimal, since the long charge duration
significantly contributes to calendar-life decay.

C. Balanced Charge

By sweeping β values between 0 and 1, we compute a
Pareto Frontier of balanced charge protocols, i.e., the optimal
tradeoffs between fast charge time and SOH decay displayed in
Fig. 10. Not surprisingly, the two objectives conflict. Consider
the region between the left two data labels in Fig. 10. Battery
SOH decay can be substantially mitigated with a negligible
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increase in charge time. Therefore, one may sacrifice a trivial
amount of fast charge time to circumvent rapid SOH decay.

A “balanced” protocol (β = 0.34) is exemplified in Fig.
11, which can be interpreted as the smallest-aging solution
in the case of 5.42-minute charge duration. Note the highly
non-intuitive nature of this charging protocol. The current is
carefully regulated to limit the increase of core temperature
(a dominant accelerating factor of capacity fade). That is, the
current reduces in the first minute to slow down the temperature
rise until the voltage constraint becomes active. Next the current
decreases at a lower rate since the resistance has decreased
(see Fig. 12), and then increases as the resistance continues
to decrease in the vicinity of the smallest resistance (due to
the increase in temperature). Ultimately the current reduces
with the growing resistance towards the higher SOC region.
The optimal solution exploits nonlinear model dependencies
between resistance and SOC to improve charge time and SOH
decay.

D. Sensitivity of Pareto Frontier

Next we examine solution sensitivity to perturbations in the
constraint parameters to demonstrate the effects on charge time
and aging from a coupled electro-thermal-aging model based
perspective. These results are presented to help quantify these
effects via the Pareto Frontier plots.

1) Upper Voltage Bound Vt,max: The impact of the upper
voltage bound Vt,max on the Pareto Frontier is shown in Fig.
13 (Top). As Vt,max decreases, the Pareto Frontier moves to the
upper-right and shrinks, resulting in reduced control flexibility.
Diminishing Vt,max is therefore unfavorable to the control
objective of charge time reduction. For example, compared
to Vt,max = 3.6V , the minimum charge time increases to
5.87 minutes (12.73% increase) and 6.69 minutes (28.55%
increase) in the cases of Vt,max = 3.575V and Vt,max = 3.55V ,
respectively. Not surprisingly, decreasing Vt,max does lead to
reduced aging.

2) Ambient Temperature Tf : The impact of the ambient
temperature Tf is shown in Fig. 13 (Middle). At low ambient
temperature (Tf = 15◦C), the battery SOH decays slower,
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Fig. 13. Top: Influence of Vt,max on Pareto Frontier. Middle: Influence of
Tf on Pareto Frontier. Bottom: Influence of Ru on Pareto Frontier.

whereas the minimum charge time increases due to greater
internal resistance. That is, the maximum voltage is reached
sooner, because of higher ohmic overpotential. At high ambient
temperature (Tf = 35◦C), the battery SOH decays faster, and
the minimum charge time decreases because the resistance is
decreased due to the higher temperature which allows for higher
currents to be applied, compared to the ambient temperature.
To summarize, higher ambient temperature favors charging
time but also accelerates aging.

3) Cooling Convection Resistance Ru: The impact of
cooling convection resistance Ru is shown in Fig. 13 (Bottom).
Given a relatively large Ru (representing natural convection),
the battery SOH decays faster, and the minimum charge
time decreases due to decreased resistance at higher tem-
perature, thus allowing for higher currents. In the case of
Ru = 1.20KW−1(forced convection), the battery SOH decay
is alleviated, but the minimum charge time increases because
internal resistance increases as the core temperature decreases,
compared to the case of Ru = 3.08KW−1. Therefore, we find
that increasing the cooling convection resistance decelerates
aging yet increases charge time. These sensitivity analyses
demonstrate that optimal charging protocols critically depend
on the coupled temperature-aging dynamics.

E. Further Discussion

The influence of battery aging on the electrical parameters is
not addressed in this work, as it has a substantially longer time
scale than the SOC and thermal dynamics. While a fresh battery
(SOH0 = 1) is herein considered before charge, the proposed
optimization framework applies to different aging levels,
provided that the associated SOH0 and electrical parameters
(e.g. internal resistance) are available via recalibration or
adaptive estimation [27], [28]. These parameters can be updated
to obtain new charge protocols as the battery ages. It is also
important to note that the resulting charge protocols can change
if different operating constraints for the cell are required.
Additionally, the cell and respective models in this study are
chosen to illustrate the potential of the multi-objective optimal
control framework for obtaining model-based fast-safe battery
charge protocols. Moreover, this framework can be used for
any type of cell given the proper models that capture the
important dynamics (e.g. electrical, thermal, and aging) for
multi-objective battery charging.

V. EXPERIMENTAL RESULTS AND DISCUSSION

Various experiments were conducted to validate the electro-
thermal model from [18] for a 2.3Ah A123 26650 LiFePO4
battery in our test facility. The cell was placed on an Arbin High
Current Cylindrical Cell Holder inside of an ESPEC BTL-433
environmental chamber to regulate the ambient temperature
at 25◦C. A K-type thermocouple was placed on the surface
of the battery to measure Ts. First, the cell was cycled using
a C/20 CCCV test to identify Voc using a PEC SBT2050
cycler that controls the input current to the battery. Then
a scaled US06 charge depleting (CD) drive cycle test was
performed to identify the convection resistance Ru for our
experimental setup. The resulting balanced charge protocol
from the optimization results (using the newly determined
Voc and Ru) is then applied to the battery for validation of
the electro-thermal model. We experimentally compare the
model-based balanced charge protocol and a 5C CCCV charge
protocol (C-rate chosen based on higher charge time and lower
SOH decay than the balanced charge protocol) on two cells
based on the insight obtained in the optimization results. The
two cells undergo several hundred charge/discharge cycles to
determine the changes in capacity fade and charge time.
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Fig. 14. Experimental Validation of Electro-Thermal Model via Balanced
Charge Protocol: (a) Terminal Voltage, and (b) Temperature.

A. Electro-Thermal Model Validation

The open circuit voltage Voc is determined from a C/20
CCCV cycling test (with voltage limits of 3.6V and 2.0V) by
taking the average of the charge and discharge voltage curves.
The convection resistance Ru is determined from a scaled
US06 CD drive cycle applied to a battery at 90% SOC and
25◦C. The final conditions of the drive cycle test are 25% SOC
and 32.6◦C with a maximum C-rate of 13.61C. The current for
the balanced charge optimization result is then applied (open
loop) to validate the electro-thermal model, as shown in Fig.
14 which achieves a Voltage RMSE of 23.6mV and a Surface
Temperature RMSE of 0.32◦C.

B. Charge Protocol Aging

Two cells were used to determine the tradeoffs between
capacity fade and charge time for a fixed 1.15Ah charge
throughput using the model-based Balanced charge protocol
(from Section IV-C) and the 5C CCCV charge protocol. Both
cells are discharged with a 1C CCCV protocol (closed loop) to
the open circuit voltage Voc corresponding to 25% SOC until
a C/50 cutoff current is reached. The charge and discharge
protocol of each cell is then repeated for hundreds of cycles.
The current from the balanced charge protocol is applied to the
first battery cell (open loop). The 5C CCCV charge protocol
is applied to the second battery cell (closed loop), using the
built-in controller of the battery cycler to maintain the 3.6V
limit under the 5C CCCV charge operation. That is, the same
current is applied each time for the balanced charge protocol
(regardless of what voltage is measured) while the current
for the CCCV charge protocol is adjusted in real-time once
the voltage constraint becomes active. Therefore, only the 5C
CCCV charge protocol will provide compensation as the cell
ages.

The discharge capacity is determined using a 1C CCCV
cycling test at cycles {0, 10, 60, 110, 160, 210, 260, 310, 360}
and is shown (normalized against initial capacity) in the first
subplot of Fig. 15. The normalized capacity of the balanced
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Fig. 15. Balanced and 5C CCCV Charge Protocol Aging: (a) Capacity Fade,
and (b) Charge Time.

charge protocol is 81.64% while that of the 5C CCCV charge
protocol is 97.1% at cycle 360. The higher capacity fade
experienced by the balanced charge protocol over the full 360
cycles is expected since it is applied in a pure open loop fashion
(which does not compensate for the cell going beyond its upper
voltage limit as it is cycled) and because it has a faster charge
time (which results in more aging per the insight gained in our
optimization results). The charge time of the balanced charge
protocol stays the same each time while that of the 5C CCCV
protocol increases (due to the closed loop compensation which
prevents the cell from going beyond its upper voltage limit as it
is cycled) as shown in the bottom subplot of Fig. 15. The charge
time of the balanced charge protocol is 5.42 minutes while
that of the 5C CCCV charge protocol is initially 6.01 minutes.
The charge time of the 5C CCCV charge protocol increases to
6.38 minutes at cycle 360. There is a clear tradeoff between
degradation and charge time for the applied balanced (open
loop) and 5C CCCV (closed loop) charge protocols cycled
over time. However, it is important to note that the balanced
charge protocol provides a comparable capacity fade to that
of the 5C CCCV protocol while maintaining a faster charge
time up to cycle 110. These results provide motivation and
justification for adaptive optimal charge control to alleviate
aging and maintain the desired performance objective over
time. Such controller would close the loop and continuously
estimate the parameters that age with time to yield accurate
model estimates for obtaining new charge protocols as the cell
is cycled using the multi-objective optimal control framework
presented in this paper.

VI. CONCLUSIONS

A multi-objective optimal control framework has been
developed to explore model-based fast-safe charging protocols.
In this framework, a coupled electro-thermal-aging model is
incorporated to account for thermal constraints and aging
effects. The Legendre-Gauss-Radau (LGR) pseudo-spectral
method with adaptive multi-mesh-interval collocation is lever-



aged to solve the infinite dimensional nonlinear optimal control
problem. Charge time and battery capacity fade is traded off,
subject to both electrical and thermal constraints, a first to
the authors’ knowledge. Three charging regimes are analyzed
in detail, with the following key findings: (i) Minimum-time
charge: the protocol is exactly 15C constant-current/constant-
voltage (CCCV), requiring 5.20 minutes to replenish the SOC
from 25% to 75%. (ii) Minimum-aging charge: the protocol
is pulse-like rather than a slow constant current charge such
as C/10 CCCV. The associated SOH decay is 0.0027%, one
order of magnitude smaller than that in the minimum-time
case. (iii) Balanced charge: the Pareto Frontier demonstrates
that a fundamental tradeoff exists between charge time and
SOH decay. A slight (even negligible) time increase, relative
to the minimum-time case, can significantly alleviate SOH
decay. We examine solution sensitivity to variations in several
constraint parameters, including maximum voltage, ambient
temperature, and cooling convection resistance. This analysis
exposes the importance of considering both temperature and
aging dynamics for optimal charging. Finally, experimental
results of the balanced charge protocol (open loop) versus a
5C CCCV charge protocol (closed loop) are presented with
respect to capacity fade and charge time. Future work will close
the loop on the optimal charge protocols by combining the
coupled electro-thermal-aging model with an adaptive estimator
which updates model parameters that change with aging for
implementation in real time at our battery in the loop test
facility.
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