
This article was downloaded by: [University of California, Berkeley]
On: 16 May 2014, At: 08:56
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Control
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tcon20

Parameter identification of aggregated
thermostatically controlled loads for smart grids using
PDE techniques
Scott Mouraa, Jan Bendtsenb & Victor Ruizc

a Department of Civil and Environmental Engineering, University of California Berkeley,
Berkeley, CA 94720, USA
b Department of Electronic Systems, Automation and Control, Aalborg University, Fr. Bajers
Vej 7C, 9220 Aalborg, Denmark
c Department of Mechanical and Aerospace Engineering, University of California San Diego,
9500 Gilman Drive, La Jolla, CA 92093, USA
Accepted author version posted online: 14 Apr 2014.Published online: 06 May 2014.

To cite this article: Scott Moura, Jan Bendtsen & Victor Ruiz (2014) Parameter identification of aggregated thermostatically
controlled loads for smart grids using PDE techniques, International Journal of Control, 87:7, 1373-1386, DOI:
10.1080/00207179.2014.915083

To link to this article:  http://dx.doi.org/10.1080/00207179.2014.915083

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/tcon20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207179.2014.915083
http://dx.doi.org/10.1080/00207179.2014.915083
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


International Journal of Control, 2014
Vol. 87, No. 7, 1373–1386, http://dx.doi.org/10.1080/00207179.2014.915083

Parameter identification of aggregated thermostatically controlled loads for smart
grids using PDE techniques

Scott Mouraa,∗, Jan Bendtsenb and Victor Ruizc

aDepartment of Civil and Environmental Engineering, University of California Berkeley, Berkeley, CA 94720, USA; bDepartment of
Electronic Systems, Automation and Control, Aalborg University, Fr. Bajers Vej 7C, 9220 Aalborg, Denmark; cDepartment of
Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA

(Received 11 March 2013; accepted 26 February 2014)

This paper develops methods for model identification of aggregated thermostatically controlled loads (TCLs) in smart
grids, via partial differential equation (PDE) techniques. Control of aggregated TCLs provides a promising opportunity to
mitigate the mismatch between power generation and demand, thus enhancing grid reliability and enabling renewable energy
penetration. To this end, this paper focuses on developing parameter identification algorithms for a PDE-based model of
aggregated TCLs. First, a two-state boundary-coupled hyperbolic PDE model for homogenous TCL populations is derived.
This model is extended to heterogeneous populations by including a diffusive term, which provides an elegant control-
oriented model. Next, a passive parameter identification scheme and a swapping-based identification scheme are derived
for the PDE model structure. Simulation results demonstrate the efficacy of each method under various autonomous and
non-autonomous scenarios. The proposed models can subsequently be employed to provide system critical information for
power system monitoring and control.
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1. Introduction

One of the main challenges in achieving significant penetra-
tion of renewables in future power systems is their inherent
variability (see e.g. Banakar, Luo, & Ooi, 2008). In recent
years, demand side management has gained attention as a
means to balance power supply and demand, in the pres-
ence of intermittent power sources (Mohsenian-Rad, Wong,
Jatskevich, Schober, & Leon-Garcia, 2010; Short, Infield,
& Freris, 2007; Strbac, 2008; Walawalkar, Blumsack, Apt,
& Fernands, 2008). In spite of growing overall consumption
and increased penetration of renewables, new investments
on the demand side may have greater impact than on the
supply side (International Energy Agency, 2006). In partic-
ular, the intermittency and non-dispatchability associated
with renewable energy sources can be partially mitigated
by flexible loads. Conventional generation, the alternative
option, typically exhibits longer response time and can be
an expensive and environmentally damaging method for
mitigating fluctuations in renewable generation (Klobasa,
2010; Strbac, 2008).

Various technologies are being considered for demand
side management. Examples include coordinated charging
of electric vehicle batteries (Mets, Verschueren, Haerick,
Develder, & Turck, 2010), deliberate scheduling of loads
with flexible deadlines (Petersen, Bendtsen, & Stoustrup,
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2012), or allowing local consumers with slow dynamics
(large time constants) to adjust their consumption (see e.g.
Moslehi & Kumar, 2010). A particularly promising method
is to exploit the large thermal time constants in so-called
thermostatically controlled loads (TCLs), such as deep
freezers, refrigerators, local heat pumps, etc. Some heating,
ventilation, and air conditioning systems (HVAC) in town
houses, cooling systems in storage buildings, etc. also fall
into this category. TCLs operate in cycles by switching
between ‘ON’ (drawing electrical power) and ‘OFF’ (not
drawing any power). The devices have been thoroughly
studied, and models of varying complexity are readily
available. Various methods have been studied to derive
population models from individual TCL models, such
as aggregation (Bompard, Carpaneto, Chicco, & Napoli,
1996), clustering (Zhang, Lian, Chang, Kalsi, & Sun, 2012),
and state queueing (Lu, Chassin, & Widergren, 2005).

An entity – for example, a utility company – interested
in direct load control of TCLs for power demand/supply bal-
ancing may take different approaches to regulating aggre-
gate power consumption. However, to directly manipulate
the individual units’ power consumption, the utility con-
trol system in principle requires knowledge of all system
states, as well as control authority over individual power
consumption. Thus, controlling individual units typically

C© 2014 Taylor & Francis
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require detailed local measurement and feedback of cur-
rent energy and power demands (McDonald, 2008), but has
been shown to be feasible in practice for limited numbers
of units (Andersen, Pedersen, & Nielsen, 2012).

For large load populations, scalability is a key issue.
In particular, attempting to control each individual unit
directly leads to a heavy communication and computa-
tional burden on the system. Thus, rather than attempting
to control every consumer individually, methods for mod-
elling, estimating, and eventually controlling the behaviour
of large populations of consumers have come into focus in
recent years (Callaway, 2009; Callaway & Hiskens, 2011;
Malhame & Chong, 1985; Mathieu, Koch, & Callaway,
2013). In this paradigm, one manipulates the operating con-
ditions of the entire population. Example of control signals
include temperature set-point deviations, temperature dead-
band size, and forced switching. The goal is to manipulate
total power consumption while imposing minimal discom-
fort to the consumers. The most common approach in the
literature models these large TCL populations via proba-
bility distributions and applies set-point control (Bashash
& Fathy, 2013; Callaway, 2009; Kundu & Sinitsyn, 2012;
Perfumo, Kofman, Braslavsky, & Ward, 2012).

This paper focuses on modelling and parameter identifi-
cation of aggregated TCLs, to facilitate control schemes. In
particular, we examine the dynamic behaviour of the tem-
perature distribution in large TCL populations. The tem-
perature distribution models available energy storage and,
hence, the range in which the temperature set points can be
manipulated to shape power flow. Given an accurate tem-
perature distribution, the TCL population can be utilised as
a ‘virtual power plant’ that provides services to the grid,
such as frequency control and peak shaving.

We consider a large population of TCLs and derive two
partial differential equation (PDE) based models for the
temperature distribution evolution. The first model assumes
that all loads are identical, and has been similarly derived by
Malhame and Chong (1985) from a probabilistic viewpoint.
We propose a new model to account for parameter hetero-
geneity, by including a diffusion term in the boundary-
coupled PDE model. In doing so, we expand upon existing
PDE-based TCL models (Bashash & Fathy, 2013), which
do not take inhomogeneity explicitly into account. The
transfer function model of Perfumo et al. (2012) predicts
the aggregate power response to step changes in tempera-
ture set points. In contrast, the PDE models are (infinite-
dimensional) state-space models. That is, they capture
the spatio-temporal dynamics of the population’s tempera-
ture distribution. Both models are amenable to regulating
aggregate power. However, the PDE models are also
amenable to state observer designs (Moura, Ruiz, & Bend-
sten, 2013), which is a criterion for our model development.
Next, we proposed two parameter estimation algorithms to
identify the proposed PDE model in real time. The two algo-
rithms include a passive and a swapping approach. In both

cases, the algorithms utilise full-state measurements. We
derive the signal properties of each identification scheme,
and explore their behaviour under non-ideal scenarios via
simulation examples. The simulations demonstrate how the
algorithms can estimate the PDE model parameters in real
time, given measurements from a population of individ-
ual stochastic TCLs, in both autonomous and controlled
situations. As such, the proposed model and model identifi-
cation algorithms can be used to monitor large aggregations
of controllable flexible loads for demand side management
services.

The remainder of the paper is outlined as follows.
Section 2 presents a hybrid ordinary differential equation
(ODE) model of a single TCL. Section 3 presents two
PDE models of TCL populations, corresponding to homo-
geneous and heterogeneous populations. Sections 4.1 and
4.2 present a passive and a swapping-based continuous-
time parameter identification scheme, respectively. Signal
properties for each method are derived via Lyapunov tech-
niques. Section 5 examines each identification scheme un-
der non-ideal scenarios via simulation, and compares these
methods. Finally, Section 6 offers concluding remarks and
future work.

2. Thermostatically controlled loads

This section presents a simple TCL model, which serves as
the basis for subsequent population models.

Denote the thermal zone and ambient temperatures for
the ith load by Ti(t) and T∞, i(t), respectively. Note that the
ambient temperature can be time-varying. Assume that the
hardware is purely on/off regulated. For simplification of
presentation, we shall assume a population containing cool-
ing loads only. The generalisation to mixed cooling/heating
loads requires minor adjustments to the mathematical struc-
ture. Then we can derive the following simple hybrid ODE
model (Callaway, 2009; Malhame & Chong, 1985; Perfumo
et al., 2012):

Ṫi(t) = 1

RiCi

[T∞,i(t) − Ti(t) − si(t)RiPi + w(t)],

i = 1, 2, . . . , N (1)

si(t) =
⎧⎨
⎩

0 if si(t − ε) = 1 and Ti(t) ≤ Tmin,i

1 if si(t − ε) = 0 and Ti(t) ≥ Tmax,i

si(t − ε) otherwise

(2)

for some small time ε. The symbol Ci ∈ R+ is the ther-
mal capacitance (kWh/◦C), Ri ∈ R+ is the corresponding
thermal resistance (◦C/kW), and Pi ∈ R is the (constant)
cooling power supplied by the hardware when switched
on. Variable si ∈ {0, 1} is a Boolean-valued quantity that
determines the hardware’s on/off state. It switches status
whenever the internal temperature encounters the limits of a
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Figure 1. Evolution of temperature for a typical thermostatically controlled load.

preset temperature span [Tmin,i , Tmax,i] ⊂ R. The term w(t)
encapsulates thermal disturbances due to occupancy, open
windows/doors, etc. The general behaviour is demonstrated
graphically in Figure 1.

Note that the dynamical structure is identical for heat-
ing and cooling systems. Whether the device operates as a
heating or cooling system is only a matter of whether T∞
is higher or lower than the operating interval, as well as
the sign of si(t)RiPi. In Figure 1, we have T∞ > Tmax and
s(t)RP ≥ 0 for t ≥ 0.

The temperature limits Tmin,i and Tmax,i are related to
the ith load’s set point Tsp,i through the following fixed
relations:

Tmin,i = Tsp,i − �i

2
, Tmax,i = Tsp,i + �i

2

where �i is the width of the temperature interval. Further-
more, the cumulative power consumption of the population
of TCLs at any given time t can be computed as

P (t) =
N∑

i=1

Pisi(t)

ηi

(3)

where ηi is the coefficient of performance for the ith heat-
ing/cooling unit.

2.1 Simulations

Figure 2 demonstrates the aggregated behaviour for 25 iden-
tical TCLs. The left plots show how the TCLs alternate
between the on and off states while remaining within the
operation band. The TCLs were initialised at random tem-
peratures, with a quartic distribution around 20 ◦C, all in
the off state, with parameters adopted from Callaway (2009)
and Perfumo et al. (2012) and given in Table 1. As can be
seen, the power drawn by the population oscillates with a
constant amplitude, since the TCLs are synchronised.

The right plots show a similar situation, however, the
TCL time constants are now drawn from a random dis-
tribution, thus making the population heterogenous. The
corresponding power trace exhibits a damped oscillation.
Namely, it oscillates to start, but due to different time con-
stants the individual TCLs gradually de-synchronise and
the oscillations damp out. Damped oscillations similarly
occur if other parameters, such as �i or T∞, i, are allowed
to vary across the TCL population.

As the number of units grow, the computational load re-
quired to simulate the individual TCLs (referred to as Monte
Carlo (MC) simulations) grows significantly and eventually
becomes intractable. Instead, the characteristic behaviours
outlined above will be captured in partial differential mod-
els that describe how the distribution of temperature in the
population evolves across the temperature range.

3. Aggregate TCL modelling via PDEs

Consider a large population of TCLs evolving over a finite
temperature interval [T, T ], which we assume to be known
and constant. The TCLs in the on state gradually decrease
until they reach Tmin,i , at which point they switch to the
off state. Conversely, the TCLs in the off state gradually
increase until they reach Tmax,i . This evolution can be mod-
elled as a set of coupled PDEs with boundary conditions
(Malhame & Chong, 1985). Previous studies by Malhame
and Chong (1985), Callaway (2009), and Bashash and Fathy
(2013) generate a probabilistic interpretation of these PDEs
(i.e. Fokker–Plank equations) and define the states on an in-
finite domain. In contrast, we model the deterministic evo-
lution on a finite-temperature domain. The derivation fol-
lows concepts from fluid mechanics. In contrast to Bashash
and Fathy (2013), the following derivation does not assume
constant transport speeds, thereby producing reaction terms
in the PDEs. Moreover, we consider time-varying ambient
temperature T∞(t), thus producing time-varying transport
speeds.
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1376 S. Moura et al.

Figure 2. Evolution of temperature for 25 TCLs from (a) homogeneous and (b) heterogeneous populations. In each case, the population
was initialised with all TCLs in the off state, with temperature distributed according to u0(T), v0(T) in Table 1. Note that the TCLs remain
in synchrony for the homogenous population. In contrast, the temperature distribution diffuses in the heterogeneous case. This observation
motivates the heterogeneous model in Section 3.2.

3.1 PDE model for homogeneous populations

Let the states u(T, t) and v(T, t), both defined on the space
[T, T ] × R+ → R, denote the temperature distribution at
temperature T and at time t in the on and off states, respec-

tively. Henceforth, we assume a homogeneous population,
where the parameters Ri, Ci, Pi, Tmin,i , and Tmax,i are equal
for all TCLs. Consequently, the ‘flux’ of TCLs that tra-
verses temperature T at time t in either the increasing or the

Table 1. Homogeneous and heterogeneous model parameter values adopted from Callaway (2009) and Perfumo et al. (2012).

Parameter Description [unit] Homogeneous Heterogeneous

R Thermal resistance [◦C/kW] 2 2
C Thermal capacitance [kWh/◦C] 10 ∼N (10, 1)
P Thermal power [kW] 14 14
T∞ Ambient temperature [◦C] 32 32
Tsp Temperature set point [◦C] 20 20
� Temperature deadband width [◦C] 1 1
η Coefficient of performance [–] 2.5 2.5
β Diffusivity [(◦C)3/s] – 0.01
u0(T) Initial distribution of on TCLs

[TCLs/◦C]
0 0

v0(T) Initial distribution of off TCLs
[TCLs/◦C]

30N
16�

[
1 − 4

�2 (T − Tsp)2
]2 30N

16�

[
1 − 4

�2 (T − Tsp)2
]2

σw Standard deviation of thermal
disturbance in Equation (1)

0 0.01
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International Journal of Control 1377

decreasing direction can be written as

φ(T , t) = u(T , t)
dT

dt

∣∣∣∣s=1 and ψ(T , t) = v(T , t)
dT

dt

∣∣∣∣
s=0

(4)

respectively. Substituting Equation (1) and disregarding dis-
turbance term w(t) into the equations above we get

φ(T , t) = 1

RC
(T∞(t) − T (t) − RP )u(T , t) (5)

ψ(T , t) = 1

RC
(T∞(t) − T (t))v(T , t) (6)

Next, let us consider the small control volume of width
δT shown in Figure 3. Using standard limit arguments, we
get the relation

∂v

∂t
(T , t) = lim

δT →0

[
ψ(T + δT , t) − ψ(T , t)

δT

]

= ∂ψ

∂T
(T , t)

= − 1

RC
[T∞(t) − T (t)]

∂v

∂T
(T , t) + 1

RC
v(T , t)

(7)

for the TCLs in the off state and, correspondingly,

∂u

∂t
(T , t) = − ∂

∂T

[
1

RC
(T∞ − T (t) − RP )u(T , t)

]

= − 1

RC
[T∞(t) − T (t) − RP ]

∂u

∂T
(T , t)

+ 1

RC
u(T , t) (8)

for the TCLs in the on state.
As the temperatures of TCLs in the on state reach Tmin,

they switch to the off state, and vice versa at Tmax. This
gives rise to coupling between the two PDEs indicated in
Figure 3:

φ(T +
max, t) + φ(T −

max, t) + ψ(Tmax, t) = 0

ψ(T −
min, t) + ψ(T +

min, t) + φ(Tmin, t) = 0

where φ(T +
max, t) is the flux of TCLs coming from higher

temperatures than Tmax, φ(T −
max, t) is the flux of TCLs just

inside the temperature band and ψ(Tmax, t) is the number
of units switching from the off state to the on state per
time unit. ψ(T −

min, t), ψ(T +
min, t), and φ(Tmin, t) are defined

analogously. Finally, we shall impose the condition that the
flux tends to zero at the temperature extremes, i.e. φ(T , t) =
ψ(T, t) = 0.

After some time of operation, there will be no TCLs
outside the interval [Tmin, Tmax], in which case the coupling
equations reduce to

φ(T −
max, t) + ψ(Tmax, t) = 0 (9)

Figure 3. Illustration of transport PDE representation of temper-
ature distributions; u(T, t) is the on state distribution, while v(T,
t) is the off state distribution. The bottom part of the figure shows
a zoom on a small control volume of width δT, in which v(T, t) is
assumed to be constant.

ψ(T +
min, t) + φ(Tmin, t) = 0 (10)

or

u(Tmax, t) = − T∞(t) − Tmax

T∞(t) − Tmax − RP
v(Tmax, t)

v(Tmin, t) = −T∞(t) − Tmin − RP

T∞(t) − Tmin
u(Tmin, t)

For compactness of notation, we write the homogeneous
TCL PDE model as

ut (T , t) = αλ(T , t)uT (T , t) + αu(T , t) (11)

vt (T , t) = −αμ(T , t)vT (T , t) + αv(T , t) (12)

u(Tmax, t) = q1(t)v(Tmax, t) (13)

v(Tmin, t) = q2(t)u(Tmin, t) (14)

where the parameters α, λ(T ), μ(T ), q1, and q2 are
given by

α = 1

RC
> 0 (15)

λ(T , t) = −(T∞(t) − T − RP ) > 0 (16)

μ(T , t) = T∞(t) − T > 0 (17)
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1378 S. Moura et al.

q1(t) = − T∞(t) − Tmax

T∞ − Tmax − RP
(18)

q2(t) = −T∞(t) − Tmin − RP

T∞ − Tmin
(19)

and the corresponding total power consumption is

P (t) = P

η

∫ Tmax

Tmin

u(T , t)dT

where η is the coefficient of performance for the TCLs.

Remark 1: Note that the homogeneous PDE model (11)–
(14) satisfies the model property that the total number of
TCLs is conserved over time. Although this property is triv-
ially satisfied in the homogeneous case, it plays an important
role in the following heterogeneous PDE derivation.

Note that the preceding PDE model derivation assumes
a homogeneous population of TCLs. In practice, TCLs ex-
hibit parameter heterogeneity. That is, the heat capacities,
heating resistances, ambient temperatures, cooling power,
temperature deadband sizes, etc. may vary. For this reason,
we modify the model above to account for heterogeneous
populations of TCLs in the following.

3.2 PDE model for heterogeneous populations

Motivated by the diffusive phenomenon observed in the
MC simulations of heterogeneous populations, we consider
the following PDE model:

ut (T , t) = αλ(T , t)uT (T , t) + αu(T , t) + βuT T (T , t)

(20)

vt (T , t) = −αμ(T , t)vT (T , t) + αv(T , t) + βvT T (T , t)

(21)

u(Tmax, t) = q1(t)v(Tmax, t) (22)

v(Tmin, t) = q2(t)u(Tmin, t) (23)

uT (Tmin, t) = −vT (Tmin, t) (24)

vT (Tmax, t) = −uT (Tmax, t) (25)

This model adds diffusion terms to PDEs (11) and (12) to
incorporate parameter heterogeneity, based upon observa-
tions of the heterogeneous MC simulations in Section 2.1.
The two boundary conditions (24) and (25) are added to
preserve well-posedness of the PDE system. In particular,
these additional boundary conditions ensure that the total
number of TCLs is conserved.

Lemma 3.1 (Conservation of TCLs for heterogeneous
model): Consider the coupled PDE system (20)–(25) for
heterogeneous TCL populations. Define the quantity as fol-
lows:

N (t) =
∫ Tmax

Tmin

u(T , t)dT +
∫ Tmax

Tmin

v(T , t)dT (26)

which represents the total number of TCLs at a given time
t. Then,

d

dt
N (t) = 0, ∀t ∈ R (27)

Proof: The proof consists of three steps: (1) differentiate
Equation (26) with respect to time along the trajectories of
Equations (20) and (21), (2) apply integration by parts, and
(3) utilise the boundary conditions (22)–(25). �

3.3 Simulations

Next, we study simulations of the homogeneous and hetero-
geneous PDE models. Parameter values and initial condi-
tions for the models are adopted from Callaway (2009) and
Perfumo et al. (2012), and given in Table 1. The homoge-
neous and heterogeneous models are implemented using the
MacCormack (MacCormack, 2003) and Crank–Nicolson
(Crank & Nicolson, 1947) finite-differencing methods, re-
spectively. Both models are initialised with all TCLs in the
off state, with a quartic distribution about the set-point tem-
perature Tsp = 20 ◦C. Note that any initial condition for the
PDE model can be selected, provided it satisfies boundary
conditions (22)–(25), and thus ensures well-posedness. For
the heterogeneous PDE, α = 1/RC where C is the mean
value from Table 1. Parameter β is selected via an offline
optimisation routine which minimises the integrated square
error between the MC and PDE simulations in Figure 5.

Figure 4 demonstrates how the PDE states evolve in
temperature and time. For the homogeneous model, one
can see that the distribution of TCLs migrates across the
temperature deadband in an oscillatory fashion. Similarly,
the heterogeneous model exhibits an oscillatory response,
albeit with damping induced by the diffusion term. Figure 5
compares the aggregate power of 1000 individual TCLs
(MC model) versus the PDE models, for both homogeneous
and heterogeneous parameter sets. The homogeneous PDE
model captures the dynamical effect of undamped oscilla-
tions. In addition, the heterogeneous PDE model captures
the damped oscillations exhibited by 1000 individual TCL
models. Furthermore, the PDE models reduce computation
time by almost two orders of magnitude, as evidenced by
the simulation times provided in Table 2. These simula-
tions were performed on a laptop with a 2.7 GHz dual-core
processor and 4 GB of RAM.
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International Journal of Control 1379

Figure 4. Evolution of temperature distributions for the homogeneous (left column) and heterogeneous (right column) PDE models.
In the homogeneous model, the TCLs remain in synchrony. In the heterogeneous model, the TCL distribution diffuses due to parameter
heterogeneity.

Figure 5. Comparison of aggregate TCL power for the homoge-
neous and heterogeneous populations, using the 1000 individual
TCLs in the MC and the PDE models. The heterogeneous PDE
model captures the damped oscillations exhibited by the 1000
individual TCL models.

4. Parameter identification

In this section, we provide the main contributions of this
work, namely, two parameter identification schemes for the
PDE model (20)–(25), and show that they are bounded in

Table 2. Comparison of simulation times for MC (individual)
and PDE models.

Homogeneous (s) Heterogeneous (s)

Individual models 60.98 60.48
PDE model 1.08 1.86

terms of error norms. Both methods assume full-state mea-
surements of the temperature distribution. In practice, the
distribution can be processed from sampled measurements
of every TCL temperature in the population. That is, one
can compute a histogram with respect to temperature, at
each sampling instance.

As a preliminary step, we first normalise the temper-
ature coordinate to simplify our analysis, by applying the
linear transformation

x = T − Tmin

Tmax − Tmin
(28)

which renders the heterogenous PDE into

ut (x, t) = αλ̆(x, t)ux(x, t) + αu(x, t) + β̆uxx(x, t) (29)

vt (x, t) = −αμ̆(x, t)vx(x, t) + αv(x, t) + β̆vxx(x, t)

(30)

u(1, t) = q1(t)v(1, t), ux(0, t) = −vx(0, t) (31)

v(0, t) = q2(t)u(0, t), vx(1, t) = −ux(1, t) (32)

where the parameters λ̆(x), μ̆(x), and β̆ are given by

λ̆(x, t) = x − T∞(t) − Tmin − RP

Tmax − Tmin
(33)

μ̆(x, t) = T∞(t) − Tmin

Tmax − Tmin
− x (34)
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1380 S. Moura et al.

β̆ = β

(Tmax − Tmin)2
(35)

To reduce notational clutter, the breves are henceforth
dropped from λ̆(x, t), μ̆(x, t), and β̆.

Remark 2: In the following we assume constant ambient
temperature T∞. A straightforward extension of the pro-
posed identifiers is to incorporate time-varying and mea-
sured T∞, provided T∞(t) > Tmax ∀ t. In this case, the algo-
rithms contain time-varying terms λ(x, t) and μ(x, t).

4.1 Passive identifier

Now, suppose the parameters α and β are uncertain, and
exist on the domains α ≥ α > 0 and β ≥ β > 0. We seek
to identify α, β ∈ R in real time, from measurements of the
states u, v. Inspired by Smyshlyaev and Krstic (2010), we
introduce the following auxiliary system:

ût = α̂λ(x, t)ûx + β̂ûxx + α̂u + γ 2(u − û)‖u‖2 (36)

v̂t = −α̂μ(x, t)v̂x + β̂v̂xx + α̂v + γ 2(v − v̂)‖v‖2 (37)

û(1, t) = q1(t)v(1, t), ûx(0, t) = −vx(0, t) (38)

v̂(0, t) = q2(t)u(0, t), v̂x(1, t) = −ux(1, t) (39)

where α̂ and β̂ are the parameter estimates, and γ > 0 is a
constant. This auxiliary system is often called an ‘observer,’
since it incorporates a copy of the plant, but it is not used for
state estimation in this context. The identifier also employs
an additional nonlinear damping term that has the effect of
dynamic normalisation.

To maintain the parabolic character, β̂(t) ≥ β > 0, and
advection direction, α̂(t) ≥ α > 0, we employ projection
operators. We thus choose the parameter estimate update
laws as

˙̂α = ρ1Projα

[ ∫ 1

0
[λ(x, t)ux + u] (u − û)dx

+
∫ 1

0
[−μ(x, t)vx + v] (v − v̂)dx

]
(40)

˙̂
β = ρ2Projβ

[∫ 1

0
[uxx(u − û) + vxx(v − v̂)] dx

]
(41)

which leads us to the following result.

Theorem 4.1: The auxiliary system (36)–(39) with
update laws (40) and (41) guarantees the following signal
properties:

‖ũ‖, ‖ṽ‖, α̃, β̃ ∈ L∞ (42)

ũ(0), ‖ũ‖, ‖ũx‖, ṽ(0), ‖ṽ‖, ‖ṽx‖, ‖ũ‖‖u‖, ‖ṽ‖‖v‖ ∈ L2

(43)

Proof: The error signal ũ = u − û, ṽ = v − v̂ satisfies the
following PDE:

ũt = α̂λ(x, t)ũx + β̂ũxx + α̃λ(x, t)ux

+ β̃uxx + α̃u − γ 2ũ‖u‖2 (44)

ṽt = −α̂μ(x, t)ṽx + β̂ṽxx − α̃μ(x, t)vx

+ β̃vxx + α̃v − γ 2ṽ‖v‖2 (45)

ũ(1, t) = 0, ũx(0, t) = 0 (46)

ṽ(0, t) = 0, ṽx(1, t) = 0 (47)

Consider the Lyapunov functional as follows:

V (t) = 1

2

∫ 1

0
ũ2dx + 1

2

∫ 1

0
ṽ2dx + α̃2

2ρ1
+ β̃2

2ρ2
(48)

where ρ1, ρ2 > 0. The time derivative along the solution
trajectories is

V̇ =
∫ 1

0
[α̂λ(x, t)ũũx + β̂ũũxx + α̃λ(x, t)ũux

+ β̃ũuxx + α̃ũu − γ 2ũ2‖u‖2]dx

+
∫ 1

0
[−α̂μ(x, t)ṽṽx + β̂ṽṽxx − α̃μ(x, t)ṽvx

+ β̃ṽvxx + α̃ṽv − γ 2ṽ2‖v‖2]dx −
˙̂αα̃

ρ1
−

˙̂
ββ̃

ρ2

(49)

Note that the first term can be written as
α̂

∫ 1
0 λ(x, t)ũũxdx = α̂

2

∫ 1
0 λ(x, t) ∂

∂x
(ũ2)dx. Use inte-

gration by parts and the boundary conditions (46) and (47)
to obtain

V̇ = − α̂

2
λ(0, t)ũ2(0) − α̂

2
λ′‖ũ‖2 − β̂‖ũx‖2

− α̂

2
μ(1, t)ṽ2(1) + α̂

2
μ′‖ṽ‖2 − β̂‖ṽx‖2

+ α̃

∫ 1

0
[λ(x, t)ũux + ũu − μ(x, t)ṽvx + ṽv] dx

+ β̃

∫ 1

0
[ũuxx + ṽvxx] dx

− γ 2ũ2‖u‖2 − γ 2ṽ2‖v‖2 −
˙̂αα̃

ρ1
−

˙̂
ββ̃

ρ2
(50)
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Bounding α̂ ≥ α and β̂ ≥ β, we obtain

V̇ ≤
[∫ 1

0
[λ(x, t)uxũ + uũ − μ(x, t)vxṽ + vṽ] dx −

˙̂α

ρ1

]

α̃ +
[∫ 1

0
[uxxũ + vxxṽ] dx −

˙̂
β

ρ2

]

β̃ − 1

2
αλ(0, t)ũ2(0) − 1

2
αλ′‖ũ‖2 − β‖ũx‖2

−1

2
αμ(1, t)ṽ2(1) + 1

2
αμ′‖ṽ‖2 − β‖ṽx‖2

− γ 2‖ũ‖2‖u‖2 − γ 2‖ṽ‖2‖v‖2 (51)

Apply the update laws (40) and (41). This renders V̇ nega-
tive semi-definite:

V̇ (t) ≤ −1

2
αλ(0, t)ũ2(0) − 1

2
αλ′‖ũ‖2 − β‖ũx‖2

− 1

2
αμ(1, t)ṽ2(1) + 1

2
αμ′‖ṽ‖2 − β‖ṽx‖2

− γ 2‖ũ‖2‖u‖2 − γ 2‖ṽ‖2‖v‖2. (52)

which implies that V(t) ≤ V(0) ∀t ≥ 0. Using the defini-
tion of V in Equation (48), we get that ‖ũ‖, ‖ṽ‖, α̃, β̃ are
bounded. Integrating Equation (52) with respect to time, we
obtain the properties that ũ(0), ‖ũ‖, ‖ũx‖, ṽ(0), ‖ṽ‖, ‖ṽx‖,
‖ũ‖‖u‖, ‖ṽ‖‖v‖ are square integrable. This completes the
proof. �

Remark 3: Hence we can claim that for any initial dis-
tributions u(0) and v(0), the parameter estimates and error
signals will remain bounded at all times. However, due
to the unstrict inequality (52), there is no guarantee that
the parameter estimates will converge to the true values.
Boundedness without guaranteed convergence, however, is
a typical best-case theoretic result in parameter identifica-
tion (for details, see Ioannou & Sun, 1996).

Remark 4: The Lyapunov analysis above enables one
to show that the boundedness of the parameter esti-
mates α̃ and β̃ is independent of the time-varying am-
bient temperature T∞(t). Namely, T∞(t) manifests itself
as the time variation in the advection speeds λ(x, t)
and μ(x, t). Majorising these terms in Equation (52) us-
ing the relations −λ(0; T max

∞ ) = maxT∞(t){−λ(0, t)} and
−μ(0; T min

∞ ) = maxT∞(t){−μ(1, t)}, we obtain

V̇ (t) ≤ −1

2
αλ(0; T max

∞ )ũ2(0) − 1

2
αλ′‖ũ‖2 − β‖ũx‖2

− 1

2
αμ(0; T min

∞ )ṽ2(1) + 1

2
αμ′‖ṽ‖2 − β‖ṽx‖2

− γ 2‖ũ‖2‖u‖2 − γ 2‖ṽ‖2‖v‖2. (53)

Consequently, given bounded values of T∞(t), which is al-
ways true in practice, the boundedness of the parameter
estimates is independent of varying ambient temperature.

4.2 Swapping identifier

In this section, we consider an alternative parameter iden-
tification scheme – the swapping design. The swapping
identification technique follows a common parameter iden-
tification methodology for dynamic systems. Namely, first
convert a dynamic parameterisation of the plant into a static
form by filtering the measured and regressor signals. Next,
apply gradient or least squares estimation techniques to
identify the parameters of this parametric model (Ioannou &
Sun, 1996). In the derivations that follow, we follow an ex-
tension of this methodology first developed in Smyshlyaev
and Krstic (2010) to boundary-coupled parabolic PDE sys-
tems, where the filters are PDEs themselves and the adap-
tation laws involve inner products of continuous functions
instead of matrix vectors.

To this end, consider the ‘estimation error’ between the
states u, v, and filtered signals σ 1, σ 2, τ 1, τ 2, η1, η2, ν1, ν2:

e1 = u − ασ1 − ατ1 − βη1 − ν1 (54)

e2 = u − ασ2 − ατ2 − βη2 − ν2 (55)

where the static parametric model is ασ i + ατ i + βηi

+ ν i, for i = 1, 2. The variables σ i, τ i, ηi, ν i are out-
puts of Kreisselmeier filters applied to the regressor signals
(see also Krstic, Kanellakopoulos, & Kokotovic, 1995).
These filters are deliberately designed such that the two-
state PDE system governing the estimation error, e1(x, t),
e2(x, t), is exponentially stable in the L2-norm. In particu-
lar, we select the following PDE for (e1, e2):

e1t = α̂λ(x, t)e1x + β̂e1xx (56)

e2t = −α̂μ(x, t)e2x + β̂e2xx (57)

e1(1, t) = 0, e1x(0, t) = 0 (58)

e2(0, t) = 0, e2x(1, t) = 0 (59)

which one can show is exponentially stable us-
ing the Lyapunov function V (t) = 1/2

∫ 1
0 e2

1(x, t)dx +
1/2

∫ 1
0 e2

2(x, t)dx. To obtain the PDEs (56)–(59) for the
estimation error, the filters are designed as follows. The
variables σ 1, σ 2 are the filters corresponding to ux, vx:

σ1t = α̂λ(x, t)σ1x + β̂σ1xx + λ(x, t)ux (60)

σ2t = −α̂μ(x, t)σ2x + β̂σ2xx − μ(x, t)vx (61)

σ1(1) = 0, σ1x(0) = 0 (62)
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σ2(0) = 0, σ2x(1) = 0 (63)

The variables τ 1, τ 2 are the filters corresponding to u, v:

τ1t = α̂λ(x, t)τ1x + β̂τ1xx + u (64)

τ2t = −α̂μ(x, t)τ2x + β̂τ2xx + v (65)

τ1(1) = 0, τ1x(0) = 0 (66)

τ2(0) = 0, τ2x(1) = 0 (67)

The variables η1, η2 are the filters corresponding to uxx, vxx:

η1t = α̂λ(x, t)η1x + β̂η1xx + uxx (68)

η2t = −α̂μ(x, t)η2x + β̂η2xx + vxx (69)

η1(1) = 0, η1x(0) = 0 (70)

η2(0) = 0, η2x(1) = 0 (71)

The variables ν1, ν2 are the following filters:

ν1t = α̂λ(x, t)ν1x + β̂ν1xx − α̂λ(x, t)ux − β̂uxx (72)

ν2t = −α̂μ(x, t)ν2x + β̂ν2xx + α̂μ(x, t)vx − β̂vxx (73)

ν1(1) = q1(t)v(1), ν1x(0) = −vx(0) (74)

ν2(0) = q2(t)u(0), ν2x(1) = −ux(1) (75)

We now form the ‘parameter prediction error’ as

ê1 = u − α̂σ1 − α̂τ1 − β̂η1 − ν1 (76)

ê2 = v − α̂σ2 − α̂τ2 − β̂η2 − ν2 (77)

Using this parametric model, we implement the following
gradient update laws:

˙̂α = ραProjα

∫ 1

0
[ê1(σ1 + τ1) + ê2(σ2 + τ2)] dx (78)

˙̂
β = ρβProjβ

∫ 1

0
[ê1η1 + ê2η2] dx (79)

with ρα , ρβ > 0. In Equation (78), we use the projection
operator to conserve the direction of advection, namely, α̂ ≥
α > 0. In Equation (79), projection conserves the parabolic
character of the system, namely, β̂ ≥ β > 0. Consequently,
we arrive at a swapping identifier design with the signal
properties summarised by the following theorem.

Theorem 4.2: The filters (60)–(75) with parameter pre-
diction errors (76) and (77) and update laws (78) and (79)
guarantee the following signal properties:

α̃, β̃ ∈ L∞ (80)

‖ê1‖, ‖ê2‖ ∈ L2 ∩ L∞ (81)

˙̂α,
˙̂
β ∈ L2 ∩ L∞ (82)

Proof: Consider the following Lyapunov function as
follows:

V (t) = 1

2

∫ 1

0
e2

1dx + 1

2

∫ 1

0
e2

2dx + c

2ρα

α̃2 + c

2ρβ

β̃2

(83)

where c = max{λ′α,−μ′α} > 0. The time derivative along
the solution trajectories is

V̇ (t) =
∫ 1

0
α̂λ(x, t)e1e1xdx +

∫ 1

0
β̂e1e1xxdx

−
∫ 1

0
α̂μ(x, t)e2e2xdx +

∫ 1

0
β̂e2e2xxdx

− c

ρα

α̃ ˙̂α − c

ρβ

β̃
˙̂
β (84)

Note that the first term can be written as
α̂

∫ 1
0 λ(x, t)e1e1xdx = α̂

2

∫ 1
0 λ(x, t) ∂

∂x
(e2

1)dx, and sim-
ilarly for the third term. Use integration by parts, boundary
conditions (58) and (59), and update laws (78) and (79) to
obtain

V̇ (t) = − α̂

2
λ(0, t)e2

1(0) − α̂

2
λ′‖e1‖2 − β̂‖e1x‖2

− α̂

2
μ(1, t)e2

2(1) + α̂

2
μ′‖e2‖2 − β̂‖e2x‖2

− c

∫ 1

0
ê1

[
α̃(σ1 + τ1) + β̃η1

]
dx

− c

∫ 1

0
ê2

[
α̃(σ2 + τ2) + β̃η2

]
dx (85)

Note that êi − ei = α̃(σi + τi) + β̃ηi , for i = 1, 2. We now
have

V̇ (t) = − α̂

2
λ(0, t)e2

1(0) − α̂

2
λ′‖e1‖2 − β̂‖e1x‖2

− α̂

2
μ(1, t)e2

2(1) + α̂

2
μ′‖e2‖2 − β̂‖e2x‖2

− c‖ê1‖2 + c

∫ 1

0
ê1e1dx − c‖ê2‖2 + c

∫ 1

0
ê2e2dx

(86)
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Now use the Cauchy–Schwarz and Young’s inequality as
follows:

c

∫ 1

0
êieidx ≤ c‖êi‖ · ‖e1‖ ≤ c

2
‖êi‖2 + c

2
‖ei‖2,

for i = 1, 2 (87)

which renders the following upper bound estimate on V̇

V̇ (t) ≤ − α̂

2
λ(0, t)e2

1(0) − β̂‖e1x‖2 + 1

2
[c − α̂λ′]‖e1‖2

− α̂

2
μ(1, t)e2

2(1) − β̂‖e2x‖2 + 1

2
[c + α̂μ′]‖e2‖2

− c

2
‖ê1‖2 − c

2
‖ê2‖2 (88)

Using the definition c = max{λ′α,−μ′α} and lower bounds
on α and β, we arrive at the final upper bound estimate of
V̇ :

V̇ (t) ≤ −α

2
λ(0, t)e2

1(0) − β‖e1x‖2 − α

2
μ(1, t)e2

2(1)

−β‖e2x‖2 − c

2
‖ê1‖2 − c

2
‖ê2‖2 ≤ 0 (89)

which implies that V(t) ≤ V(0), and from the definition of V
in Equation (83), we get that ‖e1‖, ‖e2‖, α̃, β̃ are bounded.
Integrating Equation (89) with respect to time from zero to
infinity, we get the properties ‖ê1‖, ‖ê2‖ ∈ L2 ∩ L∞. From

the update laws (78) and (79), we conclude that ˙̂α,
˙̂
β ∈ L2 ∩

L∞, which provides all the signal properties in Equations
(80)–(82).

Remark 5: Similar to Remark 4, the Lyapunov analysis
above enables one to show that the boundedness of the
parameter estimates α̃ and β̃ is independent of the time-
varying ambient temperature T∞(t). Majorising the advec-
tion speed terms with respect to T∞ in Equation (89) as
before, we obtain

V̇ (t) ≤ −α

2
λ(0; T max

∞ )e2
1(0) − β‖e1x‖2 − α

2
μ(0; T min

∞ )e2
2(1)

−β‖e2x‖2 − c

2
‖ê1‖2 − c

2
‖ê2‖2 ≤ 0 (90)

Consequently, given bounded values of T∞(t), which is al-
ways true in practice, the boundedness of the parameter
estimates is independent of varying ambient temperature.

5. Simulations and discussion

Next, we study the behaviour of the passive and swap-
ping identification algorithms by examining four scenarios.
Namely, the identifiers are provided plant data from (Case
A) the PDE model (20)–(25), (Case B) the PDE model (20)–
(25) with noise, (Case C) 1000 individual TCLs, and (Case
D) 1000 stochastic TCLs with disturbance w(t) distributed

with standard deviation σw = 0.01 (Callaway, 2009; Per-
fumo et al., 2012). In all cases, the identifiers are incor-
rectly initialised with parameter estimates α̂(0) = 0.1α and
β̂(0) = 10β. To assess model fit, we also plot the iden-
tifier error as a function of time, given by ‖ũ‖ + ‖ṽ‖
for the passive identifier and ‖ê1‖ + ‖ê2‖ for the swap-
ping identifier. The following lower bounds are also used:
α = 0.01, β = 0.005. Each algorithm is implemented us-
ing the Crank–Nicolson finite-differencing method (Crank
& Nicolson, 1947).

5.1 Passive identifier

First, we consider the passive identification scheme from
Section 4.1, with parameters ρ1 = 10−3, ρ2 = 10−3, γ = 1,
and û(x, 0) = u(x, 0), v̂(x, 0) = v(x, 0). Figure 6 demon-
strates how the parameter estimates evolve under Case A.
Subplots (a) and (b) demonstrate the evolution of the pa-
rameter estimates α̂ and β̂, respectively. Indeed, the esti-
mation errors are bounded according to Theorem 4.1 and,
in addition, converge near their true values. Subplot (c)
demonstrates how the L2 norms of the identifier’s error
states are also bounded and decay towards zero over time.
Thus, the identifier performs as expected in the ideal case.

For Case B, we add Gaussian noise with zero mean and
a standard deviation equal to 0.01max x ∈ [0, 1]u(0) to u(x, t)
and v(x, t) throughout the interval x ∈ [0, 1]. The simulation
parameters are otherwise identical to the first case. The
parameter estimates are shown in Figure 6(a). In this case,

Figure 6. Simulations of the passive identifier under Case A,
using auxiliary system (36)–(39) and update laws (40) and (41).
Subplots (a) and (b) demonstrate the evolution of the parame-
ter estimates α̂ and β̂, respectively. Subplot (c) demonstrates the
model fit in terms of how the L2 norm of the identifier’s error
states decay over time.
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1384 S. Moura et al.

we see that α̂ converges to the vicinity of the true value of
α at almost the same rate as above, whereas β̂ decreases
toward zero. Once it reaches the projection boundary, it
stays at that value. In this case, the measurements do not
have a sufficiently high signal-to-noise ratio to differentiate
between noise and the second spatial derivative.

In Case C, we identify the parameters α̂ and β̂ based
on data obtained from an MC simulation of 1000 TCLs.
This can be considered a proxy for a smart grid scenario,
where the TCLs are able to communicate their temperature
states to a central server and (u, v) are computed directly
from that data. The TCL parameters are given in Table 1.
The temperature interval is divided into 20 equal intervals,
and the number of TCLs whose temperatures fall within
each sub-interval is counted as the value of u or v at that
temperature. The data are smoothed using an averaging
filter along the temperature interval. The passive parameter
identification is then executed on the smoothed data. The
results of the passive identifier are shown in Figure 6. As
before, the parameters converge within a neighbourhood of
the offline fitted values. However, the region of convergence
is larger due to the error induced by using a PDE model of
the population. Nevertheless, the identifier error, shown in
Figure 6(c), is nearly the same order as the PDE model
with measurement noise. Case D considers a stochastic
population of TCLs, and the results are shown in Figure 6.
In this case, the convergence results and identifier error is
similar to Case C.

5.2 Swapping identifier

Next, we consider the swapping identification scheme from
Section 4.2, with parameters ρα = ρβ = 20. All filters are
initialised at zero, except ν1(x, 0) = u(x, 0) and ν2(x, 0) =
v(x, t). Figure 7 demonstrates how the parameter estimates
evolve under Case A. Subplots (a) and (b) demonstrate the
evolution of the parameter estimates α̂ and β̂, respectively.
Indeed, the estimation errors are bounded according to The-
orem 4.2 and, in addition, converge near their true values.
Subplot (c) demonstrates how the L2 norms of the para-
metric error (ê1, ê2) are also bounded and decay towards
zero over time. Thus, the identifier performs as expected in
the ideal case.

For Case B, we add Gaussian noise as before. The sim-
ulation parameters are otherwise identical to the first case.
The parameter estimates are shown in Figure 7(a). In this
case, we see that the convergence of α̂ and β̂ is almost
indiscernible from Case A, since the filters successfully
attenuate the measurement noise. The identifier model er-
ror, however, reaches a larger steady-state error than the
noise-free case.

Next, we consider Case C where the individual TCL
data is smoothed using an averaging filter along the temper-
ature interval. The result of the parameter fitting is shown in
Figure 7. The estimate α̂ converges within a smaller neigh-

Figure 7. Simulations of the swapping identifier under Case A,
using filters (60)–(75) with parameter prediction errors (76) and
(77) and update laws (78) and (79). Subplots (a) and (b) demon-
strate the evolution of the parameter estimates α̂ and β̂, respec-
tively. Subplot (c) demonstrates the model fit in terms of how the
L2 norm of the error states (ê1, ê2) decay over time.

bourhood of its true value, as compared to the passive iden-
tifier. Indeed, the filters provide the added role of removing
noise, and therefore, the swapping identification scheme
provides more accurate estimates than the passive scheme.
Nevertheless, the estimate for β̂ decreases toward zero and
remains at the projection boundary, due to a lack of persis-
tent excitation. Case D, which considers a stochastic TCL
population, exhibits very similar results to Case C. As be-
fore, the filters inherently remove the noise and identify the
parameters by capturing the inherent diffusion–advection
dynamics of the population.

5.3 A controlled TCL population

In this section, we consider each identification algorithm
under a control input scenario in Case D. That is, we apply
the identification algorithms to a stochastic population of
TCLs undergoing a forced input that changes the aggregate
power consumption. In particular, we consider the forced
switching control proposed by Mathieu et al. (2013). In
this control framework, we consider a control parameter σ ,
which represents the fraction of TCLs in the population we
force to switch off instantaneously at time t = t0. The TCLs
that switch are random, and can be mathematically actu-
ated by considering a random variable generated from the
uniform distribution, mi ∼ U (0, 1), and the switching con-
dition mi < σ , for each TCL, i = 1, 2,. . ., N. Consequently,
the controlled switching is modified from Equation (2)
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Table 3. Comparison of passive and swapping identification methods.

Property Passive identifier Swapping identifier

Dynamic order One two-state PDE for the auxiliary
system

Four two-state PDEs for the filters

Nonlinear complexity The auxiliary system and update law
are nonlinear

The filters are linear, but the update
law is generally nonlinear

Sensitivity to noise/ model
uncertainty

No attenuation of noise induced
from ( · )x, ( · )xx measurements

Filters attenuate noise induced from
( · )x, ( · )xx measurements

to be

si(t0) =

⎧⎪⎪⎨
⎪⎪⎩

0 if si(t0 − ε) = 1 and Ti(t) ≤ Tmin,i

1 if si(t0 − ε) = 0 and Ti(t) ≥ Tmax,i

0 if mi < σ

si(t0 − ε) otherwise

(91)

Figure 8 demonstrates how each algorithm performs un-
der a forced switching scenario. In this example, σ = 0.5,
meaning 50% of the TCLs switch off at time t = 2 hr, as
can be seen in Figure 8(c). Note that this forced switching
creates a disturbance in the parameter estimates. However,
the estimates stay bounded within a neighbourhood of their
offline fitted values. As a result, the parameter identification
algorithms are applicable to a non-autonomous population
of TCLs for demand side management.

Figure 8. Simulations of the passive and swapping identifier un-
der Case D with 50% of the TCLs forced to switch off at time
t = 2 hr. Subplots (a) and (b) demonstrate the evolution of the pa-
rameter estimates α̂ and β̂, respectively. Subplot (c) demonstrates
the aggregate power of the stochastic TCL population, with 50%
of the TCLs switched off at time t = 2 hr.

5.4 Comparative analysis

In this paper, we have derived, implemented, and analysed
two different parameter identification schemes for PDE
models of heterogeneous TCL populations. Next, we ex-
amine the relative strengths and weaknesses of each identi-
fication algorithm, summarised in Table 3.

From an implementation perspective, the passive iden-
tification algorithm has a smaller dynamic order (one PDE
versus four PDEs). However, the auxiliary system is nonlin-
ear, whereas the filters in the swapping identifier are linear.
From a robustness perspective, the swapping identifier ex-
hibits more accurate estimates in the presence of noise. In
particular, the filters attenuate measurement noise result-
ing in improved estimates for the first and second spatial
derivatives of the PDEs. More importantly, the swapping
identifier demonstrates robustness to modelling errors, as
demonstrated by the results on deterministic and stochastic
TCL populations.

6. Conclusion

This paper develops methods for model identification of
aggregated TCLs in a smart grid setting using PDE tech-
niques. First, a two-state boundary-coupled hyperbolic PDE
model for homogenous TCL populations was derived based
on a hybrid ODE model of a single TCL. An important fea-
ture of the population behaviour is that, under parameter
homogeneity, the aggregated power consumption exhibits
undamped oscillations. In the case of heterogeneous TCL
populations, the power consumption exhibits damped oscil-
lations due to a diffusive effect on the TCL density dynam-
ics. Consequently, this paper proposes to add a diffusive
term to the boundary-coupled PDEs to model heteroge-
neous TCL populations.

Next, two parameter identification schemes are deri-
ved for the heterogeneous PDE models: a passive and a
swapping scheme. We prove signal properties for each iden-
tifier, in terms of relevant error norms. Although there is no
guarantee that the parameters will converge to the true val-
ues, simulations indicate that parameter estimates converge
within a neighbourhood of the true values in the absence
of noise. In the presence of noise, the swapping identifier
generally exhibits improved convergence accuracy over the
passive identifier, at the cost of implementation complexity.
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1386 S. Moura et al.

For MC simulations of deterministic and stochastic TCLs,
the converged parameter estimates are consistent with the
offline model fit performed in Section 3.3. Moreover, the al-
gorithms are applicable to a controlled population of TCLs.

Future work focuses on robust model identification
techniques, incorporating these estimates into adaptive con-
trol of TCL populations, and application to TCLs on a uni-
versity campus.
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