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Abstract—A plug-in electric vehicle (PEV) fleet utilizing
vehicle-to-grid (V2G) technology, i.e., a V2G fleet, can behave
as a storage system, e.g., promoting integration of distributed
wind power resources. However, because the PEVs’ behaviors are
stochastic and a V2G fleet’s population is large, three technical
difficulties hinder the utilization of V2G: 1) charging demand
forecasting; 2) ahead-of-time charge and discharge scheduling;
3) real-time charge and discharge power dispatching. This paper
utilizes a storage-like aggregate model (SLAM) of a V2G fleet
that employs aggregated parameters to represent energy and
power constraints of the entire PEV population, and therefore
reduces the difficulty of forecasting. Then, a stochastic joint
power scheduling strategy for a distributed wind generation and a
V2G fleet based on the SLAM is proposed aiming to promote the
integration of distributed wind power by V2G technology, which
has low computational burden. A real-time heuristic strategy is
designed to efficiently dispatch the power schedules to PEVs and
guarantee the modeling accuracy of SLAM and effectiveness of
the proposed power scheduling strategy.

Index Terms—Plug-in electric vehicle, vehicle-to-grid, aggre-
gate model, wind power.

I. INTRODUCTION

Utilizing V2G technologies, a group of PEVs can form
a V2G fleet under the control of an aggregator; this fleet
can behave like a storage system, e.g., promoting distributed
wind power integration. However, since the PEVs’ behaviors
are stochastic and their population is large, there are three
technical difficulties that hindered large-scale V2G utilization:

1) Charging demand forecasting, which is fundamental for
V2G capacity evaluation and requires high accuracy;

2) Ahead-of-time charge and discharge scheduling, which
should be able to provide power schedules of the whole
PEV population with low computational burden while
fully utilize the fleet’s V2G capacity;

3) Real-time power dispatching, which should dispatch the
charge and discharge power schedules to each PEV
efficiently and with low communication burden.

Some researchers studied V2G utilization to promote wind
power integration based on individual PEV modeling , which
include centralized control strategies [1]-[3] and decentral-
ized control strategies [4]. These works assumed that PEV
charging demands could be precisely obtained, which ignored
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the forecasting difficulty for PEV charging demands. Besides,
schedule large-scale PEVs’ individual charge and discharge
power separately and simultaneously for centralized strategies
is computationally expensive. While, though decentralized
strategies are computational efficient, it is hard to get optimal
results considering the lack of global information.

To overcome the above difficulties, some researchers pro-
posed aggregate models for V2G fleets [5]-[8], which do
not require individual charging demand forecasting and power
scheduling. These works utilize aggregated energy and power
constraints to represent the constraints of the entire PEV
population. Since the scales of the aggregated constraints are
small and irrelevant with the PEV population, the difficulty for
charging demand forecasting is reduced. Besides, the charge
and discharge scheduling strategy based on the aggregated
constraints has low computational burden. And the scheduled
charge and discharge power can be efficiently dispatched
to individual PEVs by heuristic strategies. In [5], [6], only
unidirectional charging power is considered. Reference [7]
extended the work in [5], [6] to V2G cases. In a V2G fleet,
there may be some PEVs charging and some other discharging
at the same time. Since inefficiency is charge and discharge
trajectory-dependent, [7] felt it hard to consider it in V2G
cases. The aggregate model in [8] also ignored inefficiency.

In our previous work [9], we modified the aggregate model
in [7] to a new storage-like aggregate model (SLAM) for
a V2G fleet so that inefficiency can be considered. And
we designed a heuristic charging strategy based on charging
demand laxities and state-of-charges (SoC's) of PEVs (laxity-
SoC' based strategy) to enhance the modeling accuracy of
SLAM. This paper extends [9] and develops a stochastic op-
timization strategy for joint power scheduling of a distributed
wind generation and a V2G fleet based on the SLAM model
aiming to smooth the wind power profile and promote wind
power integration. Numerical experiments are conducted to
verify the effectiveness of the proposed strategy.

II. STORAGE-LIKE AGGREGATE MODEL
A. Individual PEV Model

The charging and discharging capacities (V2G capacity)
of a given PEV ¢ can be modeled by its energy and power
boundaries, i.e., {ej/(7)7pi+/(7)}, which specify the feasible

set of all possible charging/discharging trajectories. The upper



energy boundary e} corresponds to the fastest path for con-
suming energy, whereas the lower boundary e; corresponds
to the slowest path for consuming energy. pj is the maximum
charging power and p; is the maximum discharging power.
1) Uncontrollable Charging Demand: A PEV with an
expected parking duration that is not long enough for it
to become sufficiently recharged must continue to charge
throughout its parking duration. To model the uncontrollable
charging demand of PEV ¢, we can simply use the PEV’s
uncontrollable charging power, i.e., pY, instead of its energy
and power boundaries, which can be calculated as follows:

0, 7>tdor7T <t

Dir = (1)

pine, B < <td
where, t¢ and t¢ are respectively the arrival time and expected
departure time of PEV ¢; p{ is PEV 4’s rated charging power
and 7° is the charging efficiency; 7 is the time interval index.

2) Controllable Charging Demand: A PEV with an ex-
pected parking duration that is longer than the required charg-
ing time can be recharged from (or discharge to) the grid
under the control of an aggregator. To fulfill the customer’s
regular driving demands and preserve battery life, a PEV
should be recharged immediately after connecting to the grid
until its SoC' reaches a safe minimum threshold SoC™™". Let
emin = (SoCMin — SoC?%)B; denotes the minimum energy
acquired by the battery before it can discharge; SoC? is the
PEV’s arrival SoC' and B; is its battery capacity.

A PEV i with el < ( may charge or discharge throughout
its parking duration; its energy and power boundaries are
shown in Fig. 1. Its energy boundaries can be calculated using
equations (2)—(3) and the corresponding power boundaries can
be calculated using equations (4)—(5):
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where, p¢ is PEV i’s rated discharging power and n? is
the discharging efficiency; e"** = (100% — SoC?)B; is

K3

the maximum energy that can be acquired by the battery;
erd = (SoCd — SoC?*)B; is the required energy acquired

by the battery when the PEV departs; SoCY is the expected
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(a) Energy boundaries (b) Power boundaries
Fig. 1. Energy and power boundaries of a controllable PEV with e?‘i“ <0.
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Fig. 2. Energy and power boundaries of a controllable PEV with e;ni“ > 0.

(a) Energy boundaries
Fig. 3. Aggregate controllable energy and power boundaries of a V2G fleet.

(b) Power boundaries

departure SoC' which depends on the customer’s future driving
demands; At is the duration of each sub-hourly time interval.

A PEV i with e™® > 0 must be recharged before its
SoC' reaches SoC™™ at time #¢. Thereafter, it may charge
or discharge throughout the remaining parking duration. Its
energy and power boundaries are demonstrated in Fig. 2. Its
uncontrollable charging power before ¢ can be calculated us-
ing equation (1). Its controllable energy and power boundaries
after ¢7 can be calculated using (2)—(5).

B. Storage-like Aggregate Model of the V2G Fleet

We utilize the summation of energy and power boundaries
of all individual PEVs to represent the V2G fleet’s aggregate
energy and power boundaries. The aggregate uncontrollable
charging power of the V2G fleet can be calculated as follows:

P! = ZPEWVT' (6)

The aggregate controllable energy and power boundaries of
the V2G fleet can be calculated as follows:

B =% el v, @)
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which specify the feasible set of the controllable part of
charging trajectories of the whole V2G fleet. A demonstration
of E+/(=) and P*/(=) are shown in Fig. 3.

The set {P", E+/(=), P+/(=)} contains the aggregated
charging demand and V2G capacity information of the V2G
fleet and its scale is independent of the PEV population size.

By the about modeling, we change the large-scale, discrete,
randomly distributed individual charging demands into a sin-
gle, smooth and comparatively steady storage-like aggregate
model (SLAM, see Fig. 3). Note that the energy and power
boundaries in the proposed SLAM are at the battery side
of the V2G fleet; therefore, inefficiency due to charging and
discharging has no effect on the SLAM.



Compared with the model in [7], uncontrollable and con-
trollable charging demands are modeled separately in SLAM.
Therefore, the charging and discharging power of the V2G
fleet can be distinguished and inefficiency can be considered
at the grid side, which will be shown in the following sections.

III. POWER SCHEDULING FOR A V2G-WIND SYSTEM

Joint power scheduling of distributed renewable power and
V2G power may be a promising solution to promote future
distributed renewable energy integration. In this paper, we
study the strategies of utilizing V2G to promote distributed
wind power integration based on SLAM. We assume a V2G
fleet and a wind power generation is connected to a distribution
system via a distribution transformer to form a V2G-wind
system. And the V2G-wind system can purchase or sell
electricity from the retailer, while the purchase tariffs and
selling prices are time-of-use and fixed.

We develop a stochastic power scheduling strategy for the
V2G-wind system in order to maximize the system’s benefits.
At each time interval, the aggregator optimizes the wind power
curtailment and charge and discharge power for the future
time intervals based on the forecasted wind power profiles
and PEV charging demands (the aggregate energy and power
boundaries, i.e., SLAM, of the V2G fleet). In a fleet of
PEVs with large population, the stochastic characteristics of
individual PEVs will have little influence on the SLAM due to
the scale effect [9]. Therefore, in this paper we only consider
the uncertainty of wind power generation.

Let ¢ denote the next time interval. Without loss of gen-
erality, we use {P%, B/~ P}/ |r = ¢,..,t4 1 to denote
the parameters of SLAM. Note that the uncontrollable power
P! is scenario-independent and cannot be optimized. 3 is
the maximum expected departure time of all of the involved
PEVs. The stochastic power scheduling problem at t — 1 is
formulated as a mixed integer nonlinear programming model:
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TABLE I
NOTATIONS USED IN THE POWER SCHEDULING OPTIMIZATION MODEL

w/Q Index/set of all the scenarios of wind power generation

Tw Occurrence probability of scenario w

/\‘;/S Energy purchase/selling prices at time 7, in $/kWh

b Battery degradation costs due to discharging, in $/kWh

gf,’T Forecasted wind power for scenario w at time 7, in kW

o Power profile smooth factor, le-7 in this paper

POJJ\{ - Non-deferential load for scenario w at time ¢, in kW

cr Transformer/distribution line capacity of the V2G-wind system

Pf,/f.r Decision variables for scenario w, the amount of power to be
purchased/sold at time 7, in kW

Pf,\:ﬁ/d Decision variables for scenario w, the amount of power to be
charged/discharged at the battery side of the V2G fleet at time
T, in kW

P2"  Decision variables for scenario w, the power schedule at the
battery side of the V2G fleet at time 7, in kW

PZ . Decision variables for scenario w, the power schedule at the grid
side of the V2G fleet at time 7, in kW

Jw, Decision variables for scenario w, the wind power schedule at
time 7, in kW

Dy,+  Decision variables for scenario w, Dy, » = 1, if the controllable
PEVs are discharged; D, = 0, otherwise.

Sw,r Decision variables for scenario w, Sy, ~ = 1, if the system sells

electricity to the grid; Sw,,~ = 0, otherwise.

The first term in objective (9) is the expected average energy
purchase costs and selling incomes for all the scenarios. The
second term is the expected average battery degradation costs
caused by discharging, which is assumed to be proportional
to the aggregate discharging energy schedule, as in reference
[7]. To smooth the power profiles of the V2G-wind system,
the last term is added to penalize load variations.

Equations (10)—(14) are the mathematical formulation of
the proposed SLAM. Equations (10)—(11) define the maximum
charging and discharging power limits of the V2G fleet. Binary
variables D, . ensure that charging and discharging will
not happen simultaneously in the aggregation of controllable
PEVs. Otherwise, they will counteract each other at the grid
side and cause undesirable battery degradation and power
losses. Note that the controllable PEV charging demands are
flexible, they can endure not being charged during time inter-
vals in which the V2G power schedule is negative. Equations
(12)—(13) define the energy limits of the V2G fleet. The V2G
power schedules at the grid side are calculated using (14).
Because charging and discharging power are distinguished,
inefficiency can be considered here, which are ignored in [7].

The wind power is limited by (15) and (g5 () — g.,(7)) At
is the curtailed wind energy due to limited transformer or
distribution line capacities. Equations (16) defines the power
balance constraints. Equations (17)-(18) make sure the power
of the V2G-wind system can not violate its upper limit and
binary variables S, ; guarantee the system cannot purchase
and sell electricity at the same time.

Because the proposed strategy based on SLAM only sched-
ules the aggregate V2G power of the fleet, the scale of the



problem is very small and it can be efficiently solved.

IV. REAL-TIME POWER DISPATCH STRATEGY

During real-time operation at time interval ¢, the system
operator judges the operation scenario, i.e., w, according to
the real-time and short-term forecasted wind power of the
current time interval, i.e., git. Then the V2G and wind power
schedules at ¢ for scenario w obtained at ¢ — 1 by the power
scheduling strategy in Section III, i.e., Pf,‘f’ts and g, are
chosen to be dispatched.

A. V2G Power Dispatch

To guarantee the modeling accuracy of SLAM and the
effectiveness of the power scheduling strategy, we use laxity-
SoC' based heuristic strategy to dispatch the V2G power
schedules to each PEV, which uses laxity of charging demand
and SoC to determine charging and discharging priories for
the PEVs. The charging demand laxity of PEV ¢, i.e., L;, is:

L;, = t? —t— (Son — S0C;)B;/ (n°p; At) , (19)

which is the difference between the remaining parking duration
and the required charging time of PEV ¢ [10]. The larger the
value of L;, the more flexibility the PEV has and vice versa.

For PEVs with large values of L, the charging demands
are not urgent; therefore, they can be discharged, whereas
PEVs with small values of L tend to be recharged. And PEVs
with high SoC's may have limited charging capacities, whereas
PEVs with low SoC's may have limited discharging capacities.
Additionally, PEVs with L < Ly, or SoC' < SoC\,;, must
be recharged immediately after they are connected to the grid.

We divide PEVs into M groups in the L-SoC plane (see
Fig. 4). PEVs in groups with lower indices can discharge to
the grid. While those in groups with higher indices tend to get
recharged from the grid. PEVs in group M are uncontrollable
and must get recharged during the next time intervals.

During real-time operation, the aggregator updates charg-
ing demands and statuses of PEVs connected to the grid,
identify them into specific groups in Fig. 4 and broadcast
charging/discharging instructions to them regularly, e.g. every
15 minutes. First, the uncontrolled charging power P} is
dispatched to PEVs in group M to satisfy their urgent charging
demands. Then, if the controllable power schedule P37 > 0,
dispatch it to PEVs in groups with higher indices, i.e., dispatch
the charging power to PEVs in the order of group M to group
1. Otherwise, dispatch the discharging power to PEVs in the
order of group 1 to group M.

B. Wind Power Dispatch

Because of forecasting errors, gg)t may be not equal to
the forecasted value when the power schedule is determined,
ie., gUFJ’t. So that the system operator should adjust the wind
curtailment according to 95,15' We constrain that the dispatched
wind power should be no more than the power schedule, i.e.,
gwt> 0 that the total power will not violate the capacity limit.
Thus, the dispatched wind power is min (g, ;, g% ;) and the
corresponding wind power curtailment is max (0, g5 ; — w.¢)-
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Fig. 4. Classification of PEV groups.
TABLE I
BENCHMARK STRATEGIES
Strategy Model Charge/discharge Efficiency  Dispatch Strategy
UNC - - Uncoordinated
AMLS AM in [7] Ignore Laxity-SoC' based
SLAML SLAM Consider Laxity based
PRO SLAM Consider Laxity-SoC based

Since the V2G and wind power dispatch strategies are
heuristic and require little computational resources, they can
be efficiently implemented during real-time operation.

V. CASE STUDIES
A. Case Overview and Parameter Settings

We used a V2G-wind system with 1,000 PEVs and 1.2 MW
wind generation in a residential area to verify the effectiveness
of the proposed method. The Nissan Leaf PEV was chosen to
represent the PEV population, with a battery capacity 24 kWh.
We assumed 50% of customers installed Level 1 chargers
with P¢ of 3.3 kW and P? of -3.3 kW. The others installed
Level 2 chargers with P° of 6.6 kW and PY of -6.6 kW. The
efficiencies (1° and n¢) were assumed to be 92%. We assumed
the non-deferential load for each scenario to be zero!. We also
assumed SOCme=0.4, M=10, At=15 min.

We used the charging demand forecasting method in [11] to
generate charging demand scenarios, including ¢2, t?, SoC%,
and SoC¢ of each PEV 4. We used 10 days’ wind speed
data in WoNiuShi wind farm in Liaoning, China, to generate
10 wind power scenarios and 5% Gaussian noise is added
to represent forecasting errors>. Time-of-use electricity tariffs
in [6] were used as the electricity purchase costs, and we
assumed that the electricity selling prices were 0.02 $/kWh
lower than the corresponding electricity purchase costs. The
battery degradation costs was assumed to be 0.078 $/kWh [6].

The proposed power scheduling strategy (PRO) based on
the SLAM was benchmarked with three other strategies (see
Table II). In UNC, uncoordinated charging strategy is used and
PEVs get charged as soon as they are connected to the grid. In
AMLS, the aggregate model (AM) which ignores inefficiency
in [6] is used while V2G power schedules are dispatched to
PEVs with laxity-SoC' based strategy. In SLAML, the SLAM
proposed in this paper is used while V2G power schedules are
dispatched to PEVs with laxity based strategy.

B. Simulation Results and Discussions

The average performance of the four strategies are listed in
Table III. The total power profiles (selling or purchase), V2G

Note that this will not influence the effectiveness of the proposed strategy.
2In practice, the wind power scenarios should be generated based on
forecasted wind power profiles and forecasting error analysis.
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Fig. 5. Simulation results for difference strategies: 1) total power profiles (top); 2) V2G power profiles (middle); 3) wind power profiles (bottom).

TABLE III

PERFORMANCE COMPARISON FOR DIFFERENT STRATEGIES
Strategy Energy Energy Battery Total
Selling ($/day)  Purchase ($/day) ($/day)  ($/day)
UNC 645.83 -47.56 0 598.27
AMLS 811.60 -29.60 -135.49  646.52
SLAML 720.94 -11.21 -5.03 704.71
PRO 774.66 -6.59 -10.75 757.32

power profiles and wind power profiles for two representative
scenarios, i.e., high wind scenario and low wind scenario, and
the corresponding average profiles for all the scenarios and
TOU electricity purchase prices are demonstrated in Fig. 5.

From the simulation results, we can conclude that all the
coordinated strategies increase the revenues of the V2G-wind
system significantly, while utilizing UNC, a significant amount
of wind power are curtailed. In high wind scenario, even
though the wind power is higher than the allowed capacity
during some period, the extra wind power can be consumed
by the V2G fleet and the V2G-wind system can sell much
electricity to the grid. While in the low wind scenario, the
system has to buy some electricity during low tariff period.

Utilizing AMLS, the V2G fleet is very aggressive in energy
arbitraging. On one hand, in AMLS the controllable and
uncontrollable charging demands are not distinguished, so that
the V2G fleet will be more optimistic with its charging and
discharging capacities. And if the schedule V2G power is
negative, since there will be some uncontrollable PEVs which
have to get charged, the actual discharging power during real-
time operation may be higher in order to keep power balance.
On the other hand, since inefficiency is ignored, the power
scheduling strategy are more aggressive to discharge and
recharge the V2G feet since no power losses are calculated. As
a results, though the energy selling revenues are high utilizing
AMLS, the battery degradation costs increase significantly.

SLAML outperforms AMLS, and the V2G fleet is more
moderate in energy arbitrage utilizing SLAM than utilizing
AM in [7]. Though energy selling income reduces, the battery
degradation costs are saved significantly.

PRO outperforms all the other strategies, and compared with
the laxity based strategy in SLAML, the proposed Laxity-SoC
based strategy helps to better utilize the flexibility of V2G.
The V2G-wind system makes significantly income by selling

energy while the battery degradation costs remains low.

VI. CONCLUSION

A stochastic joint power scheduling strategy for a V2G-
wind system is proposed based on the SLAM. A laxity-SoC'
based heuristic strategy is used to dispatch the V2G power
schedules to each PEV during real-time operation. Numerical
experiments show that the proposed strategy to be a promising
technology to utilize V2G for large-scale PEVs to promote
distributed wind power integration which can guarantee high
economic performance with low implementation burden.
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