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This paper develops an adaptive PDE observer for battery
state-of-charge (SOC) and state-of-health (SOH) estimation.
Real-time state and parameter information enables opera-
tion near physical limits without compromising durability,
thereby unlocking the full potential of battery energy stor-
age. SOC/SOH estimation is technically challenging because
battery dynamics are governed by electrochemical princi-
ples, mathematically modeled by partial differential equations
(PDEs). We cast this problem as a simultaneous state (SOC)
and parameter (SOH) estimation design for a linear PDE
with a nonlinear output mapping. Several new theoretical
ideas are developed, integrated together, and tested. These
include a backstepping PDE state estimator, a Padé-based
parameter identifier, nonlinear parameter sensitivity analysis,
and adaptive inversion of nonlinear output functions. The
key novelty of this design is a combined SOC/SOH battery
estimation algorithm that identifies physical system variables,
from measurements of voltage and current only.

Nomenclature
A Cell cross sectional area [m2]
a j Specific interfacial surface area [m2/m3]
c0

e Li concentration in electrolyte phase [mol/m3]
c j

s Li concentration in solid phase [mol/m3]
c j

ss Li concentration at particle surface [mol/m3]
c j

s,max Max Li concentration in solid phase [mol/m3]
D j

s Diffusion coefficent in solid phase [m2/sec3]
F Faraday’s constant [C/mol]
I Input current [A]
i j
0 Exchange current density [V]
j Positive (+) or negative (-) electrode

k j Reaction rate [A·mol1.5/m5.5]
L j Electrode thickness [m]
nLi Total number of Li ions [mol]
q Boundary input coefficient parameter
R Universal gas constant [J/mol-K]
R f Lumped current collector resistance [Ω]
R j

s Particle radius [m]
r Radial coordinate [m] or [m/m]
T Cell temperature [K]
t Time [sec]
U j Equilibrium potential [V]
V Output voltage [V]
α j Anodic/cathodic transfer coefficient
ε Diffusion parameter
ε

j
s Volume fraction of solid phase

1 Introduction
This paper develops an adaptive PDE observer for com-

bined state-of-charge (SOC) and state-of-health (SOH) esti-
mation in batteries, using an electrochemical model.

Accurate battery SOC estimation algorithms are currently
of extreme importance due to their applications in electri-
fied transportation and energy storage systems for renewable
sources. The relevancy of this topic is further underscored by
the 27.2 billion USD federal government investment in energy
efficiency and renewable energy research, including advanced
batteries, under the American Recovery and Reinvestment Act
(ARRA) of 2009. To guarantee safety, durability, and perfor-
mance, battery management systems within these advanced
transportation and energy infrastructures must have accurate



knowledge of internal battery energy levels [1]. Such knowl-
edge enables them to efficiently route energy while satisfying
power demands and device-level operating constraints [2].

Monitoring battery SOC and SOH is particularly chal-
lenging for several technical reasons. First, directly measur-
ing Li concentration or physical examination of cell compo-
nents is impractical outside specialized laboratory environ-
ments [3, 4]. Second, the dynamics are governed by partial
differential algebraic equations derived from electrochemical
principles [5]. The only measurable quantities (voltage and
current) are related to the states through boundary values.
Finally, the model’s parameters vary widely with electrode
chemistry, electrolyte, packaging, and time. In this paper
we directly address these technical challenges. Namely, we
design an adaptive observer using a reduced-form PDE model
based upon electrochemical principles. As such, the algo-
rithm estimates physical variables directly related to SOC and
SOH, a first to the authors’ knowledge.

Over the past decade research on battery SOC/SOH esti-
mation has experienced considerable growth. One may divide
this research by the battery models each algorithm employs.

The first category considers estimators based upon equiv-
alent circuit models (ECMs). These models use circuit el-
ements to mimic the phenomenological behavior of batter-
ies. For example, the work by Plett [6] applies an extended
Kalman filter to simultaneously identify the states and param-
eters of an ECM. Verbrugge and his co-workers used ECMs
with combined coulumb-counting and voltage inversion tech-
niques in [7] and adaptive parameter identification algorithms
in [8]. More recently, a linear parameter varying approach
was designed in [9]. The key advantage of ECMs is their
simplicity. However, they often require extensive parameteri-
zation for accurate predictions. This often produces models
with non-physical parameters, whose complexity becomes
comparable to electrochemical models.

The second category considers electrochemical models,
which account for the diffusion, intercalation, and electro-
chemical kinetics. Although these models can accurately
predict internal state variables, their mathematical structure is
generally too complex for controller/observer design. There-
fore, these approaches combine model reduction and estima-
tion techniques. Some of the first studies within this cate-
gory use a “single particle model” (SPM) of electrochemical
battery dynamics in combination with an extended Kalman
filter [10, 11]. Another approach is to employ residue group-
ing for model reduction and linear Kalman filters for ob-
servers [12]. The authors of [13] apply simplifications to the
electrolyte and solid phase concentration dynamics to per-
form SOC estimation. To date, however, simultaneous SOC
and SOH estimation using electrochemical models remains
an open question.

In this paper we extend the aforementioned research by
designing an electrochemical model based adaptive observer
for simultaneous SOC/SOH estimation. Several novel theoret-
ical ideas are developed, integrated, and tested. These include
a PDE backstepping state estimator, Padé-based PDE parame-
ter identifier, nonlinear identifiability analysis of the output
equation, and adaptive output function inversion. This paper
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Fig. 1. Each electrode is idealized as a single porous spherical par-
ticle. This model results from assuming the electrolyte concentration
is constant in space and time.

extends our previous work [14–16] by including estimator
validation results against a high-fidelity battery simulator. The
final result is an adaptive observer for simultaneous SOC/SOH
estimation which identifies physical battery system variables,
from current and voltage measurements only.

The paper is organized as follows: Section 2 describes
the single particle model. Sections 3-6 describe the subsys-
tems of the adaptive observer, including the state estimator,
PDE parameter identifier, output function parameter identifier,
and adaptive output function inversion. Section 7 presents
simulation results to demonstrate the observer’s performance.
Section 8 provides guidelines for selecting gains. Finally,
Section 9 summarizes the key contributions.

2 Electrochemical Cell Model & Analysis
The single particle model (SPM) was first applied to

lithium battery systems in [17] and is the model we utilize
in this paper. The key idea is that the solid phase of each
electrode can be idealized as a single spherical particle. This
model results if one assumes the electrolyte Li concentration
is constant in space and time [1]. This assumption works
well for small currents or electrolytes with large electronic
conductivities. However, it induces errors at large C-rates [1].
Moreover, we assume constant temperature. Figure 1 pro-
vides a schematic of the SPM concept. Mathematically, the
model consists of two diffusion PDEs governing each elec-
trode’s concentration dynamics, where input current enters as
a Neumann boundary condition. Output voltage is given by a
nonlinear function of the state values at the boundary and the
input current.

Although this model captures less dynamic behavior than
other electrochemical-based estimation models [17], its math-
ematical structure is amenable to adaptive observer design.
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Fig. 2. DFN predictions of the solid & electrolyte concentrations as
functions of space. The DFN model retains electrolyte and spatial dy-
namics. State values are depicted after 50sec of 5C discharge. Sym-
bol cavg is the solid concentration averaged over a spherical particle
and css is the surface concentration. Note the non-negligible concen-
tration gradients in the electrolyte.

2.1 Single Particle Model
Diffusion in each electrode is governed by Fick’s law in

spherical coordinates:

∂c−s
∂t

(r, t) = D−s

[
2
r

∂c−s
∂r

(r, t)+
∂2c−s
∂r2 (r, t)

]
, (1)

∂c+s
∂t

(r, t) = D+
s

[
2
r

∂c+s
∂r

(r, t)+
∂2c+s
∂r2 (r, t)

]
, (2)

with Neumann boundary conditions

∂c−s
∂r

(0, t) = 0,
∂c−s
∂r

(R−s , t) =
I(t)

D−s Fa−AL−
, (3)

∂c+s
∂r

(0, t) = 0,
∂c+s
∂r

(R+
s , t) =−

I(t)
D+

s Fa+AL+
. (4)

The Neumann boundary conditions at r = R+
s and r = R−s

signify that the flux entering the electrode is proportional to
the input current I(t). The Neumann boundary conditions at
r = 0 are required for well-posedness. Note that the states for
the two PDEs are dynamically uncoupled, although they have
proportional boundary inputs.

The measured terminal voltage output is governed by
a combination of electric overpotential, electrode thermody-
namics, and Butler-Volmer kinetics. The end result is

V (t) =
RT
αF

sinh−1
(

I(t)
2a+AL+i+0 (c

+
ss(t))

)

−RT
αF

sinh−1
(

I(t)
2a−AL−i−0 (c

−
ss(t))

)

+U+(c+ss(t))−U−(c−ss(t))+R f I(t), (5)
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Fig. 3. Voltage response for several discharge rates, for the single
particle model (SPM) and Doyle-Fuller-Newman (DFN) model. The
SPM exhibits increasing error as C-rate increases, but identical dis-
charge capacities.

where the exchange current density i j
0 and solid-electrolyte

surface concentration c j
ss are, respectively

i j
0(c

j
ss) = k j

√
c0

ec j
ss(t)(c

j
s,max− c j

ss(t)), (6)

c j
ss(t) = c j

s(R
j
s , t), j ∈ {+,−}. (7)

The functions U+(·) and U−(·) in (5) are the equilibrium
potentials of each electrode material, given the surface con-
centration. Mathematically, these are strictly monotonically
decreasing functions of their input. This fact implies that the
inverse of its derivative is always finite, a property which we
require in Section 6. Further details on the electrochemical
principles used to derive these equations can be found in [1,5].

This model contains the property that the total number of
lithium ions is conserved [13]. Mathematically, d

dt (nLi) = 0,
where

nLi =
ε+s L+A

4
3 π(R+

s )3

∫ R+
s

0
4πr2c+s (r, t)dr

+
ε−s L−A

4
3 π(R−s )3

∫ R−s

0
4πr2c−s (r, t)dr. (8)

This property will become important, as it relates the total con-
centration of lithium in the cathode and anode. We leverage
this fact to perform model reduction in the state estimation
problem.

2.2 Model Comparison
The SPM approximation increases in accuracy as C-rate

decreases and/or as electrolyte conductivity increases. Here,
we demonstrate how the SPM’s accuracy degrades as C-rate
increases, compared to a full order electrochemical model.

A simulator has been created for the so-called Doyle-
Fuller-Newman (DFN) model described in [1]. This model



retains the electrolyte dynamics and spatial dynamics across
the width of the electrode. Figure 2 presents a freeze-frame
of the solid and electrolyte Li concentrations after 50sec of
5C discharge. This high discharge rate induces notable con-
centration gradients in the electrolyte, which the SPM will
not predict. The parameters are identical to those used in the
publicly available DUALFOIL model, developed by Newman
and his collaborators [18]. This DFN model also serves as
the generator of experimental data to evaluate the adaptive
observer’s performance.

The voltage response to several constant discharge rates
is presented in Fig. 3. For complete discharge cycles, the
maximum sustainable C-rate for this model parameterization
is 1.25C. Higher C-rates will completely deplete the elec-
trolyte lithium in the cathode. All simulations are initialized
at 4.06 V and terminated when terminal voltage reaches 2.0
V. The voltage error increases as C-rate increases. At higher
C-rates, the electrolyte concentration gradients become sig-
nificant with respect to their impact on terminal voltage. At
low C-rates, the concentration gradients are negligible and
therefore a uniform approximation is a reasonable assump-
tion. It is important to note the predicted charge capacity is
identical between both models. This property is critical for
applications where charge capacity is important, e.g. electric
vehicles. In spite of the SPM’s errors at high C-rates, adaptive
observer design for this model is significantly easier than the
DFN model, although highly non-trivial.

In the following sections we describe each subsystem
of the adaptive observer. A block diagram of the composed
system is provided in Fig. 4.

3 State Estimation

3.1 Observability & Model Reduction

For the purpose of observer design we reduce the SPM
by approximating the cathode diffusion dynamics (2) by its
equilibrium. This step is mathematically motivated by the fact
that the SPM states are weakly observable from voltage mea-
surements, as has been previously noted in the literature [11].
It turns out that approximating the cathode dynamics as instan-
taneous produces a reduced system whose states are locally
observable in the linear sense. Moreover, physical motiva-
tion exists for this reduction when diffusion dynamics are
significantly faster in the cathode than the anode, a common
characteristic of certain anode/cathode combinations. We
discuss these points in succession.

Lack of observability can be shown using a number of
techniques. For example, one may (i) approximate the PDEs
by ODEs using the finite difference method, producing a tri-
diagonal matrix A, (ii) linearize the output equation about the
states, producing a matrix C, (iii) and compute the rank of the
observability matrix for the pair (A,C) [19].

The reduced SPM has a PDE given by (1), boundary

conditions given by (3), and output equation

V (t) =
RT

α+F
sinh−1

(
I(t)

2a+AL+i+0 (αc−ss(t)+β)

)

− RT
α−F

sinh−1
(

I(t)
2a−AL−i−0 (c

−
ss(t))

)
(9)

+U+(αc−ss(t)+β)−U−(c−ss(t))−R f I(t).

Note that c+ss(t) has been replaced by αc−ss(t) + β. This is
the critical detail of the reduced SPM. The equilibrium of
the cathode states (i.e., c+s (r, t) = c+ss(t)) can be computed
from the conservation of Li property in (8) to produce the
relationship1

c+ss(t) =
1

ε
+
s L+A

[
nLi− ε

−
s L−Ac−ss(t)

]
, (10)

where α =− ε−s L−

ε
+
s L+

and β = nLi
ε
+
s L+A

.
One can show this system is locally observable (i.e. in the

linear sense) by using the same finite difference and lineariza-
tion approach described above. Ultimately, we guarantee
observability for this reduced SPM by designing the observer
gains such that the estimation error dynamics mimic an expo-
nentially stable target system. This is the core concept behind
backstepping observer design [20].

Physical motivation sometimes exists for approximating
the cathode diffusion dynamics as instantaneous. Significant
research efforts on manufacturing and material science tech-
niques for cathode materials has enabled researchers to attain
nano-scale particle sizes and faster diffusion rates [21]. The
result is characteristic diffusion times (mathematically R2

s/Ds)
which are often orders of magnitude less in the cathode than
the anode. Parallel studies have been performed on the anode
side (see e.g. [22]), however they are less prevalent. Hence,
approximating cathode diffusion by its equilibrium is a reason-
able approximation for certain cathode/anode combinations.
This insight was also observed through a previous parameter
identification study on commercially available LiFePO4 cells
with doped nano-scale cathode materials [23]. For other cells,
the required diffusive time scale separation property may not
exist.

3.2 Normalization and State Transformation
Next we perform normalization and state transformation

to simplify the mathematical structure of the observer. First
scale the radial r and time t coordinates as follows

r̄ =
r

R−s
, t̄ =

D−s
(R−s )2

t. (11)

1To be technically correct, the cathode concentration should depend
on the anode concentration summed over the spherical volume: c+ss(t) =

1
ε
+
s L+A

[
nLi− 3ε−s L−A

4πR−s
3

∫ R−s
0 4πr2c−s (r, t)dr

]
. However, this results in a nonlin-

ear output equation which depends on the in-domain states, as well as the
boundary state. This would create additional complexity to the backstepping
approach we employ in this paper.
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Fig. 4. Block diagram of the adaptive observer. It is composed of the backstepping state estimator (blue), PDE parameter identifier (green),
output function parameter identifier (red), and adaptive output function inversion (orange). The observer furnishes estimates of SOC (i.e.,
ĉ−s (r, t)) and SOH (i.e., ε̂, q̂, θ̂h) given measurements of I(t) and V (t), only.

Henceforth we will drop the bars over the space and time
coordinates to simplify notation. Next we perform a state
transformation to eliminate the first spatial derivative in the
spherical diffusion equation (1). Namely, let

c(r, t) = rc−s (r, t). (12)

This normalization and state transformation produces the fol-
lowing PDE with Dirichlet and Robin boundary conditions

∂c
∂t
(r, t) = ε

∂2c
∂r2 (r, t), (13)

c(0, t) = 0, (14)
∂c
∂r

(1, t)− c(1, t) = −qρI(t). (15)

and nonlinear output map given by (9) where c+ss = αc(1, t)+
β (see (10)), and c−ss = c(1, t). The parameter ρ =
R−s /(D

−
s Fa−AL−) groups together known parameters. The

parameters ε and q are nominally equal to one. Respectively,
they represent uncertainty in the diffusion and boundary input
coefficients, which we identify in Section 4.

3.3 Backstepping PDE State Estimator
The SPM comprises linear dynamics and a nonlinear out-

put function. In general an output injection-based estimator
would be nonlinear for this class of systems. However, we de-
sign a linear estimator in this paper by injecting the boundary
state error. This idea requires us to calculate the boundary
state from the measured voltage, demonstrated visually by
the block diagram in Fig. 4. In [14] we show the output
function (9) is invertible with respect to the boundary state
c−ss, uniformly in the input current I(t).

The state estimator structure consists of a copy of the
plant (13)-(15) plus boundary state error injection, as follows

∂ĉ
∂t
(r, t) = ε

∂2ĉ
∂r2 (r, t)+ p1(r)c̃(1, t), (16)

ĉ(0, t) = 0, (17)
∂ĉ
∂r

(1, t)− ĉ(1, t) = −qρI(t)+ p10c̃(1, t), (18)

where the boundary state error is given by

c̃(1, t) = ϕ(V (t), I(t))− ĉ(1, t). (19)

The backstepping approach [20] is applied to design
the output injection gains p1(r) and p10. First, denote the
observer error as c̃(r, t) = c(r, t)− ĉ(r, t). Subtracting (16)-
(18) from (13)-(15) produces the estimation error dynamics

∂c̃
∂t
(r, t) = ε

∂2c̃
∂r2 (r, t)− p1(r)c̃(1, t), (20)

c̃(0, t) = 0, (21)
∂c̃
∂r

(1, t)− c̃(1, t) = −p10c̃(1, t). (22)

The backstepping approach seeks to find the upper-
triangular transformation

c̃(r, t) = w̃(r, t)−
∫ 1

r
p(r,s)w̃(s)ds, (23)



which satisfies the exponentially stable target system

∂w̃
∂t

(r, t) = ε
∂2w̃
∂r2 (r, t)+λw̃(r, t), (24)

w̃(0, t) = 0, (25)
∂w̃
∂r

(1, t) = −1
2

w̃(1, t), (26)

where λ < ε/4. The symbol λ is a design parameter that
enables us to adjust the pole placement of the observer. The
coefficient −1/2 in (26) ensures the target system is exponen-
tially stable, as can be seen by the derivation below.

One can show that (24)-(26) is exponentially stable in
the spatial L2 norm by considering the Lyapunov function

W (t) =
1
2

∫ 1

0
w̃2(r, t)dr. (27)

Taking the total time derivative and applying integration by
parts yields

Ẇ (t) =− ε

2
w̃2(1)− ε

∫ 1

0
w̃2

r dr+λ

∫ 1

0
w̃2dr. (28)

Recalling the Poincaré inequality

−ε

∫ 1

0
w̃2

r dr ≤ ε

2
w̃2(1)− ε

4

∫ 1

0
w̃2dr, (29)

produces

Ẇ (t)≤−
(

ε

4
−λ

)∫ 1

0
w̃2dr =−

(
ε

2
−2λ

)
W (t), (30)

which by the comparison principle [24] im-
plies W (t) ≤ W (0)exp [−(ε/2−2λ)t] or ‖w̃(t)‖ ≤
‖w̃(0)‖exp [−(ε/4−λ)t]. Hence the target system is
exponentially stable for λ < ε/4.

Remark 1. Using separation of variables, one may show the
eigenvalues for the target system (and hence the error system)
are λ−εy2, where y is given by the solutions of y+ 1

2 tan(y) =
0. Consequently, the eigenvalues have zero imaginary parts.
As λ→−∞, the eigenvalue spectrum translates towards −∞.

Following the procedure outlined in [20], we find that
the kernel p(r,s) in (23) must satisfy the following conditions

prr(r,s)− pss(r,s) =
λ

ε
p(r,s), (31)

p(0,s) = 0, (32)

p(r,r) =
λ

2ε
r, (33)

defined on the domain D = {(r,s)|0≤ r≤ s≤ 1}. The output
injection gains are

p1(r) = −ps(r,1)−
1
2

p(r,1), (34)

p10 =
3−λ/ε

2
. (35)

These conditions compose a Klein-Gordon PDE, which coin-
cidentally has an analytic solution given by

p(r,s) =
λ

ε
r

I1(
√

λ/ε(r2− s2))√
λ/ε(r2− s2)

. (36)

Solution (36) can be derived by converting the PDE into
an equivalent integral equation and applying the method of
successive approximations [20]. Ultimately, this closed form
solution provides the following output injection gains

p1(r) =
−λr
2εz

[
I1(z)−

2λ

εz
I2(z)

]
, (37)

where z =

√
λ

ε
(r2−1), (38)

p10 =
1
2

(
3− λ

ε

)
, (39)

and I1(z) and I2(z) are, respectively, the first and second order
modified Bessel functions of the first kind.

To complete the design we need to establish that stability
of the target system (24)-(26) implies stability of the error sys-
tem (20)-(22). That is, we must show the transformation (23)
is invertible. Toward this end, write the inverse transformation
as

w̃(r, t) = c̃(r, t)+
∫ 1

r
l(r,s)c̃(s)ds. (40)

Following the same approach used to derive the direct trans-
formation kernel (36), we find that the inverse transformation
kernel has the analytic solution

l(r,s) =
λ

ε
r

J1(
√

λ/ε(r2− s2))√
λ/ε(r2− s2)

, (41)

where J1 is the first order Bessel function of the first kind. We
now state the main result for the backstepping state estimator.

Theorem 1. Consider the plant model (13)-(15) with ob-
server (16)-(19) and estimation gains (37)-(39). Then ∃
λ < ε/4 such that the origin of the error system c̃ = 0 is
exponentially stable in the L2(0,1) norm.

Remark 2. Note that the estimator is linear in the state be-
cause we use the boundary state for error injection. The plant



boundary state is computed by inverting the nonlinear output
mapping w.r.t. the boundary state, given a current input (i.e.
ϕ(V (t), I(t))). The output function inversion is discussed in
detail in Section 6.

Remark 3. Note the parameters ε in (16), (37)-(39) and q
in (18). In the subsequent section we design an identifier for
these parameters. We form an adaptive observer by replac-
ing these parameters with their estimates, via the certainty
equivalence principle [25].

4 PDE Parameter Identification
Next we design an identification algorithm for the dif-

fusion and boundary input coefficients in (13) and (15), re-
spectively. Identification of the diffusion coefficient ε from
boundary measurements is a significant fundamental chal-
lenge [26], for the following reason. In finite-dimensional
state-space systems we typically write the system in observ-
able canonical form. This structure enables one to uniquely
identify state-space parameters from input-output data. In our
problem we require a parametric model where the diffusion
coefficient multiplies measured data only. Otherwise we have
a nonlinear problem, since unknown states are multiplied
by unknown parameters. There is no clear way to do this
for PDEs. This motivates our new contribution: utilizing a
reduced-order model (Padé approximation) for the parameter
identification.

4.1 Padé Approximates
The PDE model (13)-(15) can be written in the frequency

domain as a transcendental transfer function

G(s) =
css(s)
I(s)

=
−qρsinh

(√
s/ε

)

(√
s/ε

)
cosh

(√
s/ε

)
− sinh

(√
s/ε

) .

(42)
We now apply Padé approximations of the transcendental

transfer function (42). Padé approximants represent a function
by a ratio of two power series. The defining characteristic of a
Padé approximate is that its Taylor series matches the Taylor
series of the function it is approximating. Another useful
property of Padé approximates is that they naturally contain
poles and zeros. The Padé expansion takes the following form

G(s) = lim
N→∞

∑
N
k=0 bksk

1+∑
N
k=1 aksk

. (43)

Figure 5 provides bode plots of G(s) and several Padé approx-
imates. Their analytical expressions are supplied in Table 1.
The Padé approximates capture low frequency dynamics well.
Accuracy at high frequency increases as the Padé order in-
creases. We low-pass filter the input-output signals such that
data is retained where the Padé approximation is sufficiently
accurate.
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Fig. 5. Bode plots of the transcendental transfer function (42) and
Padé approximates in Table 1

Table 1. Padé approximates of the PDE model (13)-(15)

Order, k Pk(s)

1
−qρ( 2

7 s+3ε)
s( 1

35ε
s+1)

2
−qρ( 1

165ε
s2+ 4

11 s+3ε)
s
(

1
3465ε2 s2+ 3

55ε
s+1

)

3
−qρ

(
4

75075ε2 s3+ 2
195ε

s2+ 2
5 s+3ε

)

s
(

1
675675ε3 s3+ 2

2275ε2 s2+ 1
15ε

s+1
)

Our immediate goal is to design a parameter identifica-
tion scheme for the Padé approximation of the original PDE
model.

4.2 Least Squares Identification
We utilize the first order Padé approximant as the nominal

model. Namely,

Css(s)
I(s)

≈ P1(s) =
−3qρε− 2

7 qρs

s+ 1
35ε

s2
. (44)

Assuming zero initial conditions and applying the inverse
Laplace transform produces the following linearly parameter-
ized model

1
35

c̈ss(t) =−εċss(t)−3ρqε
2I(t)− 2

7
ρqεİ(t). (45)

Since the parametric model contains time derivatives of mea-
sured signals, we employ filters [25] to avoid differentiation



as follows

σ̇1 = σ2, (46)
σ̇2 = −λ0σ1−λ1σ2 + css, (47)
ζ̇1 = ζ2, (48)
ζ̇2 = −λ0ζ1−λ1ζ2 + I, (49)

where the polynomial Λ(s) = s2+λ1s+λ0 is chosen Hurwitz.
One can analytically show that selecting the roots of Λ(s)
results in a trade-off between convergence rate (via level of
persistence of excitation) and parameter bias (error induced
by Padé approximation). Consequently, the parametric model
is given by

1
35

(−λ0σ1−λ1σ2 + css) =−3ρqε
2
ζ1−

2
7

ρqεζ2− εσ2.

(50)
Let us denote the vector of unknown parameters by

θpde =
[

qε2 qε ε
]T

. (51)

Then the parametric model can be expressed in matrix form
as zpde = θT

pdeφ, where

zpde =
1

35
(−λ0σ1−λ1σ2 + css) , (52)

φ =

[
−3ρζ1 − 2

7
ρζ2 −σ2

]T

. (53)

Given this linearly parameterized model, we choose a least-
squares update law of the form [25]

˙̂
θpde = Ppde

zpde− θ̂T
pdeφ

m2
pde

φ, (54)

Ṗpde =−Ppde
φφT

m2
pde

Ppde, Ppde(0) = Ppde0 = PT
pde0 > 0,

(55)

m2
pde = 1+ γpdeφ

T
φ, γpde > 0. (56)

4.2.1 Managing Overparameterization with the
Moore-Penrose Pseudoinverse

An important implementation issue with the proposed
Padé approximation approach is overparameterization. That
is, the physical parameters must be uniquely determined from
the parameter vector θ̂pde

θ̂pde =




q̂ε2

q̂ε

ε̂


−→

[
ε̂

q̂

]
= θ̂εq. (57)

Coincidently, the particular nonlinear form (products and pow-
ers) of the elements in vector θ̂pde allows us to write a set of

linear equations using a logarithmic nonlinear transformation
and properties of the logarithm function




2 1
1 1
1 0



[

log ε̂

log q̂

]
=




log
(

ˆqε2
)

log(q̂ε)
log(ε̂)


 , (58)

which we re-write into compact notation as

Aεqlog(θ̂εq) = log(θ̂pde), (59)

where log(θ) = [log(θ1), log(θ2), ...]
T is an element-wise op-

erator. The parameter vector θ̂εq can be uniquely solved from
(58) via the Moore-Penrose pseudoinverse. Thus,

log(θ̂εq) = (AT
εqAεq)

−1AT
εqlog(θ̂pde). (60)

This method works well in practice with respect to feeding
parameter estimates into the adaptive observer (lower-left-
hand block in Fig. 4), since the pseudoinverse ultimately
involves computationally efficient matrix algebra.

5 Output Function Parameter Identification
The greatest difficultly in battery estimation arguably

stems from the nonlinear relationship between SOC and volt-
age [9]. We directly address this difficulty by developing
an identification algorithm for the uncertain parameters in
the nonlinearly parameterized output function (9). First, we
analyze parameter identifiability to assess which subset of
parameters are uniquely identifiable. Second, we apply non-
linear least squares to this subset.

5.1 Identifiability
A necessary first step in nonlinear parameter identifica-

tion is a parameter sensitivity analysis. We specifically apply
the ranking procedure outlined in [27] to assess linear depen-
dence. Consider the output function (9) written in parametric
form:

h(t;θ) =V (t) =
RT
αF

sinh−1


 θ2I(t)

2
√

c+ss(t;θ1)(c+s,max− c+ss(t;θ1))




− RT
αF

sinh−1


 θ3I(t)

2
√

c−ss(t)(c−s,max− c−ss(t))




+U+(c+ss(t;θ1))−U−(c−ss(t))+θ4I(t),
(61)



where c+ss(t;θ1) and the parameter vector θ are

c+ss(t;θ1) =−
ε−s L−

ε
+
s L+

c−ss(t)+
θ1

ε
+
s L+A

,

θ =

[
nLi,

1

a+AL+k+
√

c0
e
,

1

a−AL−k−
√

c0
e
,R f

]T

.

(62)

We have selected the elements of θ because diminishing nLi
physically models capacity fade and increasing values for the
other parameters capture various forms of internal resistance.

The following sensitivity analysis is performed in dis-
crete time, since the required data is supplied in discrete time.
Let k index time such that t = k∆T , k ∈ 1,2, ...,nT . The sensi-
tivity of the output with respect to variations in the parameter
θi at time index k is defined as Si,k =

∂h(k∆T ;θ)
∂θi

. For each pa-
rameter θi, stack the sensitivities at time indices k = 1,2, ...nT ,
i.e. Si = [Si,1,Si,2, . . . ,Si,nT ]

T . Denote S= [S1,S2,S3,S4], such
that S ∈ RnT×4. A particular decomposition of ST S reveals
useful information about linear dependence between parame-
ters. Let ST S = DTCD where

D =




‖S1‖ 0 0 0
0 ‖S2‖ 0 0
0 0 ‖S3‖ 0
0 0 0 ‖S4‖


 ,

C =




1 〈S1,S2〉
‖S1‖‖S2‖

〈S1,S3〉
‖S1‖‖S3‖

〈S1,S4〉
‖S1‖‖S4‖

〈S2,S1〉
‖S2‖‖S1‖ 1 〈S2,S3〉

‖S2‖‖S3‖
〈S2,S4〉
‖S2‖‖S4‖

〈S3,S1〉
‖S3‖‖S1‖

〈S3,S2〉
‖S3‖‖S2‖ 1 〈S3,S4〉

‖S3‖‖S4‖
〈S4,S1〉
‖S4‖‖S1‖

〈S4,S2〉
‖S4‖‖S2‖

〈S4,S3〉
‖S4‖‖S3‖ 1



, (63)

where ‖ · ‖ denotes the Euclidian norm and 〈·, ·〉 is the inner
product. By the Cauchy Schwarz inequality −1≤ 〈Si,S j〉

‖Si‖‖S j‖ ≤

1. This has the interpretation that values of 〈Si,S j〉
‖Si‖‖S j‖ near -1 or

1 imply strong linear dependence between parameters θi and
θ j, whereas values near zero imply orthogonality.

An example for the matrix C is provided in (64). This
example analyzes parameter sensitivity for a UDDS drive
cycle data set applied to the SPM battery model.

C =




1 −0.3000 0.2908 0.2956
−0.3000 1 −0.9801 −0.9805

0.2908 −0.9801 1 0.9322
0.2956 −0.9805 0.9322 1


 . (64)

Note that strong linear dependence exists between θ2,θ3,θ4.
This property is uniformly true across various drive cycles (e.g.
US06, SC04, LA92, naturalistic micro-trips). This means it
is difficult to determine how each individual parameter value
changes, amongst these three parameters. As a result, we
identify only two parameters, nLi and R f .

Remark 4. Coincidently, the parameters nLi and R f repre-
sent capacity and power fade, respectively. Identification of
nLi and R f provides a direct system-level measurement of
SOH - a particularly beneficial feature of this design.

Remark 5. Indeed, the matrix ST S has an important inter-
pretation in statistical mathematics - the inverse of the Fisher
information matrix. From this interpretation, one may use the
Cramer Rao lower bound to compute the individual variance
contribution of each parameter [27].

5.2 Nonlinear Least Squares
Now our immediate goal is to identify the parameter

vector θh = [nLi R f ]
T via a nonlinear least squares identifi-

cation algorithm. Define θ̃h = θh− θ̂h and write (61) in terms
of θ̃h

V (t;θh) =
RT
αF

sinh−1

[
I(t)

2a+AL+i+0 (c
+
ss(t; θ̃h1 + θ̂h1))

]

− RT
αF

sinh−1
[

I(t)
2a−AL−i−0 (c

−
ss(t))

]
(65)

+U+(c+ss(t; θ̃h1 + θ̂h1))−U−(c−ss(t))+(θ̃h2 + θ̂h2)I(t).

Next we take the Maclaurin series expansion with respect to
θ̃h

V (t;θh) =
RT
αF

sinh−1

[
I(t)

2a+AL+i+0 (c
+
ss(t; θ̂h1))

]

− RT
αF

sinh−1
[

I(t)
2a−AL−i−0 (c

−
ss(t))

]

+U+(c+ss(t; θ̂h1))−U−(c−ss(t))+ θ̂h2I(t)

+
∂h

∂θh1
(t; θ̂h)θ̃h1 + I(t)θ̃h2 +O(θ̃T

h θ̃h). (66)

Truncate the higher order terms and re-arrange the previous
expression into the matrix form

enl = θ̃
T
h Φ, (67)

where the nonlinear error term enl depends on the parameter
estimates θ̂h as

enl =V (t)− RT
αF

sinh−1

[
I(t)

2a+AL+i+0 (c
+
ss(t; θ̂h1))

]

+
RT
αF

sinh−1
[

I(t)
2a−AL−i−0 (c

−
ss(t))

]

−U+(c+ss(t; θ̂h1))+U−(c−ss(t))− θ̂h2I(t), (68)

and the regressor vector Φ is defined as

Φ =
[

∂h
∂θh1

(t; θ̂h), I(t)
]T

. (69)



The vector Φ in (69) depends upon measured signals and
parameter estimates.

We now choose a least-squares parameter update law

˙̂
θh = PhenlΦ, (70)

Ṗh =−Ph
ΦΦT

m2
h

Ph, Ph(0) = Ph0 = PT
h0 > 0, (71)

m2
h = 1+ γhΦ

T
Φ, γh > 0. (72)

6 Adaptive Output Function Inversion
In Section 3, we designed a linear state observer using

boundary values of the PDE. These boundary values must
be processed from measurements by inverting the nonlinear
output function. In this section we design an adaptive out-
put function inversion scheme which utilizes the parameter
estimate θh generated from Section 5.

Our goal is to solve g(c−ss, t) = 0 for c−ss, where

g(c−ss, t) =
RT
αF

sinh−1

[
I(t)

2a+AL+i+0 (c
+
ss(t; θ̂h1))

]

− RT
αF

sinh−1
[

I(t)
2a−AL−i−0 (c

−
ss(t))

]
(73)

+U+(c+ss(t; θ̂h1))−U−(c−ss(t))+ θ̂h2I(t)−V (t).

The main idea is to construct an ODE whose equilibrium
satisfies g(c−ss, t) = 0 and is locally exponentially stable. This
can be viewed as a continuous-time version of Newton’s
method for solving nonlinear equations [25]. Consider the
ODE

d
dt

[
g(č−ss, t)

]
=−γg(č−ss, t), (74)

whose equilibrium satisfies g(c−ss, t) = 0. We expand and re-
arrange this equation into the familiar Newton’s update law

d
dt

č−ss =−
[

∂g
∂c−ss

(č−ss, t)
]−1 [

γg(č−ss, t)+
∂g
∂t

(č−ss, t)
]
. (75)

One can prove Lyapunov stability of this ODE, given appro-
priate bounds ∂g/∂c−ss and ∂g/∂t. The bounds on ∂g/∂c−ss use
the strictly decreasing property of U+(·) and U−(·) in (73).
The state č−ss of ODE (75) provides a recursive estimate of the
surface concentration css(t) from measured current and volt-
age data, adapted according to the parameter estimate θ̂h. The
processed surface concentration č−ss supplies the “measured
output” for the state estimator in Section 3.

In practice, it is undesirable to compute derivatives of
measured data I(t) and V (t) to calculate ∂g/∂t in (75). There-
fore, we use the same filtering concept employed in the PDE
parameter identifier in Section 4.2 to avoid differentiation.

7 Simulations
In this section we present numerical experimental results,

which demonstrate the adaptive PDE observer’s performance.
Specifically, we apply the observer to the full order DFN
model. The model parameters used in this study originate
from the publicly available DUALFOIL simulation package
[18].

For all simulations, the state and parameter estimates
are initialized at incorrect values: ĉ−s (r,0) = 1

2 c−s (r,0),
ε̂(0) = 2, q̂ = 0.5, n̂Li(0) = 1.25nLi, R̂ f (0) = 3R f . More-
over, zero mean normally distributed noise with a standard
deviation of 10 mV is added to the voltage measurement.

7.1 Electric Vehicle Charge/Discharge Cycle
First we apply an electric vehicle-like charge/discharge

cycle. This input signal is generated from two concatenated
UDDS drive cycles simulated on the models developed in [28].
This signal is a highly transient input with large magnitude
C-rates, thereby producing a sufficiently rich signal for param-
eter estimation. Figure 6 portrays the evolution of the state
and parameter estimates. The state estimates are represented
by the bulk SOC, defined in (76), and surface concentrations.

ŜOC(t) =
3

c−s,max

∫ 1

0
r2ĉ−s (r, t)dr. (76)

The PDE parameter estimates ε̂, q̂ and output function param-
eter estimates n̂Li, R̂ f , which are normalized to one in Fig.
6, also converge near their true values. Indeed, one expects
some estimation bias for such a nonlinear and complex model.
An expected estimation bias exists in ε̂ and q̂ due to the over-
parameterization of the Padé approximation. The nonlinear
least squares method for n̂Li and R̂ f will also generally pro-
duce bias. To mitigate bias, one needs to carefully select the
adaptation gains, as discussed in Section 8. Similar results
are achievable for various other initial conditions and drive
cycle inputs, including US06, SC04, LA92, and naturalistic
micro trip data.

7.2 Constant 1C Discharge Cycle
Next we apply a constant 1C discharge for 20min, fol-

lowed by a 10min relaxation period. Figure 7 portrays the
evolution of the state and parameter estimates. Since the SPM
does not predict polarization effects due to the electrolyte,
the state estimates are biased during discharge, as a conse-
quence of driving the voltage error to zero. During relaxation,
however, the state estimate recovers since the SPM and DFN
model become identical at equilibrium. This result is a direct
consequence of using the SPM. In spite of an input that lacks
sufficient richness, the PDE parameters converge near the
true values. However, one may numerically check that the
persistency of excitation level for the output parameters is
not sufficiently high enough to produce convergent estimates.
This demonstrates that an ideal input signal does not contain
sustained high C-rates and is sufficiently rich.
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č−
s s

0 10 20 30 40 50
0.5

1

1.5

2

P
D

E
 P

ar
am

s

 

 

ε̂
q̂
ε∗, q ∗

0 10 20 30 40 50
0

1

2

3

4

O
u
tp

u
t 

F
cn

 P
ar

am
s

Time [min]

 

 

n̂Li/n
∗
Li

R̂f/R
∗
f

Fig. 6. Evolution of state and parameter estimates for UDDSx2 charge/discharge cycle. Zero mean Gaussian noise with a 10 mV variance
was added to the voltage measurement. The DFN model provides the “measured” plant data. State and parameter estimates were initialized
with incorrect values.
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Table 2. Important Adaptive Observer Gains

Gain State/Parameter Eqn. Design Criteria

λ ĉ(r, t) (37)-(39) λ < ε/4 < 0

Ppde0 ε̂, q̂ (55) Ppde0 = PT
pde0 > 0

Ph0 n̂Li, R̂ f (71) Ph0 = PT
h0 > 0

7.3 No Parameter Adaptation
Next we examine the impact of setting the parameter

adaptation gains to zero. This scenario examines the utiliza-
tion of a state estimator with uncertain parameters. Figure 8
presents the evolution of the state estimates for an EV-like
charge/discharge cycle. Note the bulk SOC and surface con-
centrations exhibit large bias, even during relaxation. This
bias is mainly attributed to the 15% error in the parameter
nLi. Consequently, we conclude that accurate knowledge of
the model parameters and/or online adaptation is crucial for
accurate state estimates.

Remark 6. Experimental validation of the state and parame-
ter estimates is difficult. An open challenge in battery systems
and control is in situ measurements of lithium concentration,
diffusion coefficients, cyclable lithium, SEI resistive layers,
etc. Some recent progressions include neutron imaging [3],
electrochemical strain microscopy [29], and three electrode
cells [30].

8 Gain Selection
Due to the bi-directionally coupled relationship between

the state and parameter estimates, gain selection is a highly
non-trivial task. However, we have developed a systematic
procedure for tuning these gains.

The most important gains are summarized in Table 2,
along with their design criteria. The parameter λ translates
the spectrum of the target system (24)-(26) along the real-axis.
The matrix Ppde0 supplies the initial condition for the covari-
ance matrix in the PDE parameter least squares estimator.
We select Ppde0 = ρpdeI, where ρpde is the tuning gain. The
matrix Ph0 supplies the initial condition for the covariance
matrix in the output function parameter least squares estima-
tor. We select Ph0 = diag(Ph011,Ph022), where Ph011,Ph022 are
the tuning gains. To begin, set all gains to zero. The tuning
procedure is as follows:

Step 1: Fix λ - This provides the desired convergence
rate for the state c(r, t).

Step 2: Design Ph011 - The parameter nLi and state c(r, t)
are intimately related, due to the relation in (8). In particular,
these two estimates must converge at similar rates. If they
converge at dissimilar rates, the estimates produce bias in
each other. Examples are provided in Fig. 9.

Step 3: Design Ph022 - Progressively increase Ph022 until
the desired convergence rate is obtained, without significantly
impacting the convergence of c(r, t) and nLi.

Step 4: Design ρpde - Progressively increase ρpde until
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č−
s s

Fig. 8. Evolution of state estimates for UDDSx2 charge/discharge
cycle with no parameter adaptation. Accurate parameter values
and/or online adaptation is critical for unbiased estimates.
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the desired convergence rate is obtained, without significantly
impacting the other estimates.

9 Conclusion
This paper reports on the first combined SOC/SOH es-

timator for electrochemical battery models. The adaptive
observer utilizes concepts from PDE estimation and adaptive
control theory to generate various new concepts for battery
systems and control. These are summarized by four key
ideas: First, a backstepping PDE state estimator is designed
in previous work [14]. Second, a Padé approximation of the



transfer function for lithium diffusion is used to identify the
diffusion coefficient. Third, parameter sensitivity analysis
is applied to elucidate the linear dependence between phys-
ically meaningful parameters related to capacity and power
fade. Fourth, an adaptive output function inversion technique
enables linear state estimation designs. Finally, we present
simulations which demonstrate how the adaptive observer
performs against a high-fidelity battery simulator - the Doyle-
Fuller-Newman model. The composition of these unique
ideas provides a combined SOC/SOH estimation algorithm
for battery systems using electrochemical models.

A useful extension of the observer presented here is a
state/parameter estimator for the DFN model. In particu-
lar, this would enable improved estimation accuracy at high
C-rates. Moreover, the DFN model predicts additional SOH-
critical variables, such as side reaction overpotentials. On-
going work is also centered around output-feedback control
schemes that utilize the presented observer to maximize en-
ergy/power while satisfying safe operating constraints.
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