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ABSTRACT
Thermostatically controlled loads (TCLs) account for more

than one-third of U.S. electricity consumption. Various tech-

niques have been used to model TCL populations. A high-fidelity

analytical model of Heterogeneous TCL (HrTCL) populations is

of special interest for both utility managers and customers (that

facilitates the aggregate synthesis of power control in power net-

works). We present a deterministic hybrid partial differential

equation (PDE) model which accounts for HrTCL populations,

and facilitates analysis of common scenarios like cold load pick

up, cycling, and daily and/or seasonal temperature changes to

estimate the aggregate performance of the system. The proposed

technique is flexible in terms of parameter selection and ease

of changing the set-point temperature and deadband width all

over the TCL units. We investigate the stability of the proposed

model along with presenting guidelines to maintain the numer-

ical stability of the discretized model during computer simula-

tions. Moreover, the proposed model is a close fit to design feed-

back algorithms for power control purposes. Hence, we present

output and state feedback control algorithms, designed using the

comparison principle and Lyapunov analysis, respectively. We

conduct various simulations to verify the effectiveness of the pro-

posed modeling and control techniques.

1 Introduction
In this paper we present, for the first time, an analytical

model for heterogeneous thermostatically controlled load (TCL)

populations. Also, we provide rigorous analysis to verify stabil-

ity and accuracy of the proposed model. We design and inves-

tigate output feedback and state feedback for reference power

tracking objectives. This work follows the long line of analytical

and numerical modeling of TCL populations including heating,

ventilation, and air conditioning (HVAC) systems, particularly

for demand response studies in power networks [1–14].

One can refer to [12, 14] among the very first reports that

used statistical and stochastic analysis to develop an aggregate

model of TCLs. The effect of capital stock, lifestyle, usage re-

sponse, and price impacts on power curves have been studied

in [5,13]. Reference [11] presents a brief survey on five different

TCL modeling techniques developed up to 1990. More recently,

TCL modeling has gained extensive attention [1–4,6–10,15,16].

Coupled Fockker-Planck equations (CFPE), derived in [12],

present statistical aggregate electrical dynamics for a homoge-

neous group of devices. A perturbation analysis yields the dy-

namics for a non-homogeneous group. Equations (10)–(18) of

[12] include CFPE, 4 algebraic boundary conditions, and 2 or-

dinary differential equations to guarantee probability conserva-

tion. Moreover, the expectation of the operating state of the ho-

mogeneous population is given by another ODE defined by (43)

in [12]. The proposed model does not provide direct access to

manipulate the deadband and set-point temperature which makes

the controller design process a hard task to achieve. An exact so-

lution to the CFPE which describes the aggregate behavior of

TCL populations is presented in [8]. Also, [8] demonstrates the

potential to provide ancillary services by remotely manipulating

thermostat set-points, particularly to balance fluctuations from

intermittent renewable generators.

Another statistical model based on the “state bin transition

model” has been developed in [10], a formal abstraction of which

is presented in [9] to relax some of the assumptions in [10].
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These statistical models rely on probability analysis and distri-

bution functions to predict TCL population evolution.

A simpler deterministic model with ability to manipulate the

set-point temperature using the sliding mode control (SMC) has

been presented in [1] which eliminates the difficulties associated

with statistical modeling and control techniques. The authors

propose 2 averaged transport PDEs coupled on the deadband

boundaries to model the population of on and off units. Using

finite differentiation, the authors present bilinear dynamics for

the purpose of power control. The model of [1] does not account

for the effect of heterogeneity in TCL populations.

Reference [2] uses diffusion-advection PDEs to simulate the

damping effect of heterogeneous populations in the power con-

sumption curve. Also, the latter paper presents a distributed iden-

tification technique to estimate the parameters of the diffusion-

advection PDEs. The diffusion-advection model of [2] is devel-

oped based on a phenomenological observation and it requires

tuning the diffusion coefficient. On the contrary, our proposed

analytical model captures the TCL population power dynamics

using the system’s physical characteristics and requires no tun-

ing.

We highlight our objectives as follows: i) We develop an-

alytical deterministic PDE dynamics for HrTCL populations

which precisely simulate power changes under environment tem-

perature fluctuations. Each group of homogeneous TCL units

share 4 transport PDEs coupled through 4 algebraic boundary

conditions on 4 different temperature levels. ii) We investigate

the stability of the proposed model along with presenting guide-

lines to guarantee the numerical stability of the discretized dy-

namics. iii) We design output and state feedback control algo-

rithms such that the system tracks a defined power curve regard-

less of environmental temperature variation. We actuate the set-

point temperature which is a common input for all the TCLs. Be-

cause of its ability to estimate the power consumption dynamics,

the proposed model could be augmented into load management

programs. Also, one can use the proposed model to study power

control via price incentives or to analyze the impact of various

demand response policies.

The rest of this paper is organized as follows: Section 2

presents the model development. We discuss model stability in

Section 3 . Model discretization and its numerical stability for

simulation purposes along with model verification are presented

in Section 4. Section 5 describes the output and state feedback

design and provides stability analysis of the power control loop.

The simulation results are given in Section 6. Section 7 con-

cludes the paper.

2 Aggregate PDE-based Model
The operating state of an individual TCL is controlled by a

thermostat whose state depends on temperature. It can be mod-

eled as a hybrid system including one continuous state, tempera-
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+−xe(t)

TCL boundary

Figure 1. Equivalent electrical circuit of a TCL unit.

ture, and a discrete state, operating status e.g. cooling or heating,

as introduced in [14].

We consider the heterogeneity effect by dividing the TCL

population into m homogeneous TCL groups. Assume that the

temperature of TCL unit j in group i and environmental tem-

perature are xi j and xe, respectively. As shown in Fig. 1, each

TCL unit is modeled as a thermal capacitance, Ci kWh/◦C, in se-

ries with a thermal resistance, Ri
◦C/kW, for i = 1,2, · · · ,m. All

physical parameters are considered as constant values in each ho-

mogeneous group. The discrete state zi j , modeled by a Schmitt

trigger switch shown in Fig. 2, denotes whether the load is on

or off. The power injected to each unit in TCL group i equals

Pi kW.

The hybrid dynamics of unit j in TCL group i for a cooling

system are defined as follows

dxi j(t)

dt
=

xe(t)− xi j(t)− zi j(t)Si(t)RiPi

RiCi

(1)

zi j(t)=







1 xi j(t − dt)≥ xH

zi j(t − dt) xL < xi j(t − dt)< xH

0 xi j(t − dt)≤ xL

, (2)

for i = 1,2, · · · ,m and j = 1,2, · · · ,ni, where xL = xsp −σ and

xH = xsp +σ, where xsp is the set-point temperature and 2σ is

the deadband width. A proper combination of temperature re-

sistance and cooling power ensures temperature drop during on

xL xsp xH

S
w
it
ch

st
at
e

Temperature x(t)

z(t) = 0

z(t) = 1

σ

σ

Figure 2. Characteristic of the switch modeled as a Schmitt trigger.
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state. This necessary condition is given as

xe(t)− xi j(t)< RiPi, (3)

and will be used in model stability analysis. We assume the entire

TCL population share the same xsp and σ. The utility manager

has the ability to override a group’s control system by turning off

the supply switch, Si(t) = 0. We assume that Si(t) is normally

closed, Si(t) = 1. The aggregate power is given by

y(t) =
m

∑
i=1

(

Pi

ηi

Si(t)
ni

∑
j=1

zi j(t)

)

, (4)

where ηi is the performance coefficient for TCL group i.

We assume uniform environmental temperature, xe, for all

TCL units. We assume x ∈ [xmin,xmax], where the lowest and

highest feasible temperature is given by xmin and xmax, respec-

tively. As shown in Fig. 3, we select a homogeneous population

of TCLs that have identical hybrid dynamics (1) and (2) and are

subject to the same control within a load management program,

the same Si(t) [12]. The density of the TCL units per tempera-

ture is a distribution over i. This distribution is given by µi,kl(t,x)
for TCL group i. Subscript k denotes if TCLs are on (k = 1) or

off (k = 0). Subscript l denotes the temperature region a,b, and c

corresponding to x ∈ (xH ,xmax), x ∈ (xL,xH), and x ∈ (xmin,xL),
respectively.

Since we develop our model for arbitrary homogeneous

TCL group i, from this point forward we drop subscript i from

the distribution function. However, one should keep in mind all

states are 1-D temporal and 2-D spatial (x, i). In each homoge-

neous group, the TCL flux which indicates the number of TCLs

passing a certain temperature per second is obtained as follows

ϕ(t,x) = µ(t,x)
∆x

∆t
. (5)

Taking the limit of the above equation when ∆t → 0 and using

i = mi = 1

xmax

xH = xsp + σ

xL = xsp − σ

xmin

i

µi,1a(t, x)
{

µi,1b(t, x)
{ }

µi,0b(t, x)

µi,0c(t, x)
{

}

a
}

b
}

c

Figure 3. Distribution functions of TCLs in three regions.

T
em

p
.

Timet t +∆t

x

x +∆x

µ(t, x)
}

µ(t + ∆t, x)

︸ ︷︷ ︸

ϕ(t,x)
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Figure 4. Population variation of on units over an infinitesimal time-

temperature window. The graph is presented for a homogeneous pop-

ulation.

(1) gives

ϕ(t,x) = µ(t,x)
xe(t)− x− zSRP

RC
, (6)

which indicates the relationship between time and temperature

density of TCL units. We are interested in finding a time-

temperature differential equation which describes the evolution

of µ(t,x) over time at a certain temperature level. Hence, we

present Fig. 4 to obtain the relationship between variation of TCL

population flux, ϕ(t,x), with respect to temperature and variation

of TCL population distribution, µ(t,x), with respect to time.

In order to understand Fig. 4, we assume two extreme cases.

First, TCL’s time constant, RC, is considerably large such that

temperature variation of a TCL unit is negligible. Hence, temper-

ature of TCL units evolve with zero slope which means flux vari-

ation is zero. Second, the time constant is considerably small.

Under this condition, temperature of each TCL unit evolves with

infinite slope which means all units instantly change place be-

tween xL and xH . This means µ(t,x) does not change over time.

When RC changes in a moderate fashion, we have a com-

bination of both features. TCL population distribution is time-

varying, introduced by µ(t,x). TCL population flux, ϕ(t,x), in-

dicates the number of TCL units passing through a certain tem-

perature at a given time. Energy is conserved over TCL popula-

tions. Moreover, TCLs do not appear or disappear inside a time-

temperature window without passing the window boundaries.

Thus, the total rate of variation of TCLs in a time-temperature

window is zero

µ(t +∆t,x)− µ(t,x)

∆t
+

ϕ(t,x+∆x)−ϕ(t,x)

∆x
= 0. (7)

Taking the limit of the above equation when ∆t → 0 and ∆x → 0
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and using (6) we obtain

∂µ(t,x)

∂t
=− ∂

∂x

(

µ(t,x)
xe − x− zSRP

RC

)

, (8)

which defines the system dynamics of the TCLs in all regions of

Fig. 3

∂µkl(t,x)

∂t
=− ∂

∂x

(

µkl(t,x)
xe − x− kSRP

RC

)

, (9)

where kl = 0c,0b,1b,1a. We need 4 boundary conditions to

solve the dynamics equations of (9). The flux is conserved at

xH and xL

ϕ0b(t,xH)+ϕ1b(t,xH)=ϕ1a(t,xH) (10)

ϕ0b(t,xL)+ϕ1b(t,xL)=ϕ0c(t,xL), (11)

then using (6) we obtain

µ1b(t,xH)=µ1a(t,xH)+λ0µ0b(t,xH) (12)

µ0b(t,xL)=µ0c(t,xL)+λ1µ1b(t,xL), (13)

for all t ∈ [0,∞), where

λ0=− xe − xH

xe − xH −RP
> 0 (14)

λ1=−xe − xL −RP

xe − xL

> 0. (15)

Temperatures higher than xmax are shown by x+max. Temperatures

lower than xmin are shown by x−min. Since there is no unit higher

than xmax or lower than xmin, the following conditions are valid

µ1a(x
+
max)=0 (16)

µ0c(x
−
min)=0, (17)

for all t ∈ [0,∞). The system of (9) along with (12), (13), (16),

and (17) define the evolution of TCLs over time and temperature

for every i = 1,2, · · · ,m. The number of on units per i equals

ρi(t) =

∫ xH

xL

µi,1b(t,x)dx+

∫ xmax

xH

µi,1a(t,x)dx, (18)

where i = 1,2, · · · ,m and the power consumption for the entire

TCL population is calculated as

y(t) =
m

∑
i=1

Pi

ηi

ρi(t). (19)

3 Model Stability
In an operating cooling system, after transient is passed,

there are no TCL units in regions a and c. All TCL units are in

region b in either on or off state and system dynamics are given

as

∂µ1b

∂t
=−

(
xe(t)− x−RP

RC

)
∂µ1b

∂x
+

(
1

RC

)

µ1b (20)

∂µ0b

∂t
=−

(
xe(t)− x

RC

)
∂µ0b

∂x
+

(
1

RC

)

µ0b, (21)

with the following boundary conditions

µ1b(xH) = λ0µ0b(xH) (22)

µ0b(xL) = λ1µ1b(xL). (23)

Transport PDEs of (20) and (21) have the same reaction term

with constant coefficient 1/RC. The advection coefficient in both

equations is time-varying with positive value in (20) and negative

value in (21).

The total population of TCL units is given as

W (t) =

∫ xH

xL

(

µ1b(t,x)+ µ0b(t,x)
)

dx, (24)

which is a positive definite function and its time derivative is

zero. This observation guarantees unvarying population which

also means the system has a pole at the origin. The proposed

population function, W (t), and its time derivative do not provide

further details on the system dynamics. Assuming a constant

environment temperature, xe, we use Laplace transformation to

solve the system of (20) and (21). The Laplace transformation of

function f (t) is given as

L f (s) =

∫ ∞

0
e−st f (t)dt, (25)

where s is a complex number. Applying Laplace transformation

to (20) and (21) gives

∂

∂x
Lµ1b(s,x)=−

(
RCs− 1

xe − x−RP

)

Lµ1b(s,x) (26)

∂

∂x
Lµ0b(s,x)=−

(
RCs− 1

xe − x

)

Lµ0b(s,x). (27)

Since xe is assumed constant, we can solve (26) and (27) for x

Lµ1b(s,xH)

Lµ1b(s,xL)
=

(
xH − xe +RP

xL − xe +RP

)RCs−1

(28)
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Lµ0b(s,xH)

Lµ0b(s,xL)
=

(
xe − xH

xe − xL

)RCs−1

. (29)

Using boundary conditions (22) and (23) in (28) gives

Lµ0b(s,xH)

Lµ0b(s,xL)
=

(
xe − xL

xe − xH

)(
xH − xe+RP

xL − xe +RP

)RCs

. (30)

Recall

1 = e±2k′πj, j =
√
−1, k′ = 0,1,2, · · · , (31)

then from (29) and (30) we obtain

s =±k′ωj, (32)

where

ω =
2π

RCln

(

(xe − xL)(xH − xe +RP)
(xe − xH)(xL − xe +RP)

) , (33)

which indicates the system response only happens at certain fre-

quencies. System parameters and environment temperature, xe,

define the base frequency, ω. According to Fourier transforma-

tion, the time response is composed of infinite number of oscilla-

tors with central frequency of k′ω. This indicates the TCL popu-

lation has one pole at the origin and infinite number of conjugate

poles on imaginary axis. The results of this section is presented

in the following statement.

Remark 1. System dynamics of (20) and (21) with boundary

conditions of (22) and (23) guarantee unvarying TCL popula-

tion. Moreover, the system poles are distributed on the imaginary

axis as given by (32).

4 Finite Difference and Numerical Verification
In Section 3 we investigated model stability in continuous

time and space. However, for numerical simulation the equa-

tions need to be discretized. Recall that the units in regions a

and c eventually enter the deadband and the system dynamics

are given by (20) and (21) with boundary conditions of (22) and

(23). Regardless of the selected discretization method uncoupled

discretized versions of (20) and (21) remain stable. Variation of

TCL population caused by population rollover on the boundaries,

defined by (22) and (23), can destabilize the system. Hence, the

boundary conditions (22) and (23) need to be modified to ensure

stability after system discretization.

2N 2N − 1 2N − 2 · · · N + 2 N + 1

1 2 3 · · · N − 1 N

xL x1 x2 x3 xHxNxN−1· · ·

ON, µ1b

OFF, µ0b

µ0b(xL) = λ1µ1b(xL)

µ1b(xH ) = λ0µ0b(xH)

Figure 5. The method of finite difference applied for discretization of the

transport PDEs to use in numerical simulations.

We suggest the forward and backward finite difference

methods for on and off units, respectively. However, care has to

be taken that the population of the TCL units remains unchanged

during the numerical simulation. This property is achieved by

maintaining one pole at zero as described in Remark 1. As shown

in Fig. 5, we divide the deadband region into N equal tempera-

ture bins, ∆x. By applying the method of finite difference to (20)

and (21) we get

dµi

dt
=(α−αi)µi +αiµi−1 (34)

dµN+i

dt
=(α−αN+i)µN+i +αN+iµN+i−1, (35)

where i = 2,3, · · · ,N, µ1 = λ1µ2N , µN+1 = λ0µN , α = 1/(RC),
and

αi=
(xe − xi)

RC∆x
> 0 (36)

αN+i=
RP− (xe− xN+1−i)

RC∆x
> 0, (37)

where i = 2,3, · · · ,N. Trivially αi > 0 and from (3) we know

αN+i > 0. Since ∆x is enough small in comparison to xe − xi

and RP− (xe − xN+1−i), then αi −α > 0 and αN+i −α > 0. The

characteristic equation of the system dynamics equals

G(s) =
2N

∏
i=2

i6=N+1

(s+αi −α)−λ0λ1

2N

∏
i=2

i6=N+1

αi = 0. (38)

Occurrence of one eigenvalue at zero is guaranteed if λ0 and λ1

are redefined as follows

λ′
0=κλ0 (39)

λ′
1=κλ1, (40)
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where

κ =
2N

∏
i=2

i6=N+1

√
αi −α

αiλ0λ1
. (41)

Remark 2. One requires the discretized model to retain a “con-

servation of matter” property, meaning that the TCLs don’t dis-

appear or appear over time. This mathematically means the dis-

cretized equations should have a pole at the origin. Since the

TCL population is not changing, when numerical simulations

based on the finite difference method are conducted, the bound-

ary conditions of (20) and (21) need to be corrected by replacing

(22) and (23) with (39) and (40), respectively. The corrector κ
defined by (41) guarantees that a pole happens at zero at each

time step and the TCL population remains unchanged during the

course of simulation.

We present the approximate location of the other poles of the

corrected discretized equation in order to show the stability of

the discretized system dynamics. A low number of temperature

bins does not generate a precise model to reconstruct the system

characteristics. Our numerical analysis shows that for N < 4 the

discretized equations do no catch the system dynamics.

Assume N = 4, then the system characteristic equation of

(38) after using (39) and (40) and neglecting α gives

G(s)=s6 + 3β1s5 +
(

3β2
1 +β2 +β3 +β4

)

s4 +

+
(

β3
1 + 2β1

(
β2 +β3 +β4

))

s3 +

+
(

β2
1

(
β2 +β3 +β4

)
+β2β3 +β2β4 +β3β4

)

s2

+β1

(

β2β3 +β2β4 +β3β4

)

s, (42)

where

β1=
P

C∆x
(43)

βi=αi(β1 −αi)> 0, i = 2,3,4. (44)

We rewrite (42) as follows

G(s) = s(s+β1)Ĝ(s), (45)

where

Ĝ(s)=s4 + 2β1s3 +
(

β2
1 +β2 +β3 +β4

)

s2 +

+β1

(

β2 +β3 +β4

)

s+β2β3 +β2β4 +β3β4, (46)

which indicates one pole at zero and another pole at −β1 which

its place on the real axis is inversely related to the temperature

bin width, ∆x. Assume

β2 +β3 +β4 =
β2

1

2
(1− cosψ) (47)

β2β3 +β2β4 +β3β4 =
β4

1

8
(1− cosψ), (48)

which gives

Ĝ(s) =
4

∏
n=1

(

s+
β1

2

(

1+ exp(jφn)
))

, (49)

where

φn ∈
{ψ

2
,π− ψ

2
,π+

ψ

2
,2π− ψ

2

}

, n = 1,2,3,4. (50)

Since σ is very small in comparison to xe and xsp, we can ap-

proximate α2 = α3 = α4, then an estimate of ψ using (47) and

(48) is obtained

ψ =
2π

3
. (51)

The other solution, ψ = 0, is affiliated with s = 0 and s = −β1.

For N ≥ 4, where N is an even number, the system poles are

approximated as

pi ∈
{

0,−β1

2

(

1+ exp(jφ)
)

,−β1

}

, i = 1,2, · · · ,2N − 2, (52)

where

φ =±k′
(

π

N − 1

)

, k′ = 1,2, · · · ,N − 2, (53)

which defines a circle with center of (−β1/2,0) and radius of

−β1/2. This result is in keeping with Remark 1. Reducing ∆x

toward zero pushes the pole locus radius toward infinity and ul-

timately the imaginary axis will become a part of the pole locus

with the origin a part of the locus.

Applying the method of finite difference to the TCL dynam-

ics of (20) and (21), when all the TCL units are located inside the

6



deadband, creates the linear state space of (34) and (35) which

can be written in matrix form

dξ

dt
= Aξ, A ∈R

2N−2 ×R
2N−2, (54)

where

ξ =
[

µ2, µ3, · · · , µN , µN+2, µN+3, · · · , µ2N

]T

. (55)

Discretizing (54) with the time step of ∆t generates

ξn = Âξn−1, Â = (I(2N−2)×(2N−2)+A∆t), (56)

and the eigenvalues of Â vary between one and 1− β1∆t. The

system of (56) is stable for

1−β1∆t ≥−1. (57)

Also, recall that N = 2σ/∆x and N ≥ 4, hence

P

2C
∆t ≤ ∆x ≤ σ

2
, (58)

which indicates the relationship between the time and tempera-

ture steps to guarantee stability of (56). The time constant of the

TCL population satisfies RC ≥ Lτ where Lτ is a positive finite

number. The time step needs to be considerably smaller than the

least time constant, ∆t ≪ Lτ.

Remark 3. Equations (34) and (35) represent space discretiza-

tion of the system dynamics of (20) and (21) where the temper-

ature bin width is ∆x = 2σ/N. We approximate the location of

the system poles as (52) for an even number of temperature bins,

N = 2k ≥ 4, where k = 2,3, · · · , which indicates that all the sys-

tem poles are distributed evenly on a circle in the complex plane

with the center of (−β1/2,0) and radius of β1/2. The angu-

lar distribution is defined by (53). Regardless of variation in

system physical parameters as long as ∆x is the same, the nor-

malized pole locus remains the same. Furthermore, when time

discretization is applied, if (58) is satisfied then the system dy-

namics remain stable.

We compare our aggregate PDE-based model (9) against a

Monte Carlo (MC) model generated from (1) and (2) . TCL

units are initially distributed evenly between on and off units in

the deadband in 10 groups, m = 10. The characteristic param-

eters are defined as Ri = R0 f (i),Ci = C0 f (i),Pi = P0/ f (i), and

ηi =η0/ f (i), where R0 = 2 ◦C/kW, C0 = 1 kWh/◦C, P0 = 10 kW,
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Figure 6. Normalized physical parameters.
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Figure 7. Variation of error between PDE and MC model versus TCL

population.

η0 = 2.5, and f (i) =
√

20/(10+ i) for i = 1,2, · · · ,10. The nor-

malized parameters are shown in Fig. 6. Temperature values are

given as xsp = 24 ◦C, σ = 1 ◦C, xe = 35 ◦C. For parameter selec-

tion see [11,13]. Since smaller RC means fast power dissipation,

we choose Pi varying in the opposite direction of R and C. Also,

for simplicity, we chose the power efficiency to be the same all

over the TCL groups and equal P/η= 4. We discussed the effect

of time and temperature steps on stability of discretized dynam-

ics. Trivially, smaller values for ∆t and ∆x which satisfy (58) in-

crease precision of the discretized model. TCL population, also,

plays an important role in model precision. Hence, we compare

the performance of the PDE-based against the MC model for dif-

ferent TCL populations. Our comparison function is relative er-

ror in energy estimation from time 0 to time t f = 2 hour defined

as

error :=
∫ t f

0

|yPDE(t)− yMC(t)|
yMC(t)

dt. (59)

As Fig. 7 shows the error remains considerably small even for

low TCL population. Populations more than 10,000 TCLs show

the same error. In the following simulations we assume 40,000

TCL units divided in 10 homogeneous groups.

We present our first group of simulations to verify our pro-

posed model and the results of Remark 2 and 3. Figure 8 shows
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the system response to a step change in the set-point temperature

from 24.5 ◦C to 24 ◦C with σ = 1 ◦C. The proposed PDE-based

model accurately captures the power dynamics of the HrTCL

population. Figure 9 shows that after passing transient TCL units

distribute uniformly from xL to xH . We remind the reader there is

no TCL unit outside the deadband region. The normalized poles

of the system under the proposed parameter distribution of Fig. 6

are evenly distributed on a unit circle as shown in Fig. 10.

In the next section we use the proposed model to design a

reference tracking control to achieve power control in HrTCL

populations.

5 Control Design and Stability Analysis

While the control actuators are distributed across the TCL

units, a supervisory system can manipulate the set-point tem-

perature and deadband width simultaneously to control the ag-

gregate power consumption. The deadband width changes the

power consumption curve to a lower extent. Sudden increases in

power demand caused by dramatic fluctuation in environmental
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Figure 10. For a constant N, normalized pole locus remains the same

regardless of parameter variation as shown in Fig. 6.

temperature or high transient peaks after power outage periods

could potentially put the entire system at risk. Hence, the pres-

ence of a power control algorithm is necessary.

Various control algorithms for TCLs have been reported in

the literature [1, 4, 8, 10]. Bashash and Fathy [1] reported aggre-

gate power control using sliding mode control algorithm. Their

proposed algorithm is based on simplified PDEs with averaged

parameters for homogeneous TCL populations. Here, we show

that a linear integral output feedback applied to the set-point tem-

perature guarantees fast tracking of reference power provided

that the integrator gain is selected properly. We design our con-

trol based on the coupled transport PDE model of (9), obtained

for an arbitrary large number of HrTCLs, with the boundary con-

ditions of (12), (13), (16), and (17).

Using (18) and denoting the flux equation of (6) on xH and

xL boundaries, we can calculate the variation of the number of

on units versus time as follows

dρ

dt
= ϕ0b(xH)+ϕ1b(xL)− µ0b(xH)ẋH − µ1b(xL)ẋL. (60)

The number of off units turning on equals ϕ0b(xH) and the num-

ber of on units turning off equals −ϕ1b(xL). The last 2 terms are

added to consider the effect of time varying set-point tempera-

ture. Assume the switch deadband, σ, is fixed, and the rate of the

set-point temperature is controlled by input u

ẋsp = u. (61)

We use (60) to calculate the time derivative of the consumed

power (19)

ẏ =−c1(t)u− c2(t)xsp + c3(t)σ+ c4(t), (62)
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where

c1(t)=
m

∑
i=0

Pi

ηi

(

µi,1b(t,xL)+ µi,0b(t,xH)
)

(63)

c2(t)=
m

∑
i=1

Pi

ηiRiCi

(

µi,1b(t,xL)+ µi,0b(t,xH ,)
)

(64)

c3(t)=
m

∑
i=1

Pi

ηiRiCi

(

µi,1b(t,xL)− µi,0b(t,xH)
)

≤ c2(t) (65)

c4(t)=
m

∑
i=1

Pi

ηiRiCi

(

(xe(t)−RiPi)µi,1b(t,xL)+

+xe(t)µi,0b(t,xH)
)

≤ xe(t)c2(t). (66)

5.1 Output Feedback Design
Let yr and e = y− yr be the reference power and reference

tracking error, respectively. Define the output feedback

u(t) = γe(t), (67)

where γ > 0. The error dynamics become

ė(t) =−γc1(t)e(t)+ c4(t)+σc3(t)− xspc2(t)− ẏr (68)

which gives

d

dt
|e|=−γc1|e|+

(

c4 +σc3 − xspc2 − ẏr

)

sign(e)

≤−γc1|e|+ |c4 +σc3 − xspc2 − ẏr|
≤−γc1|e|+ |c2||xe − xsp +σ|+ |ẏr|, (69)

where |e(t)| is the absolute value of the error.

Note that c1(t) indicates the accumulated absolute power

variation on the switch boundaries and it is positive and bounded

under normal working conditions

L1 ≤ c1(t)≤U1, (70)

where L1 and U1 are positive finite numbers. Given RC ≥ Lτ > 0,

we can show that c2(t) is bounded

0 < |c2(t)| ≤
U1

Lτ
. (71)

We assume

|xe − xsp +σ| ≤Ux (72)

|ẏr| ≤Uy, (73)

where Ux, and Uy are finite positive numbers. Using (70)–(73)

we rewrite (69) as follows

d

dt
|e| ≤ −γL1|e|+

U1Ux

Lτ
+Uy, (74)

and by applying the comparison principle [17] we get

|e(t)| ≤ |e(0)|exp(−γL1t)+

(
U1Ux

L1Lτ
+

Uy

L1

)
1

γ
. (75)

Note that U1Ux/(L1Lτ)+Uy/L1 is of the order of O(1) and (75)

is simplified as

|e(t)| ≤ |e(0)|exp
(

− γL1t
)

+O

(
1

γ

)

. (76)

If the feedback gain, γ > 0, is large enough, then the er-

ror settles down to a small neighborhood around zero and ref-

erence tracking is achieved. The inverse of γ defines the neigh-

borhood width. Higher feedback gains reduce the steady state

error. However, a large feedback gain may drive the set-point

temperature outside the working region of [xmin,xmax], particu-

larly in response to large step changes in the reference power.

Also, large feedback gains create chattering around the reference

power during steady state. Hence, we suggest the reader to se-

lect the feedback gain moderately with respect to the reference

power and environmental temperature variation.

5.2 State Feedback Design
The proposed control of (67) sacrifices tracking precision

in favor of the implementation and design simplicity of output

feedback. One may alternatively use a state feedback control to

achieve perfect reference tracking. Denote a Lyapunov function

as

V (t) =
1

2
e2(t). (77)

Define the following state feedback rule

u(t) = γe(t)− c2(t)xsp − c3(t)σ− c4(t)+ ẏr

c1(t)
, (78)

where ci(t) for i = 1,2,3,4 require state measurements accord-

ing to (63)–(66). Particularly, the population of units inside the

9



deadband which are changing state from on to off or vice versa

need to be measured. Due to continuous evolution of the units

between on and off state, temperature monitoring and measure-

ment of all the TCL units regardless of their temperature level is

required to implement the state feedback.

Take the time derivative of the Lyapunov function

V̇ (t)=ė(t)e(t)

=−γc1(t)e
2(t)≤ 0, (79)

which proves that the error uniformly asymptotically goes to

zero.

Using (63)–(66) we can show that

c2(t)xsp − c3(t)σ− c4(t)+ ẏr

c1(t)
≤ Ux

Lτ
+

Uy

L1
≪ γ|e(t)|, (80)

which predicts (67) is a good estimate of the state space con-

trol feedback of (78). Moreover, the closed-loop performance

improvement and difficulties attached with implementing a state

feedback control, which requires a considerable amount of tem-

perature measurement, may not justify the idea of a state feed-

back control.

As shown in Section 3, the system dynamics (9) in com-

bination with (12), (13), (16), and (17) are stable for every

xsp ∈ [xmin,xmax].

We summarize the results of the power control design in the

following theorem.

Theorem 1. Consider an HrTCL population modeled by trans-

port PDEs (9), coupled through the boundary conditions (12),

(13), (16), and (17) with power consumption defined as (19). As-

sume the accumulated absolute power variation at xL and xH is

bounded by (70) and environmental temperature, xe, and the ref-

erence power, yr, satisfy (72) and (73), respectively. Also, the

time constant of TCLs satisfies RC ≥ Lτ > 0. Then, the output

feedback control of (67) with γ > 0 governs the power consump-

tion to an O(1/γ)-neighborhood of yr. A state feedback control

law as defined by (78) results in uniform asymptotic stability of

the error dynamics.

6 Simulation Results

According to our discussion in Section 5 about output and

state feedback design and their differences, we continue our

work with the output feedback control (67). We present simula-

tion results to show the effectiveness of our proposed modeling

and output feedback algorithm using the model and parameters

presented in Section 4 with γ= 0.01. We assume, at the initial
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Figure 11. Reference tracking for step changes in power level.
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in the deadband. White line shows set-point evolution.
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Figure 13. (above) Hourly variation of environmental temperature in

Phoenix, Arizona, from July 13th 6:00 AM until July 14th 6:00 AM, 2013

[18]. (below) Variation of power versus time for (dashed blue) open-loop

and (solid red) closed-loop system. The customer designs the power

steps according to his/her priorities.
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Figure 14. Evolution of the deadband and TCL population versus time.

White line shows set-point evolution.

point, all units are located inside the deadband and evenly dis-

tributed between on and off states. We use the MC model to

certify the credibility of the proposed control algorithm.

We present 3 different scenarios in this section: i) Output

tracking for step changes in the reference power, ii) Power shap-

ing under daily temperature variation, and iii) Power outage and

transient analysis.

Reference tracking performance is shown in Fig. 11 for step

changes in power at time t = 4 hr from 80 MW to 90 MW and

then back to 80 MW at t = 8 hr. Deadband adaptation over time

is shown in Fig. 12. Due to slow response time of the system and

initial distribution of the TCL units, set-point temperature varies

slowly. The proposed control algorithm updates the set-point

temperature slightly at each time step to maintain the power at a

fixed level.

Next we apply a daily environmental temperature curve, as

shown in the top part of Fig. 13 for Phoenix, Arizona, from July

13th 6:00 AM until July 14th 6:00 AM, 2013 [18], to evaluate

the performance of our power control technique. We present the

response of our proposed control compared to the open-loop sce-

nario in the bottom part of Fig. 13. The controller successively

maintains the system at the user defined power levels. Adapta-

tion process of the deadband and TCL population is shown in

Fig. 14. We do not intend to design power shaping algorithms

here. The proposed power steps are designed intuitively. Never-

theless, the user can design more sophisticated reference power

steps using predictive control algorithms to mitigate both peak

power and rate payer discomfort.

Natural and or man-made disasters could halt power flow.

The peak power after power restoration could potentially put the

system at risk. As shown in Fig. 15, a half an hour power out-

age, from t = 1 hr to t = 1.5 hr, causes all the TCL units to turn

on with a slight delay which forces high power demand on the
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Figure 15. Power outage happens from t = 1 hr to t = 1.5 hr. Power

consumption for (dashed blue) open-loop and (solid red) closed-loop sys-

tem.
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Figure 16. Evolution of the deadband and TCL population during power

control. White line shows set-point evolution.
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Figure 17. Static deadband and TCL population without power control.

A large TCL population is turning on as power is restored.

11



power network. This is due to TCL heating beyond xH . More-

over, the delay location, if matched with the peak demand, cre-

ates even more challenges with issues regarding the stability of

the power network. Our proposed control dramatically reduces

the peak power and governs the system to the reference power by

slightly changing the set-point temperature as shown in Fig. 16.

As shown in Fig. 17, without the power control the deadband re-

mains static and TCL population experiences high density for

on units right after power is restored. This causes high peak

power during transient and low frequency oscillation in steady

state power demand.

7 Conclusions
We model heterogeneous populations of thermostatically

controlled loaded (TCLs) using parametrized transport partial

differential equations (PDEs) coupled on the switch deadband

boundaries. This work presents an analytically derived state-

space model of heterogenous TCL (HrTCL) populations. The

proposed model facilitates the precise simulation of various real-

life scenarios in heating, cooling, and air conditioning (HVAC)

systems. The model uses parametrization to consider the effect

of heterogeneity in the physical characteristics of the TCL sys-

tem. We investigate model stability, apply the finite difference

method, and present guidelines to guarantee the numerical stabil-

ity of the discretized dynamics. As shown in the reported simu-

lations, the model effectively predicts system performance under

daily variation of environmental temperature and power outage

enforced by load management programs. Moreover, we have

shown that the reference power tracking problem for the HrTCL

system can be solved using a linear integrator with a proper gain.

The simulation results demonstrate the effectiveness of the pro-

posed control algorithm.
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