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Abstract — This article examines the problem of identifying the physical parameters of fundamental electrochemistry-based 
battery models from non-invasive voltage/current cycling tests. The article is particularly motivated by the problem of fitting 
the Doyle-Fuller-Newman (DFN) battery model to lithium-ion battery cycling data. Previous research in the literature 
identifies subsets of the DFN model’s parameter experimentally. In contrast, this article makes the two unique contributions 
of: (i) identifying the full set of DFN model parameters from cycling data using a Genetic Algorithm (GA), and (ii) assessing
the accuracy and identifiability of the resulting full parameter set using Fisher information. The specific battery used within 
this study has lithium iron phosphate cathode chemistry and is intended for high-power applications such as Plug-in Hybrid 
Electric Vehicles (PHEVs). We use seven experimental cycling data sets for model fitting and validation, six of them derived 
from PHEV drive cycles. This makes the identified parameter values appropriate for PHEV battery simulation and model-
based design and control optimization. 

Keywords – Parameter Identification, Electrochemical Battery Modeling, Li-ion Batteries, 

Genetic Algorithms, and Fisher Information

1.  Introduction

This article examines the problem of identifying the parameters of the electrochemical 

battery model developed by Doyle, Fuller, and Newman (DFN) [1-2] using noninvasive voltage-

current cycling experiments.  The article presents a framework for solving this problem, 

consisting of a genetic algorithm (GA) for parameter identification combined with Fisher 

information-based estimation of parameter identifiability and identification errors.  We apply this 

framework to LiFePO4 battery cells intended for plug-in hybrid electric vehicles (PHEVs).  The 

ultimate goal is to obtain an experimentally-validated, electrochemistry-based model of these 

batteries that can enable the optimization of PHEV design and control for objectives such as 

reducing PHEV fuel consumption and greenhouse gas emissions [3]. 
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The DFN model is well-suited for this study because it is a first-principles 

electrochemical model that can capture high-rate transient effects.  In contrast to equivalent 

circuit models, first-principles models make it easier to relate model parameters back to physical 

quantities (such as diffusivity and porosity).  This is important because one of our goals is to 

investigate the accuracy with which one can estimate these physical quantities from noninvasive 

voltage and current data.  The DFN model also captures high-rate transient effects typical of 

PHEV applications.  In particular, a recent study by Santhagopalan et al. shows that the DFN 

model fits battery behavior above 1C current rates better than a single particle model (SPM) [4].  

The DFN model achieves these advantages over the SPM in part by modeling spatial 

distributions of lithium across the width of the anode, separator, and cathode.  These effects are 

ignored in SPMs. 

A significant body of literature already exists on battery parameter identification using 

different models and identification methods for different parameter sets.  Here we focus 

exclusively on identification methods that, like our own work, are intended for offline use.  

Santhagopalan et al., for instance, successfully identify a subset of five parameter values under 

constant charge and discharge conditions for both the DFN and SPM models [4].  In both cases, 

the Levenberg-Marquardt optimization algorithm is used to obtain parameters that minimize 

model error. Speltino et al. successfully identify the parameters of a single-particle model of 

battery dynamics using a two-step process: they first identify the cathode equilibrium potential 

function from open circuit voltage measurements, assuming a known anode equilibrium potential 

function from the literature.  They subsequently perform dynamic tests to estimate the remaining 

model parameters [5].  Schmidt et al. also successfully identify a single-particle battery model, 

with several extensions that incorporate  temperature information and relate solid diffusion to 
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state of charge [6].  The study by Schmidt et al. also examines parameter uncertainty using 

Fisher information.  Finally, Hu et al. successfully identify the parameters of an equivalent 

circuit battery model using a genetic algorithm [7].  They focus on two types of batteries, one of 

which is the A123 Systems 26650 cell examined in this article.  Their equivalent circuit 

formulation is a set of n parallel resistor-capacitor pairs connected to each other in series.  

The above literature provides a rich background for this article.  In contrast to that 

background, this work achieves a combination of five important goals never pursued 

simultaneously in the previous literature – to the best of the authors’ knowledge.  First, we focus 

on identifying parameters of the DFN model: a choice justified by this model’s first-principles 

nature and suitability for high-rate transient battery operation.  Second, we identify the full set of 

parameters (88 scalars and function control points) of the DFN model using a genetic algorithm, 

as opposed to a subset of these parameters.  Third, we perform this identification using multiple 

battery cycles derived from vehicle drive cycles.  (Note, altogether, these three choices of battery 

model, identification parameters, and cycling data represent an overarching goal of obtaining a 

DFN parameter set suitable for PHEV simulation and design/control optimization).  Fourth, we 

use Fisher information to assess the accuracy of all 88 DFN model parameters, as opposed to 

computing Fisher information for a subset of these parameters.  This is extremely important, 

because a parameter deemed identifiable based on Fisher information computation for a small 

parameter set may lose identifiability when one computes Fisher information for a larger 

parameter set.  Finally, we qualitatively correlate the Fisher information-based identifiability 

results to physical insights about the dominant dynamics in the LiFePO4 battery for the test 

conditions examined herein.  These two final contributions distinguish this article from an earlier 

paper by the authors that qualitatively investigated DFN parameter uncertainty using the 
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identifiability matrix [8].  Results in this earlier paper suggest that while the DFN model can fit 

battery cycling data well, certain parameters remain unidentifiable.  This article enhances these 

results by quantifying parameter uncertainty via Fisher information.  Fisher information provides 

a minimum variance bound for the estimated parameters via the Cramér-Rao inequality [9-13].  

In addition, this article provides original insights about the dominant dynamics in the LiFePO4

battery under the tests considered herein, and relates these insights to parameter uncertainties. 

The remainder of this article is organized as follows.  Section 2 describes the experiments 

used for identifying the DFN model.  This includes a discussion of the experimental setup along 

with the various PHEV drive cycle inputs.  Section 3 summarizes the DFN model.  Sections 4 

and 5 describe the unknown parameter set and genetic optimization algorithm, respectively.  

Section 5 also briefly describes model reduction methods used to simulate the DFN model, 

including quasi-linearization and modal decomposition [14, 15].  Section 6 presents validation 

studies for the identified model.  This includes voltage and power trajectories of validation data 

along with probability density plots summarizing the errors.  Finally, Section 7 presents the 

Fisher information results on parameter accuracy analysis.  Section 8 summarizes and concludes 

the paper.

2.  Experimental Setup

The battery cells examined in this article are A123 Systems ANR26650M1 cells with 

LiFePO4 cathodes.  These cells have a 2.3A-h nominal capacity when fresh, a nominal voltage of 

3.3V, and a maximum continuous discharge current of 70A (30.4 C-rate).  The cells are intended 

for transient high-power applications including commercial PHEVs, PHEV conversion kits, and 

portable power tools.  Experimental cycling data sets have been collected for these cells using a 
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custom-built battery tester.  This tester is capable of highly transient current/voltage profiles and 

can switch quickly between charging and discharging.  These characteristics make it ideal for 

testing batteries under conditions similar to those experienced in PHEV battery packs.  

Additionally, this setup is capable of battery-in-the-loop studies, which will be advantageous for 

future battery control and estimation research [16].  

The above battery tester combines three major hardware components: an electric load 

(Sorenson SLH-60-120-1200), a power supply (Sorenson DSC20-50E), and a Real-Time (RT) 

controller and I/O board (dSpace DS1104).  Figure 1 is a photograph of the battery tester, and 

Figure 2 is a schematic of the setup where all signal lines are connected to the I/O board.  The 

power supply and electric load handle battery charging and discharging, respectively.  The RT 

I/O board coordinates the electric load, power supply, and switching board.  In addition, the RT 

I/O board records sensor signals including voltage and current.  These signals are exchanged 

among the setup’s various components in a variety of formats, including the analog, digital, 

PWM, SMBus, RS-232, and TTL formats.  The switch board swaps the setup between charging 

and discharging by swapping the battery’s connection between the power supply and load.  The 

Schottky diode protects the power supply from absorbing battery energy.  The battery sensor 

board measures battery voltage through a voltage-isolating differential op-amp, and measures 

battery current via a bi-directional ±20A Hall effect sensor (Allegro Microsystems ACS714).    

Finally, all the battery interface electronics are implemented on custom-build Printed Circuit 

Boards (PCBs) to maximize overall setup reliability, which is critical for long-term tests. 

Seven battery cycling tests have been conducted using this battery tester: two for model 

identification and five for validation. All of these tests initialize the battery SoC to 90% (3.35V 
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relaxed), then subject the battery to a given current profile and measure the resulting battery 

voltage. In the first identification data set, the current profile consists of a Chirp sequence of 

three CCCV charge/discharge patterns between 2.0V and 3.6V, with charge/discharge rates of 

5C, 2.5C, and 1C. In the remaining tests, the current profiles are generated by simulating a 

PHEV powertrain for a given vehicle drive cycle (i.e., velocity-versus-time profile). Two of 

these vehicle drive cycles correspond to the morning and evening commutes of a real human 

driver in a naturalistic driving study conducted by the University of Michigan Transportation 

Research Institute (UMTRI) [17].  These drive cycles are exact recordings of driver behavior 

using mid-sized sedans, these two specific cycles correspond to the same sedan on the same day.  

These battery tests are denoted as Naturalistic1 and Naturalistic2, respectively. The four 

remaining battery tests correspond to multiple repetitions of standard vehicle certification drive 

cycles. These battery tests are denoted by UDDSx2, US06x3, SC03x4, and LA92x2, where the 

number in “x#” refers to the number of drive cycle repetitions [18]. For each of these drive 

cycle-based battery tests, a mid-size power-split sedan PHEV is simulated with a previously-

optimized power management algorithm [19] to map the vehicle drive cycles to battery current 

profiles. This PHEV has a 5 kWh battery pack consistent with existing Toyota Prius PHEV 

conversion kits. Due to sensor limitations, drive cycles that produce current magnitudes greater 

than 20A (namely, US06x3, SC03x2, and LA92x2) are scaled down such that their maximum 

amplitude over time is 20A [18].  Specifically, this scaling divides the current trajectory by its 

maximum current and then multiplies the trajectory by 20.  Finally, the resulting current profiles 

are applied to the battery cell to obtain data sets for identification and validation.

3.  The Doyle-Fuller-Newman Battery Model
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The DFN model is an electrochemical battery model that describes the dynamics of

concentration and potential distributions across the width of the cell as well as concentration 

profiles in the porous electrodes of the anode and cathode.  Spatial distributions across the width 

of the cell play an important role in high-rate charge and discharge dynamics, typical of PHEV 

cycles.  The model is described thoroughly in [1-2, 20].  This section summarizes the model 

equations, which constitute a nonlinear partial differential algebraic equation system. The 

appendix contains the model’s boundary conditions.    

As seen in Fig. 3, a Li-ion battery cell consists of an anode, separator, and cathode 

sandwiched between current collectors.  Both the anode and cathode are made of porous solid 

material immersed in an electrolyte solution.  When the battery is fully charged, lithium ions 

occupy interstitial sites in the anode-side solid material.  As the battery discharges, the Li-ions

leave these interstitial sites, entering the electrolyte solution.  The Li-ions then migrate through 

the solution from the anode to the separator, and eventually the cathode.  The discharging 

process concludes with the lithium ions coming to rest at interstitial sites in the cathode-side 

solid material.  When a Li-ion leaves its interstitial site in the anode an electron is freed to flow 

through the external circuit, producing useful work.  When this electron reaches the cathode it 

causes a Li-ion to bond with a cathode interstitial site.  Charging the battery is the same process 

in reverse, with the external circuit providing rather than consuming energy.   

The DFN model captures local Li-ion concentrations and potentials using coupled partial 

differential equations (PDEs).  These PDEs account for the linear diffusion of Li-ions in the 

electrolyte, spherical diffusion of Li-ions in the solid, and the spatially distributed 

electrochemical reactions driving them to transfer between the solution and the solid.  The 

remainder of this section briefly outlines these equations.  The parameters of these equations are 
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summarized in Table 1 and all of the boundary conditions for these equations are summarized in 

the appendix.

The concentration of Li-ions within the electrolyte c2(x,t)  is governed by Fick’s law of 

linear diffusion combined with an intercalation current density term, J, transferring Li-ions 

between the solution and solid: 

2 2
2 2

1
( , ) ( , ) ( , )effc c t
x t d x t J x t

t x t F


         
(1)

The above intercalation reaction current density, J, also acts as an input to the dynamics of Li-ion 

diffusion within the solid.  This diffusion occurs at every point in the anode and cathode and can 

be modeled using a spherical, radially symmetric diffusion law as follows:

1, 1, 1,2
2

( , ) ( , )j j jc d c
r t r r t

t r r r

  
      ,

(2)

where we note that while radial spherical diffusion is an appropriate model for the anode, it is 

only an approximation for the cathode.  We refer the interested reader to papers on both 

understanding the behavior of the LiFePO4 cathode [21-23] and agglomerate type models that 

capture various aspects of the electrode’s behavior [24-29].

The intercalation reaction current density, J, is driven by potential differences between the solid 

and electrolyte solution, as governed by the Butler-Volmer equation: 

, ,
0,( , ) exp ( , ) exp ( , )a j c j

j j j j

F F
J x t a i x t x t

RT RT

 
 

    
      

    
(3)
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     , , ,max
0, 1, 1, 1, 2 , ,

a j c j a jS S
j j j j ji k c c c c j n p

     (4)

The overpotentials in the above equations, ηj, equal the differences between the solid and 

solution potentials minus the reference potentials for the main intercalation reaction, which in 

turn depend on the local states of charge.  Mathematically the overpotentials are given by:

1 2( , ) ( , ) ( , ) ( , )p prefx t x t x t u x t     (5)

1 2

( , )
( , ) ( , ) ( , ) ( , )n nref SEI

n

J x t
x t x t x t u x t R

a
      (6)

Since potentials and overpotentials described above have dynamics orders of magnitude 

faster than the Li-ion concentrations, they are assumed to respond instantaneously.  The solid 

potential is governed by Ohm’s law with a source term governing the charge transfer due to 

intercalation: 

1, ( , ) ( , ) 0jeff
j x t J x t

x x




 
     

(7)

Similarly, the solution potential is governed by Ohm’s law, intercalation current density, and the 

charge carried by the ions in solution: 

 2
2( , ) ( , ) ln ( , ) 0eff

Dx t J x t c x t
x x x x

                 
(8)

The above system of equations are the DFN model that represent the dynamics of 

charging and discharging in the Li-ion cell.  The boundary conditions for this model are given in 

the Appendix.  When the DFN model is discretized it becomes a system of Differential Algebraic 
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Equations (DAEs), where the differential equations govern the diffusion dynamics and the 

algebraic equations constrain the potentials and intercalation current accordingly.

4.  Parameter Set

This section describes the DFN model parameters identified in this paper, and explains 

some of the constraints placed on these parameters during identification.  The parameters are 

summarized in Table I.  Altogether, 88 parameters are optimized by the genetic algorithm.  Five 

of these parameters pertain to cell geometry, namely, the anode thickness Ln, separator thickness 

Ls, cathode thickness Lp, anode particle radius Rn, and cathode particle radius Rp. One may 

directly measure these quantities by disassembling the cell. However, our aim is to use non-

destructive methods for identifying the parameters.  Three parameters characterize ion diffusion 

rates.  They include the solid diffusivity d1n in the anode, solid diffusivity d1p in the cathode, and 

solution diffusivity d2.  One parameter governs the fraction of the intercalation current 

carried by Li-ions, namely, the transference number t+.  Two parameters govern rate kinetics, 

namely, the k-rates kn in the anode and kp in the cathode.  These multiplicatively affect the 

current densities generated by the electrochemical reactions.  One parameter scales the solution 

conductivity and diffusivity to their effective values, namely, the Brugman number b.  Three 

parameters summarize the cell’s porosity, namely, the solution volume fractions 2n for the 

anode, 2s for the separator and 2p for the cathode.  One parameter captures the effective 

impedance of the anode-side solid electrolyte interphase layer, namely, RSEI.  The last scalar 

parameter is the initial concentration of the solution, c2, which we assume to be uniformly 

constant in space. This variable reflects the amount by which the battery electrolyte is initially 

lithiated. 
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In addition to the above 17 scalar parameters, the GA also optimizes three parametric 

functions in the DFN model.  Two of these functions are the equilibrium potential functions, 

unref and upref, of the anode and cathode, respectively.  We parameterize these functions using 33 

control points each, and use monotonic splines to interpolate between these points [30].  The 

third function is eff(c2), which determines the effective conductivity of the solution as a 

function of solution concentration.  We parameterize this function using five control points 

spaced linearly from 0 mol/m3 to 4000 mol/m3, and interpolate between these control points 

using conventional cubic splines with natural end conditions [31]. 

Several constraints are placed on the above parameters in the genetic algorithm.  All of 

these constraints are related to underlying identifiability issues within the model – each of them 

improves parameter identifiability by first removing parameters from the optimization problem 

and then algebraically relating them to parameters remaining within the optimization problem.  

First, we constrain the capacity of each electrode to equal exactly 2.7 Ah.  This constraint 

provides two key benefits.  It creates two 0.2 A-h buffers in each electrode, which improves the 

numerical stability of the DFN model.  These buffers add 0.2 A-h of capacity to the maximum 

and minimum values of the electrodes.  This allows the GA to tolerate minor local over and 

under filling of electrodes as it searches for the correct parameter values.  Finally, it eliminates 

the interplay between changes in electrode charge capacity and changes in equilibrium potential 

functions versus capacity.  The second optimization constraint forces the three electrode widths 

(Ln, Ls, Lp) and the area of the sheet rolled up inside the battery to collectively fit within the 

volume of the battery cell.  Constraining the sheet area is particularly important because it acts as 

a multiplicative scale factor relating applied current to internal current density.  The third 

constraint sets the volume fractions 1 and 2 in the anode and cathode to sum to exactly one.   
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The final constraint sets the solid conductivities 1n and 1p to equal 100, consistent with [20].  

This is justified since both conductivities have absolutely zero effect on the voltage trajectory (so 

long as they are both positive).  Not all of these constraints are fully physically justified: a fact 

that reflects the presence of underlying identifiability issues.  This motivates the Fisher 

information study in Section 7. 

5.  Parameter Optimization Scheme

To identify the DFN model’s parameters, we first choose: (i) an optimization objective

representing the model’s accuracy, and (ii) experimental data sets for which this metric is 

optimized.  The parameter identification objective we use in this paper is to minimize the L2

error between the experimentally measured voltage V(t) and DFN-simulated voltage trajectories

 ˆ ;V t 


, for a given battery current trajectory, with respect to the DFN model parameter vector 




, i.e., 

 2

0

ˆmin ( ) ( ; )
T

V t V t dt




 (9)

We optimize the above objective using only two of the seven cycles previously 

mentioned, Chirp and Naturalistic1, leaving the remaining 5 cycles for model validation.  The 

Chirp cycle makes SoC-dependent and rate-dependent parameters easier to identify by sweeping 

through the full range of battery states of charge at different charge/discharge rates. 
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Furthermore, the Naturalistic1 cycle makes parameters associated with battery transients easier 

to identify due to rich frequency content resulting from PHEV drive cycle dynamics. 

The genetic algorithm optimizes the above L2 error over the course of the Chirp and 

Naturalistic1 cycles by varying 88 of the DFN model’s parameters.  Genetic algorithms are well-

suited for such large-scale optimization, especially when gradient information is difficult to 

obtain analytically or numerically.  Figure 4 provides a high-level snapshot of this article’s GA-

based DFN parameter identification scheme.  The optimization process starts with the selection 

of inputs to the DFN model, in this case the Chirp and Naturalistic1 current profiles versus time. 

We apply these current profiles experimentally to the battery, and measure the resulting voltage 

output.  Next, we initialize the GA to a randomized population, where each population member 

is a DFN model parameter set.  The DFN model is simulated for each population member, and a 

comparison of the resulting simulated voltage versus experimental data furnishes a “fitness” 

value based on the inverse of the  L2 voltage fitting error.  Population members are selected for 

removal at random by a fitness-weighted roulette game.  This selection process is elitist, in the 

sense that the fittest population member is excluded from removal.  Once the fitness-based 

selection is complete, we use binary mutation and crossover operators to create new population 

members.  Parents are chosen randomly for mutation, with a selection probability weighted by 

their fitness.  Mutations occur in a purely random manner, and are not weighted by fitness.  The 

DFN model is then used once more to assign fitness values to the new population members, and 

the process repeats until convergence to a minimal model fitting error level.  The final parameter 

values are obtained from the fittest member of the population.  For further background on GA-

based optimization, the reader is referred to [32].  
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To ensure the convergence of the GA an additional optimization was conducted 

(henceforth we will refer to this as the “tuning” optimization and the first optimization as the 

“base” optimization).  The tuning optimization started with a population centered about the base

optimization’s fittest population member.  Additionally only parameters that were in the 

identifiable set were taken as variables in this optimization.  Recall that to determine this set one 

needs to already be close to the optimum as the identifiable set is based on local identifiability 

properties (which is why it could not be computed a priori for the base optimization).  The 

tuning optimization converged and slightly improved on the base optimization’s result. 

The base (tuning) optimization process occurs in the R88 (R43) Euclidean space, with each 

parameter quantized at 16 bits.  This is a very large optimization space, comprising 7.083*10423

(1.284*10207) possible parameter sets.  We employ two main tools to render these optimizations

numerically tractable.  First, we use model reduction to accelerate the speed with which the DFN 

model is simulated, with minimal loss of accuracy.  Specifically, we use a Legendre modal 

coordinate expansion similar to [14], together with algebraic constraint quasi-linearization 

similar to [8], to improve the DFN model’s simulation speed.  We apply quasi-linearization 

directly to the Legendre modal coordinates, allowing for efficient solution of the algebraic 

constraints imposed by the coupled 1 and 2 boundary values problems.  This improves 

computational speed to the point where we are able to simulate the DFN model for each new set 

of parameters in up to 63 seconds of computation time.  Second, we parallelize the GA at the 

level of simulation function calls, with one server program coordinating multiple quad-core 

computers, which is a typical Master-Slave arrangement.  Custom Java computer code handles 

Master-Slave information exchange over a TCP/IP network within a MATLAB implementation 

of the GA and DFN model.  Altogether, this use of model reduction in conjunction with parallel 



Page 15 of 47

Acc
ep

te
d 

M
an

us
cr

ip
t

15

processing makes it possible for five quad-core computers (Intel Q8200) to complete the 

optimization in approximately three weeks. 

6.  Validation Results

One of the major results of this paper is a set of GA-fitted parameter values that match all 

five validation cycles; see Fig. 5 and Table II.  These parameters are based on the tuning 

optimization which offers slight improvements over a related set of values identified previously 

[8], which have already been used in two studies of PHEVs: one on power management and one 

on charge pattern optimization [33, 34].  The values of the fitted parameters are given in Tables 

III and IV.  Additional parameters necessary to run the DFN model but not explicitly optimized 

are listed in Table V.  These parameters are implicitly related to the optimization process, in the 

sense that they are functions of the optimally identified parameters; see Section 5 for details.  

Relative error in voltage and – consequently – power  never exceeds 5% for any of the validation 

cycles.  As shown in Table II, the 50th percentile of voltage error is 15.8mV and the 90th  

percentile of voltage error is still only 50.5mV.

To examine the accuracy of the optimal parameter fit further, consider the results for the 

Naturalistic2 and LA92x2 validation cycles, which are representative of the set of five cycles.  

Naturalistic2 is based on recorded data from a real driver’s evening commute, as opposed to 

Naturalistic1, which is used for fitting and represents a morning commute.  Figure 6 shows 

traces of voltage error and Fig. 7 shows traces of power error for Naturalistic2.  The voltage 

error never exceeds 118.9mV and the 50th percentile of voltage error is 12.5mV.  Figure 8

presents a probability density plot and a percentile plot of this error.  
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The results for LA92x2 are similar to those for Naturalistic2.  Figures 9 and 10 give the 

voltage and power trajectories along with their relative and absolute errors.  Voltage error never 

exceeds 150.3mV and the 50th percentile of voltage error is 28.0mV. Figure 11 presents 

probability density and percentile plots of this error.   

As a final validation check, we examine whether the voltage errors for the five validation 

cycles are correlated with either input current or state of charge (SoC).  Such correlation would 

suggest failure to accurately represent internal battery resistance or open-circuit potential as a 

function of SoC, respectively.  Table VI presents the R2 correlation values between voltage error 

on the one hand and battery current and SoC on the other hand, for each of the validation cycles.  

None of the validation cycles have voltage errors linearly correlated with input current, which 

implies that the identified model captures at least internal battery resistance very well.  The upper 

bound on the correlation between model error and SoC is R2=0.433 which is the case for the 

Naturalistic2 drive cycle.  As a point of comparison the correlation between predicted and

measured voltage for Naturalistic2 is R2 of 0.871, implying that the identified model captures the 

dependence of battery dynamics on SoC quite well.  This SoC is the “system” SoC (as opposed 

to the “chemical” SoC which would be calculated based on the quantity of Li in the anode) and is 

calculated for the battery by integrating and scaling current, knowing that each experiment was 

initialized at 90% SoC, i.e.,   

 
0 0.9

t

System

I d

SoC
Name PlateCapacity

 
 


(10)
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In summary, this section shows that the DFN model, together with the parameter values 

identified in this paper, accurately simulates battery cells under the loading characteristics of 

PHEVs.  This accuracy is evident from the small errors in the voltage – and consequently, power 

– traces of the DFN model compared to experimental data.  The parameter values in this paper 

make it possible to accurately simulate the ANR26650M1A cell for PHEV applications.  

7.  Fisher Information and Parameter Variance

Section 6 of this article assesses the degree to which the identified DFN model is able to 

replicate input-output voltage/current battery cycling behavior.   The overarching goal of this 

section, in contrast, is to evaluate the quality of the model parameter estimates.  Previous work 

by the authors pursues this goal using the identifiability matrix, and shows that while the 

identified DFN model fits input-output voltage/current data very well, certain model parameters 

are unidentifiable [8].  This article enhances this analysis by quantifying the parameter 

estimation variance via Fisher information techniques.  Fisher information provides the 

minimum variance for parameter estimation via the Cramér-Rao inequality [9, 10].  The Cramér-

Rao inequality applies to the GA algorithm used herein since we use this algorithm as a

maximum likelihood estimator (the GA chooses parameters values to minimize L2).  Thus the 

inverse of the Fisher Information matrix is the covariance of estimating the model parameters.  

Since there is only one output, Fisher information can be calculated by multiplying the 

identifiability matrix by the voltage sensor’s variance.  This variance was computed from the 

voltage error between simulation and experiment for the fitting data sets.
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The variance of the estimated parameters is presented in Tables III and IV along with

95% (two standard deviations) confidence bounds and relative error.  For each parameter, this 

relative error is the upper 95% confidence bound minus the parameter’s estimated value, divided 

by this estimated value.  Not all of the parameters are identifiable, and those that are 

unidentifiable are marked with a ‘U’.  Unidentifiability was determined using the method in [8] 

where the minimum condition number for the identifiability matrix was taken as 10-10.  Lower 

condition numbers caused unreasonable numerical errors in the inversion of the Fisher 

information matrix.  

The process of partitioning a given parameter set into identifiable versus unidentifiable 

parameters makes it possible to make quantitative statements regarding these parameters’ 

accuracy.  Unidentifiable parameters cannot be estimated from experimental measurements.  One 

can only, therefore, estimate their accuracy by comparing their estimated values with the 

published literature.  Identifiable parameters can, in contrast, be estimated from experimental 

data.  Furthermore, the accuracy of these identifiable parameters can itself be methodically 

estimated from the Fisher information matrix, provided one can associate a priori assumed levels 

of error with the unidentifiable parameters.  The remainder of this article demonstrates the 

process of methodically calculating the estimation errors associated with the identifiable 

parameters, under the optimistic assumption that the unidentifiable parameters are known a 

priori.  Our goal, here, is to demonstrate the value of identifiability analysis for the DFN model, 

rather than to quantify DFN parameter estimation errors exactly.  It is very important to note, 

here, that the choice of which parameters are identifiable vs. unidentifiable has a significant 

impact on the identification errors computed by this process.  One must therefore be very vigilant 

when making this choice/partitioning. 
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Of the eleven identifiable scalar parameters six are estimated with good accuracy

(relative error < 2%).   These are associated with geometry: Ln the anode width, Lp the cathode 

width, Rn the spherical radius in the anode, kn the k-rate in the anode, RSEI the solid electrolyte 

interface resistance, and c2 the initial concentration of Li in solution.  The remaining five scalar 

parameters all have relative errors greater than 25%.  It is important to note that these variances 

correspond to the case where one attempts to identify all model parameters simultaneously, with 

the unidentifiable values fixed.   If one knows some parameters with certainty and can therefore 

estimate a smaller subset of the DFN model parameters, the variance in these parameters will be 

lower (or at least the same).  For example, if one is designing a state of health estimator whose 

sole goal is to estimate RSEI assuming all other DFN model parameters to be known, the variance 

in estimation would be 4.387E-014, and the relative error in estimating RSEI would decrease from 

1.38% to 0.0113%.  These results are important, because they: (i) quantify the errors in the 

parameters identified herein, (ii) highlight the difficulties in estimating specific parameters solely 

through voltage and current time traces, and (iii) underscore the importance of examining the 

identifiability of all DFN model parameters, not just a subset of those parameters. 

To provide further insights into the DFN model’s parameter identifiability, Figures 12 

and 13 present the estimates of the cathode- and anode-side equilibrium potentials versus SoC, 

along with their 95% confidence bounds.  For plotting purposes, the unidentifiable parameters 

have confidence bounds at – and .  In the model these equilibrium potential functions are 

represented by monotonic cubic splines in terms of SoC.  Here we plot these functions as 

piecewise linear since the confidence bounds are only for the control points.   Between the two 

equilibrium potential functions, upref has much less variance than unref.  Specifically, the 

estimation of upref exhibits low variance, where the confidence bounds correspond to relative 
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errors less than 1% for 0% SoC to 95% SoC (where this SoC does not include the buffers).  In 

contrast, most of unref is unidentifiable, and even the identifiable control points still have very 

high variances.  The equilibrium potential functions provide a good example of the effects of 

assuming that the unidentifiable values are correct.  Since upref is very dependent on unref, and 

unref is largely incorrect, upref is mostly identifiable – but to make the upref values accurate one 

needs to plug in accurate values for the unref first.  The conductivity function  2 2
eff c is

completely unidentifiable – indicating that the interplay between solution concentration and 

conductivity could not be determined through these experiments.

Parameter identifiability and variance in estimation are the function of several important 

factors.  First, they are a function of which parameters are being identified and which are already 

assumed known.  This leads to cases where parameter estimation errors can be improved 

dramatically by changing the number of known parameters versus unknown ones (as shown 

previously in the case of RSEI).  Parameter identifiability also depends on the values of the 

parameters after they have been fit to the data.  This is due to Fisher Information being a local 

quantity in the parameter space.  In general, this makes it impossible to determine which 

parameters will be identifiable a priori.  Finally we note that the experiments themselves can 

greatly affect parameter identifiability.  Both the structure of the battery experiment (including 

placement of sensors and actuators) and the experiment’s trajectory can affect parameter 

identifiability.  As an example of structure, if our cell had a third electrode then we would have 

been able to measure two voltages – likely improving our ability to identify unref and upref

simultaneously.  As an example of the experimental trajectory’s impact, the Natuarlistic2 and 

Chirp cycles are different in terms of the battery dynamics they excite, and therefore different in 
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their impact on parameter identifiability.  All of these factors underscore that matching input-

output data is not enough to guarantee that the model parameter values are physically accurate.

8. Summary and Conclusion

This article uses a genetic algorithm to match the Doyle-Fuller-Newman battery model’s 

voltage predictions to experimental measurements, for given input current profiles.  We optimize 

88 parameters of the DFN model, including parameterizations of the anode and cathode 

equilibrium potential functions and the solution conductivity function.  The end result is a set of 

parameter values for the DFN model that predicts cell voltage and power with 5% relative error 

for all of the validation data sets examined in this work.  All of these validation data sets are 

based on simulated plug-in hybrid electric vehicle battery pack currents that exhibit high 

charge/discharge rates and are highly transient in nature.  For all of the validation cycles 

aggregated together, the 50th percentile of voltage error 15.8mV, and the 90th percentile of 

voltage error is still only 50.5mV.  This high level of accuracy justifies the use of the DFN model 

for the lithium-iron-phosphate (LiFePO4) cathode chemistry examined in this work.  In fact, the

parameters values identified herein have already been used in two studies involving PHEVs [33, 

34].  Additionally, this paper presents some of the computational logistics involved in using a 

GA for parameter identification.

The identification procedure used herein makes it possible to find a set of parameter 

values for the DFN model noninvasively.  Unfortunately, this noninvasiveness causes some 

parameters to be unidentifiable or have a large estimation uncertainty.  While this does not affect

the accuracy of the model response, it does mean that one must be careful when using these 

parameters in other contexts. 
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Appendix – Boundary Conditions

This appendix summarizes the boundary conditions present in the DFN model.  The 

effective values of various quantities are related to the volume fraction and the Brugman number 

as follows:

 2 2 2 , ,b
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For solution concentration c2:
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In addition c2 is equated at the anode/separator interface and the separator/cathode interface.
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For solid potential 1:

 1 0 @ ,n n sx x L x L L
x


   
 (A.10)

 1 0 @ 0x x  
(A.11)

This places the ground at the negative electrode.  At the positive electrode one can choose 

between a current and voltage input.  For the current input:
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(A.12)

Where Area converts from current density to absolute current.

For the voltage input:

 1 @applied n s px Volt x L L L    
(A.13)

For the solution potential 2:
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In addition 2 is equated at the anode/separator interface and the separator/cathode interface.
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Tables:

TABLE I: UNKNOWN PARAMETERS

Name Unit Description

Ln m Anode Thickness

Ls m Separator Thickness

Lp m Cathode Thickness

Rn m Anode Particle Radius

Rp m Cathode Particle Radius

t+ - Transference Number

b - Brugman Number

d2 m2s-1 Solution Diffusivity

2n - Anode Solution Volume Fraction

2s - Separator Solution Volume Fraction

2p - Cathode Solution Volume Fraction

d1n m2s-1 Anode Solid Diffusivity

d1p m2s-1 Cathode Solid Diffusivity

kn

(A/m2) 
(mol/m3)1+α Anode Reaction Rate

kp

(A/m2) 
(mol/m3)1+α Cathode Reaction Rate

RSEI Ωm2 Anode Film Thickness

c2 mol*m-3 Initial Solution Concentration

unrefi V Anode Equilibrium Potential Function: Control Point i

uprefi V Cathode Equilibrium Potential Function: Control Point i

i Ω-1m-1 Solution Conductivity Function: Control Point i
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TABLE II: PERCENTILE ERRORS OF VOLTAGE [mV]

Percentile of Error [mV]
Drive Cycle 25% 50% 75% 100%
Naturalistic2 9.8 12.5 13.6 118.9
LA92x2 11.7 28.0 41.0 150.3
US06x3 10.6 23.4 41.5 140.0
SC03x4 9.7 21.0 32.7 146.3
UDDSx2 12.0 28.3 33.2 140.9
All Val 
Cycles 10.4 15.8 31.9 150.3
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TABLE III: FIRST HALF OF OPTIMIZED PARAMETERS

95% Confidence Interval
Name Value Unit Variance Min Max Rel %

Ln 2.880E-05 m 1.30E-15 2.87E-05 2.89E-05 0.25%

Ls 1.697E-05 m U U U U

Lp 6.508E-05 m 3.45E-14 6.47E-05 6.54E-05 0.57%

Rn 3.600E-06 m 2.98E-18 3.60E-06 3.60E-06 0.10%

Rp 1.637E-07 m U U U U

t+ 2.495E-01 - U U U U

b 1.439E+00 - 1.11E-02 1.23E+00 1.65E+00 14.63%

d2 6.930E-10 m2s-1 9.55E-19 -1.26E-09 2.65E-09 281.98%

2n 6.188E-01 - 2.62E-02 2.95E-01 9.43E-01 52.33%

2s 3.041E-01 - U U U U

2p 5.206E-01 - 4.49E-03 3.87E-01 6.55E-01 25.73%

d1n 8.275E-14 m2s-1 1.44E-26 -1.57E-13 3.23E-13 289.99%

d1p 1.736E-14 m2s-1 U U U U

kn 8.692E-07
(A/m2) 

(mol/m3)1+α 6.38E-20 8.69E-07 8.70E-07 0.06%

kp 1.127E-07
(A/m2) 

(mol/m3)1+α U U U U

RSEI 3.697E-03 Ωm2 6.49E-10 3.65E-03 3.75E-03 1.38%

c2 1.040E+03 mol*m-3 8.42E+00 1.03E+03 1.05E+03 0.56%

unref1 3.959E+00 V U U U U

unref2 3.400E+00 V U U U U

unref3 1.874E+00 V U U U U

unref4 9.233E-01 V 5.15E-02 4.70E-01 1.38E+00 49.14%

unref5 9.074E-01 V 2.54E-05 8.97E-01 9.17E-01 1.11%

unref6 6.693E-01 V 3.27E-04 6.33E-01 7.06E-01 5.40%

unref7 2.481E-03 V U U U U

unref8 1.050E-03 V U U U U

unref9 1.025E-03 V U U U U

unref10 8.051E-04 V U U U U

unref11 5.813E-04 V U U U U
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unref12 2.567E-04 V U U U U

unref13 2.196E-04 V U U U U

unref14 1.104E-04 V U U U U

unref15 3.133E-06 V U U U U

unref16 1.662E-06 V U U U U

unref17 9.867E-07 V U U U U

unref18 3.307E-07 V U U U U

unref19 1.570E-07 V U U U U

unref20 9.715E-08 V U U U U

unref21 5.274E-09 V U U U U

unref22 2.459E-09 V U U U U

unref23 7.563E-11 V U U U U

unref24 2.165E-12 V U U U U

unref25 1.609E-12 V U U U U

unref26 1.594E-12 V U U U U

unref27 1.109E-12 V U U U U

GA optimized parameter values for the DFN model.  Variances are computed using Fisher information.  U indicates an unidentifiable parameter.
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TABLE IV: SECOND HALF OF OPTIMIZED PARAMETERS

95% Confidence Interval
Name Value Unit Variance Min Max Rel %

unref28 4.499E-13 V U U U U

unref29 2.250E-14 V U U U U

unref30 1.335E-14 V U U U U

unref31 1.019E-14 V U U U U

unref32 2.548E-16 V U U U U

unref33 1.654E-16 V U U U U

upref1 5.502E+00 V U U U U

upref2 4.353E+00 V 1.79E-02 4.09E+00 4.62E+00 6.15%

upref3 3.683E+00 V 1.36E-05 3.68E+00 3.69E+00 0.20%

upref4 3.554E+00 V 1.64E-06 3.55E+00 3.56E+00 0.07%

upref5 3.493E+00 V 9.58E-06 3.49E+00 3.50E+00 0.18%

upref6 3.400E+00 V 8.66E-06 3.39E+00 3.41E+00 0.17%

upref7 3.377E+00 V 8.03E-06 3.37E+00 3.38E+00 0.17%

upref8 3.364E+00 V 8.51E-06 3.36E+00 3.37E+00 0.17%

upref9 3.363E+00 V 1.28E-05 3.36E+00 3.37E+00 0.21%

upref10 3.326E+00 V 1.09E-05 3.32E+00 3.33E+00 0.20%

upref11 3.324E+00 V 1.27E-05 3.32E+00 3.33E+00 0.21%

upref12 3.322E+00 V 1.13E-05 3.32E+00 3.33E+00 0.20%

upref13 3.321E+00 V 1.57E-05 3.31E+00 3.33E+00 0.24%

upref14 3.316E+00 V 1.54E-05 3.31E+00 3.32E+00 0.24%

upref15 3.313E+00 V 1.40E-05 3.31E+00 3.32E+00 0.23%

upref16 3.304E+00 V 1.64E-05 3.30E+00 3.31E+00 0.25%

upref17 3.295E+00 V 1.20E-05 3.29E+00 3.30E+00 0.21%

upref18 3.293E+00 V 6.76E-06 3.29E+00 3.30E+00 0.16%

upref19 3.290E+00 V 1.11E-05 3.28E+00 3.30E+00 0.20%

upref20 3.279E+00 V 1.22E-05 3.27E+00 3.29E+00 0.21%

upref21 3.264E+00 V 1.19E-05 3.26E+00 3.27E+00 0.21%

upref22 3.261E+00 V 1.04E-05 3.25E+00 3.27E+00 0.20%

upref23 3.253E+00 V 6.13E-06 3.25E+00 3.26E+00 0.15%

upref24 3.245E+00 V 7.85E-06 3.24E+00 3.25E+00 0.17%
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upref25 3.238E+00 V 1.59E-05 3.23E+00 3.25E+00 0.25%

upref26 3.225E+00 V 1.09E-05 3.22E+00 3.23E+00 0.20%

upref27 3.207E+00 V 5.81E-05 3.19E+00 3.22E+00 0.48%

upref28 2.937E+00 V 1.64E-04 2.91E+00 2.96E+00 0.87%

upref29 2.855E+00 V 1.09E-04 2.83E+00 2.88E+00 0.73%

upref30 2.852E+00 V 1.13E-04 2.83E+00 2.87E+00 0.74%

upref31 1.026E+00 V U U U U

upref32
-

1.120E+00 V U U U U

upref33
-

1.742E+00 V U U U U

1 1.050E-01 Ω-1m-1 U U U U

2 1.760E-01 Ω-1m-1 U U U U

3 2.190E-01 Ω-1m-1 U U U U

4 8.166E-02 Ω-1m-1 U U U U

5 3.014E-02 Ω-1m-1 U U U U

GA optimized parameter values for the DFN model.  Variances are computed using Fisher information.  U indicates an unidentifiable parameters.
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TABLE V: PARAMETERS NOT DIRECTLY INVOLVED IN GA

Name Value Unit

c1n 2.479E+04 mol*m-3

c1p 1.649E+03 mol*m-3

c1nmax 2.948E+04 mol*m-3

c1pmax 1.035E+04 mol*m-3

T 2.982E+02 K
 5.000E-01 -

1n 3.812E-01 -

1p 4.794E-01 -

n 1.000E+02 m-1Ω-1

p 1.000E+02 m-1Ω-1

Area 3.108E-01 m2

Note: all of these parameters are either fixed or algebraically related to the optimization variables
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TABLE VI: R2 COEFFCIENTS OF CORRELATION WITH VOLTAGE ESTIMATION 

ERROR

Drive Cycle Iapp SoC
Naturalistic2 0.023 0.433
LA92x2 0.127 0.190
US06x3 0.153 0.151
SC03x4 0.179 0.204
UDDSx2 0.100 0.246
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Figures Captions:

Fig. 1.  Photograph of Experimental Battery Tester

Fig. 2.  Schematic of Experimental Battery Tester

Fig. 3.  Li-ion Cell Schematic

Fig. 4.  Optimizing model parameters via a Genetic Algorithm

Fig. 5. Probability density plot of voltage error and the percentiles of absolute voltage error for 

all five of the validation cycles.

Fig. 6.  Voltage Response for Naturalistic2.

Fig. 7.  Power Response for Naturalistic2.

Fig. 8.  Probability Density Plot of Voltage Error and the Percentiles of Absolute Voltage Error 

for Naturalistic2

Fig. 9.  Voltage Response for LA92x2.

Fig. 10.  Power Response for LA92x2.

Fig. 11. Probability Density Plot of Voltage Error and the Percentiles of Absolute Voltage Error 

for LA92x2.

Fig. 12.  Estimated anode equilibrium potential unref with 95% confidence bounds.

Fig. 13.  Estimated cathode equilibrium potential upref with 95% confidence bounds.

Figures:
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Fig. 1.  Photograph of Experimental Battery Tester
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Fig. 2.  Schematic of Experimental Battery Tester
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Fig. 3.  Li-ion Cell Schematic
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Fig. 4.  Optimizing model parameters via a Genetic Algorithm
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Fig. 5. Probability density plot of voltage error and the percentiles of absolute voltage error for 

all five of the validation cycles.
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Fig. 6.  Voltage Response for Naturalistic2.
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Fig. 7.  Power Response for Naturalistic2.
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Fig. 8.  Probability Density Plot of Voltage Error and the Percentiles of Absolute Voltage Error 

for Naturalistic2
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Fig. 9.  Voltage Response for LA92x2.
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Fig. 10.  Power Response for LA92x2.
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Fig. 11. Probability Density Plot of Voltage Error and the Percentiles of Absolute Voltage Error 

for LA92x2.
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Fig. 12.  Estimated anode equilibrium potential unref with 95% confidence bounds.
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Fig. 13.  Estimated cathode equilibrium potential upref with 95% confidence bounds.
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Manuscript Highlights: 

 Noninvasive Parameter identification of a LiFePO4 cell for 
an electrochemical model

 Only current and voltage data are used for identification.
 Cell undergoes current cycles based on PHEV simulation and 

various drive cycles.
 Genetic algorithm used to identify parameters and several 

functions in model.
 Fisher information is used to assess accuracy of parameter 

identification.


