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a b s t r a c t

Energy management strategies are instrumental in the performance and economy of smart homes
integrating renewable energy and energy storage. This article focuses on stochastic energy management
of a smart home with PEV (plug-in electric vehicle) energy storage and photovoltaic (PV) array. It is
motivated by the challenges associated with sustainable energy supplies and the local energy storage
opportunity provided by vehicle electrification. This paper seeks to minimize a consumer's energy
charges under a time-of-use tariff, while satisfying home power demand and PEV charging requirements,
and accommodating the variability of solar power. First, the random-variable models are developed,
including Markov Chain model of PEV mobility, as well as predictive models of home power demand and
PV power supply. Second, a stochastic optimal control problem is mathematically formulated for man-
aging the power flow among energy sources in the smart home. Finally, based on time-varying electricity
price, we systematically examine the performance of the proposed control strategy. As a result, the
electric cost is 493.6% less for a Tesla Model S with optimal stochastic dynamic programming (SDP)
control relative to the no optimal control case, and it is by 175.89% for a Nissan Leaf.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Motivation

The present energy demand and environmental crisis have been
promoting the rapid development of electric vehicles (EVs) and
renewable energy including solar rooftop photovoltaic (PV) and
wind power [1,2]. However, EVs charging activities and renewable
energy generation are always intermittent and volatile. If uncon-
trolled, a significant impact on the power grid may happen,
including performance degradations, overloads, and over-
generation, especially when a larger scale distributed generation
(DG) unit and EVs are used [3e5]. Reconciling EVs and renewable
energy to ensure optimal usage of electric power is very important
for the performance and economy of smart grid [6e8]. As a
consequence, researchers have recently focused on developing
effective management for integrating EVs and renewable energy
into house loads and grid, as well as new material and structure of
renewable energy considering power conversion efficiency, such as
SiO2 nanoparticles [9], iodide/triiodide-based redox mediator [10],
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and photopolymerization of Co(II)/Co(III) used for solar cells [11].
Related to recent attention paid to smart grid vision, smart homes
that can optimize energy consumption and lower electricity bills
have also gained specific importance. Developing a smart home
energe management system (SHEMS) has become a common
global priority to support the trend towards a more sustainable and
reliable energy supply for smart grid [12]. Hence, this paper focuses
on optimal energy management of a smart home with plug-in
electric vehicle (PEV) battery energy storage and solar power
supply.

1.2. Literature review

The existing literature, e.g., the forgoing work, has presented
several optimization methods, such as mixed-integer linear pro-
gramming (MILP) [13e17], model predictive control (MPC)
approach [4,18], rolling horizon strategy [19], and game theory [20],
for creating efficient operational schedules or making good con-
sumption and production decisions to smart home energy man-
agement. The operation of a smart household that owned a PV, an
energy storage system that consisted of a battery bank and also an
EV with vehicle to home (V2H) option was considered through
solving a MILP in Ref. [13]. A MILP model of the HEM structure was
provided to perform a collaborative evaluation of a dynamic pricing
based demand response (DR) strategy, a distributed small-scale
renewable energy generation system, the V2H capability of an EV
together with two-way energy trading of EV (using V2G option)
and enenrgy storage system (ESS) in Ref. [14]. An optimal smart
household appliances scheduling was established under hourly
pricing and peak power-limiting (hard and soft power limitation)-
based demand response strategies in Ref. [15], where thermostat-
ically and non-thermostatically controllable loads were explicitly
modeled. The optimal operation of a neighborhood of smart
households in terms of minimizing the total energy procurement
cost was analyzed using MILP by considering bi-directional power
flow both at household and neighborhood level in Ref. [16]. A MILP
model for techno-economic optimum sizing of additional PV and
ESS investment for a DR-based HEM system controlled smart
household was provided with the consideration of the notably
changing load pattern due to DR activities in Ref. [17]. Renewable
integration was considered in Ref. [4], which derived optimal EV
charging schedules based on predicted PV output and electricity
consumption. A nonlinear predictive energy management method
for buildings with PV system and battery storage was presented in
Ref. [18], which forecasted house load demand via artificial neural
networks. A novel energy management system based on a rolling
horizon strategy for a renewables-based microgrid was proposed
and implemented, composed of PV panels, two wind turbines, a
diesel generator and an energy storage system in Ref. [19]. The
impacts of the response capability levels of consumers on the
economic integration of distributed PV power in smart homes, and
the impacts of PV capacities and battery capacities on consumers
power expenses were analyzed using non-cooperation game
theoretical power market complementarity model in Ref. [20].

Most of the related literature pursues a smart home technology
potential evaluation objective. Few seek a real-time control system
that optimizes energy management with an explicit consideration
for stochastic home loads, PV generation, and EV mobility patterns.
Themain challenge of smart home energymanagement arises from
multiple sources of randomness, i.e., PEV mobility, customer power
demand, and renewable power generation. Liang et al. [21] pro-
vided a comprehensive literature survey on the stochastic
modeling and optimization tools for microgrid and demonstrated
the effectiveness of such tools.

To minimize consumer's expected power cost, the optimal
scheduling algorithms for power consumption with uncertain
future price had been derived under stochastic dynamic program-
ming (SDP) [22]. Iverson et al. accounted for probabilities of vehicle
departure time and trip duration to formulate a SDP algorithm to
optimally charge an EV based on an inhomogeneous Markov chain
model [23]. To promote user demand response through optimizing
the utilization of wind power generation, the coordinated wind-
PEV dispatch problem was also studied in a stochastic framework
capturing the uncertainties of wind power generation and statis-
tical PEV driving patterns [24]. A stochastic energy consumption
scheduling algorithm with the objective of reducing monetary ex-
penses was featured by modelling the random property of
customer energy consumption practices [25]. However, all the
foregoing articles focus on the microgrid energy management
problem using stochastic optimization, given one and only one
random factor: either electric price or PEV mobility, either renew-
able energy generation or home load. The interactions among
various randomvariables were constantly overlooked. A probability
distribution model combining household power consumption, EV
home-charging and PV power production was developed using a
convolution approach to merge three separate existing probability
distribution models in Ref. [26]. Donadee et al. [27] used stochastic
models of (i) plug-in and plug-out behavior, (ii) energy required for
transportation, and (iii) electric energy prices. These stochastic
models were incorporated into an infinite-horizonMarkov decision
process (MDP) to minimize the sum of electric energy charging
costs, driving costs, and the cost of any driver inconvenience. A later
study by Ref. [28] constructed a Markov Chain to model random
prices and regulation signal and formulated a SDP to optimize the
charging and frequency regulation capacity bids of an EV. The
previous two studies, however, did not consider integrated PEV
charging with building loads and renewable energy.

1.3. Contributions

To surmount the shortcomings of the foregoing studies [29,30],
this paper proposes an SDP framework for the optimal energy
management of a smart home with PEV energy storage and PV
array, considering multiple uncertain variables. Based on real sta-
tistical data, Markov Chain models of vehicle trip time and condi-
tional probability of trip length is achieved, as well as predictive
models of home load demand and PV power supply. To the best
knowledge of the authors, this is the first time study in the litera-
ture modelling PEV energy storage availability by incorporating
multiple random variables into a SDP control formulation of a
single smart home energy management, which is the main novelty
of this paper. We can generally conclude that the smart home with
PEV energy storage and PV array under such optimal control can
bring significant cost savings for customers.

1.4. Outline of paper

The remainder of the paper is arranged as follows. Section 2
details the system model of a smart home. Detailed random vari-
ables are described in Section 3. The optimization problem is
formulated in Section 4. The case study optimization results are
discussed in Section 5, followed by conclusions presented in Sec-
tion 6.

2. Smart home model development

2.1. Smart home configuration

We consider a smart homewith a PEV and solar panels as shown
in Fig.1. The energymanagement system communicates with home



Fig. 1. Structure of smart home with PEV energy storage and PV power supply.
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appliances, the electric utility, the PEV and solar panels. We assume
the PEV battery is composed of a Li-ion battery pack and is
controlled by DC/AC converter in SHEMS. The power electronics are
designed to allow both bidirectional and unidirectional power flow.
The SHEMS is also used tomanage the power flow between the PEV
battery, home appliances, PV array and utility grid.
2.2. Historical data analysis

We analyse the PV power supply data and load data from a
single family home with PV array and a PEV (Tesla Model S with
85 kW h battery pack) in Santa Rosa, California, USA. Data is
collected between 2014-07-01 and 2015-03-31. The time resolution
of the data is 1 h. Under uncontrolled charging regime, hourly grid
power consumption Pgrid, PV power generation Ppv, PEV charging
power Pev, and home load demand Pdem are shown in Fig. 2. The
hourly home load demand varies from 0.19 kW to 3.99 kW. Except
themuch higher power consumption in the evening, the home load
demand is also large during the day. The hourly PV power supply
varies from 0 to 4.08 kW. We can observe that the PV power supply
is centralized from9:00 AM to 5:00 PM. and sometimes exceeds the
home power demand. The charging infrastructure is a dual charger
Fig. 2. Statistical hourly power (kW) data for Grid power, PV power supply, PEV bat-
tery charger power, and home load demand on each day (blue) and average (red). (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
(20 kW) [31], and we can see that most of the PEV battery charging
occur from 10:00 PM to 4:00 AM. The hourly grid power varies
from �2.28 kW to 23.12 kW. However, the PEV charging power is
large and the continuous charging time is relatively short. This PEV
charging regime may be harmful for the battery health and grid
stability. We try to apply a stochastic optimal control approach to
improve the system and synthesize an energy management
controller for the home.

2.3. System modeling

Considering the state of PEV, the power balance equation of a
smart home with PEV energy storage and PV power supply is

Pgrid;k ¼ SkPevc;k þ Pdem;k � Ppv;k; k ¼ 0;…;N � 1; (1)

Sk ¼
�
0 for td � k � ta
1 otherwise;

(2)

where Pgrid,k, Pdem,k, Pevc,k and Ppv,k are the electric power from the
grid, the power demand of the home, the PEV battery charger po-
wer, and the power supply of the PV array, respectively. Variable k is
the time index, and Sk denotes the PEV state at time k, i.e., plugged-
in (Sk¼1) or plugged-out (Sk¼0). The variables td and ta are the
plugging-out time and plugging-in time, respectively. In this paper
we assume the PEV plugs-out and plugs-in once a day. The
controller also must maintain PEV battery energy and charger po-
wer within simple bounds,

Emin � Ek � Emax; k ¼ 0;…;N; (3)

Pmin � Pevc;k � Pmax; k ¼ 0;…;N � 1; (4)

where Ek is the energy of PEV battery. Emin and Emax are the PEV
battery's minimal energy and maximal energy, respectively. Pmin

and Pmax are the PEV battery charger's minimal power andmaximal
power, respectively. The dynamics of the battery are given by the
following equation:

Ekþ1 ¼ Ek þ Dt
�
Pevc;k � h

��Pevc;k���; k ¼ 0;…;N � 1; (5)

E0 ¼ Einit ; (6)

where Dt, h and Einit are the time-step, lost efficiency of PEV charger
and initial PEV battery energy, respectively. The charge power is
assumed to be positive, by convention. Considering battery's
expensive price and limited lifetime, as well as the grid power
quality, the power from smart home to the grid should be limited as
follows

Pgrid;k � �Pmax
grid ; (7)

where Pmax
grid � 0 is the maximal power that can be provided to the

grid. The power from the smart home to the grid is assumed to be
negative, by convention. However, selling power back to the grid
can cause voltage increases in the distribution lines and reverse
power flows. This can violate voltage constraints - a topic not
addressed in this paper. In this paper, Pmax

grid is limited to be less than
3 kW.

3. Stochastic variables model development

Amajor challenge for this energy management system is to deal
with uncertainty in the five parameters: PEV plug-in time, plug-out
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time, charge required for mobility, PV power supply and home load
demand [32]. Given the statistics about the uncertain parameters,
this section describes the Markov chain [33,34] models of PEV
mobility and predictive models of PV power generation and home
load demand.
3.1. PEV trip time model

Considering the PEV to be plugged-in (Sk ¼ 1) or plugged-out
(Sk ¼ 0) at time k, we model the dynamics of PEV trip time by a
Markov chain. We assume the quantity p(k) is the transition
probability of plugging-out and q(k) is the transition probability of
plugging-in. Then the Markov chain can be written as

Pij;k ¼ Pr½Skþ1 ¼ jjSk ¼ i; k�; i; j2f0;1g2;
P10;k ¼ Pr½Skþ1 ¼ 0jSk ¼ 1; k� ¼ pðkÞ;
P11;k ¼ Pr½Skþ1 ¼ 1jSk ¼ 1; k� ¼ 1� pðkÞ;
P01;k ¼ Pr½Skþ1 ¼ 1jSk ¼ 0; k� ¼ qðkÞ;
P00;k ¼ Pr½Skþ1 ¼ 0jSk ¼ 0; k� ¼ 1� qðkÞ:

(8)

The start time of outgoing trips from home (or residential area)
is called the plugging-out time, and the plugging-in time is the end
of the last return trip. In order to study the randomness of trip time,
we investigated 10 individuals daily driving schedules over 3197
person-work days (10 individuals work in a university office in
Chengdu, China and their work hours are from 8:30 AM to 5:30
PM). According to the analysis of the daily driving schedules, the
temporal distribution of vehicle plugging-in and plugging-out
times is shown in Fig. 3-(a). The plugging-out time distribution is
concentrated around 6:45e8:30 AM, and corresponds to morning
commutes. The mean value of the plugging-out time is 7:40 AM
(7.66 h), and the standard deviation (std) is 0.57 h. The plugging-in
time distribution shows the highest peak around 5:30e8:00 PM,
the mean value is 6:38 PM (18.64 h), and the std is 0.89 h.
Fig. 3. Trip time and plugging-in PEV energy.
3.2. PEV battery energy model at plugging-in time

The randomness of PEV battery energy at plugging-in time is
affected by many factors, including the PEV battery energy at
plugging-out time, driving distance, driving styles, and more [35].
Here we only consider the effect of daily trip distance to compute
the PEV battery energy at plugging-in time as

Epi ¼

8>>>><
>>>>:

Emin; if Epo � d
Eff

� Emin;

Epo � d
Eff

; otherwise;

(9)

where Epi is the PEV battery energy at plugging-in time, Epo is the
PEV battery energy at plugging-out time, d is the trip distance, and
Eff is the overall electric drive efficiency which we assume equal to
6.7 km/kWh [36]. If given Epo and d, then Epi can be computed. Note
that Epi is lower-bounded by Emin, which prevents battery deple-
tion. Consequently, we can compute the conditional probability
distribution of Epi according to

mhg ¼ Pr
�
Epi ¼ Eh

��Epo ¼ Eg
�
; (10)

where Eh and Eg are sample values from the discretized set of
feasible PEV battery energy values,

Eh; Eg2S ¼
n
Ei ¼ Emin þ i,DE

���i2ℕ; Emin � Ei � Emax
o
: (11)

The quantity mhg is the probability that plugging-in energy
Epi¼Eh, given plugging-out energy Epo¼Eg. In the light of the sta-
tistical daily trip length distribution from 2009 US National
Household Travel Survey (NHTS) [37], the conditional probabilities
for the plugging-in energy Epi, given the plugging-out energy Epo
are shown in Fig. 3-(b).
3.3. PV power forecast

The literature provides a great deal of methods to model the PV
power and improve the PV efficiency [38e40], such as the
maximum power point tracking (MPPT) algorithm. It's difficult to
forecast the PV power generation because of the uncertainty of
solar flux and air temperature [18]. In this paper, a radial basis
function neural network (RBF-NN) forecast algorithm is utilized to
forecast day-ahead (future 24 h) PV power supply. RBF-NN is
selected because it captures the nonlinear input-output relations of
PV power supply and achieves reasonable forecast accuracy. First,
we assume that day-ahead air temperature information is directly
provided by weather forecast services. The air temperature and
time of day are selected as exogenous input to the RBF-NN model,
together with the endogenous input, the historical PV power gen-
eration. Thus, the input of the RBF-NN is designed as
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X ¼ ½Ta Td Ph�T ; (12)

where Ta is the day-ahead air temperature, Td is the day-ahead time
of day and Ph is the historical PV power generation.

We analyse the PV power supply data from the Santa Rosa
family home to forecast the PV power. PV power data is collected
between 2013-07-01 and 2015-03-31 and comes from Solar City
[41]. The first year of data is used for the network training, and the
remaining data is used for validation and comparison. Fig. 4-(a)
shows the result for 2 different days. The former one is with awarm
temperature in summer, and the latter one is with a cold temper-
ature in winter. Fig. 4-(a) exhibits the RBF-NN's accurate ability to
forecast the PV power supply.

The remaining data are used for validation, which in total con-
tains 274 forecast periods. Every day only forecasts once at the start
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3.4. Home load demand forecast

The literature is rich with machine learning and stochastic
modelling approaches for home load demand [42,43]. In this paper,
similar as the PV power supply, we use the RBF-NN to forecast the
day-ahead home load demand. The air temperature, future day of
week, and time of day are selected as exogenous input to the RBF-
NN model, together with the endogenous input, the historical
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consumption data collected from two houses located in Santa Rosa
(2014-07-01 to 2015-3-31) and Albany, CA (2013-07-01 to 2015-06-
30). The first half data is used for network training, and the second
half data is used for validation and comparison. The RMSE for each
process is calculated, and the empirical CDF of all the RMSEs are
demonstrated in Fig. 4-(c). It can be seen that 80% of the forecast
RMSEs are below 0.60 kW and 0.49 kW in Santa Rosa and Albany
data, respectively.
4. Optimization problem formulation

This section presents the SDP approach used for solving the
optimal power management problem for smart home. The objec-
tive is to manage power flow to minimize energy cost, which in-
cludes household electric power demand, PV power supply, PEV
battery charging and discharging. Other objectives are directly
applicable as well, e.g. minimize marginal power plant carbon
emissions, battery degradation, shifting grid load, etc..

Armed with the Markov chain modelling framework to incor-
porate statistics of the random processes (e.g. plugging-out time,
plugging-in time, PEV battery energy at plugging-in time) and
forecasting day-ahead PV power supply bPpv;k and home load de-
mand bPdem;k, we can now formulate an SDP. The block diagram of
the optimal controller is shown in Fig. 5. We use the PEV battery
energy Ek as the state variable and the PEV battery charger power
Pevc,k as the control variable. With the stochastic system charac-
terized by the pair fSk; Epig, we formalize the finite-time SDP [44] as

min
Pevc;k;Ek ;Sk

E
P
k¼0

N�1
ckDt

�
SkPevc;k þ bPdem;k � bPpv;k

	
s:t:

(13)

Ekþ1 ¼

8>>>><
>>>>:

Ek; Sk ¼ 0/Skþ1 ¼ 0
Proj

�
Epi

�Emax

Emin ; Sk ¼ 0/Skþ1 ¼ 1
Ek þ Dt

�
Pevc;k � h

��Pevc;k���; Sk ¼ 1/Skþ1 ¼ 0
Ek þ Dt

�
Pevc;k � h

��Pevc;k���; Sk ¼ 1/Skþ1 ¼ 1:

(14)

Eqns(1)�(11) are constraints of the optimization problem, and
in Eq. (13) ck is the time-varying electricity price [cents/kWh].
Smart home grid

Probabilities of 
PEV mobility

PV power 
forecaster

Home load 
forecaster

Td
Ppv

Day of 
week

SDP controller

Pevc,k Ek

Ta

Pdem

Pdem,kPpv,kSk
Epi

^ ^

Fig. 5. Block diagram of stochastic controller.
5. Results & discussion

This section analyzes the properties of the proposed energy
management system by comparing its performance with the un-
controlled charging regime. All the simulations are run on a PCwith
a 2.5 GHz Intel Core i5-2450M CPU and 4 GB of internal memory.
When the proposed SDP is implemented in the real word, the
optimal charging policy needs to be optimized by backward
recursion every time the PEV plugs in. The SDP computational time
is 4.21 s with 25 h look ahead horizon. The SDP is computed offline
from the smart home operation, and therefore real-time applica-
bility is not an issue for the SDP calculations themselves. The
resulting control law takes the form of a lookup table, which is
trivially simple to implement in real-time.

The time-varying electric price signal and transition probabili-
ties of trip time and length, day-ahead predicted PV power gener-
ation and home load demand are the inputs of the SDP control
algorithm. The time-varying electric price signals are taken from
the PG&E (Pacific Gas and Electric Company) EV plan [45]. We as-
sume the PEV charges only at home, and that the available charging
infrastructure is a Tesla single charger (10 kW) [31] to limit the
maximal charger power. Table 1 lists the parameter values used for
these optimization studies. All the simulations are run on a PC with
a 2.5 GHz Intel Core i5-2450M CPU and 4 GB of internal memory.

We assume the PEV is driven between work and home with
12 kWh battery energy demand (daily average PEV charging en-
ergy), pluging-out at 7:00 AM-8:00 AM, and plugging-in at 6:00
PM-7:00 PM. The results for arbitrary fiveweekdays (2015-03-23 to
2015-03-27) are shown in Fig. 6-(a).When optimally controlled, the
PEV charges from the grid when the electric price is low and dis-
charges to the grid when the electric price is high. At the same time,
the total power demand from the grid is reduced when grid load is
high, and is increased around midnight. Finally, this results in
shifting the overall house loads. The PEV always has enough energy
for driving in the morning. The energy of PEV battery varies from
38 kWh to 76 kWh (state of charge SOC from 0.45 to 0.89), and
remains in secure bounds for the battery health. The hourly energy
cost from 2015-03-23 (Mon) to 2015-03-27 (Fri) is shown in Fig. 6-
(b).

To demonstrate the potential financial benefits of the smart
home microgrids, the profits analysis for different arbitrary week-
days are summarized by Table 2, which examines the electric cost
from 2015-03-23 (Mon) to 2015-03-27 (Fri) and 2014-12-01 (Mon)
to 2014-12-05 (Fri). From 2015 to 03-23 (Mon) to 2015-03-27 (Fri),
the total home energy cost and the solar generation profits are
respectively 24.91 USD and 9.90 USD. In the uncontrolled case, the
PEV charging cost is 9.64 USD and the total energy cost is 24.65
USD. This can be compared with the optimal control casewhere the
PEV charging cost is�17.94 USD and total energy cost is�2.92 USD.
Table 1
System parameters.

Parameter description Symbol Value Unit

PEV Battery Energy Capacity Qeap 85 kWh
Maximum Battery Energy Emax 76.5 kWh
Minimum Battery Energy Emin 17 kWh
Maximum Charging Power Pmax

bat 10 kW
Minimum Discharging Power Pmin

bat
�10 kW

Maximum Power to grid Pmax
grid 3 kW

Lost efficiency of PEV charger h 0.05
Energy for day driving Pdriv 12 kWh
Pluging-out time td 7:00 a.m.e8:00 a.m.
Pluging-in time ta 6:00 p.m.e7:00 p.m.
Time Step Dt 1 hour



Fig. 6. From 2015-03-23 (Mon) to 2015-03-27 (Fri).

Table 2
Electricity cost (USD).

2015-03-23 to 2015-03-
27

2014-12-01 to 2014-12-
05

No
control

Optimal
control

No
control

Optimal
control

Home
Load

24.91 24.91 23.93 23.93

PV Profits 9.90 9.90 3.28 3.28
PEV 9.64 �17.94 3.70 �17.53
Total 24.65 �2.92 24.35 3.11
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The average daily energy cost is reduced by 5.51 USD when it is
optimally controlled. From 2014-12-01 (Mon) to 2014-12-05 (Fri),
the total home energy cost and the solar generation profits are
respectively 23.93 USD and 3.28 USD. In the uncontrolled case, the
PEV charging cost is 3.70 USD and the total energy cost is 24.35
USD. This can be compared with the optimal control case where the
PEV charging cost is �17.53 USD and total energy cost is 3.11 USD.
The average daily energy cost is reduced by 4.25 USD when it is
optimally controlled. This shows that optimal control of PEVs can
save significant amount of money.



Fig. 7. Simulation results for Nissan Leaf.

X. Wu et al. / Journal of Power Sources 333 (2016) 203e212210
Based on the parameters of Table 1, a different model of EV
(Nissan Leaf, the battery energy capacity is 24 kWh) is adopted. The
results for arbitrary five weekdays (2015-03-23 to 2015-03-27) are
shown in Fig. 7. If the user has a Nissan Leaf, the PEV charging cost
is�1.62 USD. The average daily charging cost is�0.324 USD for Leaf
and it is �3.59 USD for Tesla Model S. This shows that the PEV with
larger energy capacity can save significant amount of money.

To demonstrate the potential financial benefits of PEV and PV to
smart homemicrogrids, we consider the annual profits for different
models of PEV. The statistical hourly power data for home load
demand, PV power supply, and Grid power on each day in one year,
as shown in Fig. 8, are used. The mean value of daily house electric
Fig. 8. Statistical hourly power (kW) data for home load demand, PV power supply, and Gr
colour in this figure legend, the reader is referred to the web version of this article.)
power demand cost is 1.47 USD/day, and the total yearly cost is
535.23 USD. The mean value of daily PV power generation profits is
1.87 USD, and the total yearly profits is 683.31 USD. We assume the
PEV daily power need is 12 kWh. Here, we analyse the financial
benefits by comparing three different PEV models. For Case 1, the
user has a PEVwithout optimal control, the total daily PEV charging
cost is at least 1.2 USD (10 cents/kWh); for Case 2, the user has a
Tesla Model S (85 kWh battery pack) with the proposed SDP
optimal control; for Case 3, the user has a Nissan Leaf (24 kWh
battery pack) with the proposed SDP optimal control. The analysis
summarized by Table 3 examines the annual electric cost with
different PEV models.
id power on each day (blue) and average (red). (For interpretation of the references to



Table 3
Annual electric cost (USD).

Year total Daily average

House Demand 535.23 1.47
PV Generation �683.31 �1.87
PEV with No Control 438 1.2
Grid with No Control 289.92 0.79
Model S with SDP �993.01 �2.72
Grid with Model S �1141.1 �3.13
Leaf with SDP �71.95 �0.20
Grid with Leaf �220.03 �0.60

X. Wu et al. / Journal of Power Sources 333 (2016) 203e212 211
It can be seen, without optimal control, the mean value of the
daily and the total yearly electricity costs are 0.79 USD/day and
289.92 USD, respectively. On the other hand, with the proposed
optimal control and Tesla Model S, the mean value of the daily and
the total yearly electricity costs are �3.13 USD/day and �1141.1
USD, respectively. Similarly, with the proposed optimal control and
Nissan Leaf, the mean value of the daily and the total yearly elec-
tricity costs are �0.6 USD/day and�220.03 USD, respectively. Thus,
over one year period, the total electricity cost for Tesla Model S and
Nissan Leaf with SDP control are 493.6% and 175.89% less than
those without optimal control, respectively. The energy manage-
ment strategy is exploiting price arbitrage by selling electricity to
the grid when it is of high price and buying electricity from the grid
when it is of low price.
6. Conclusion

This paper develops a stochastic optimization framework for
energy management of a smart home with PEV energy storage and
PV power supply. An SDP problem is formulated to optimize the
electric power allocation in the PEV battery, home load demand, PV
power supply and utility grid. The strategy explicitly takes into
account probability distributions of trip time and trip length, and
prediction of home load demand and PV power production. We
analyse the potential cost savings of the smart home with PEV
energy storage and PV power supply under SDP control, compared
to the uncontrolled PEV charging regime. We find that SDP control
can bring significant cost savings for customers and load shifting for
the grid. From our simulation study, we concluded that over one
year period, the total electricity cost with our proposed SDP optimal
control for Tesla Model S (85 kWh battery pack) and Nissan Leaf
(24 kWh battery pack) are 493.6% and 175.89% less than those
without the optimal control, respectively.

To the best knowledge of the authors, this is the first study in the
literature modelling PEV energy storage availability by incorpo-
rating multiple random variables into a SDP control formulation of
a single smart home energy management, which is the main nov-
elty of this paper. Future work could incorporate multi-objective
optimization such as improving the battery life, or supplying fre-
quency regulation and spinning reserves. This paper only considers
a single home, future work will look at larger microgrids, which
include a larger scale DG unit and EVs.
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