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Abstract

Methods for Optimal Charging of Large Fleets of Electric Vehicles

by

Caroline Le Floch

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Professor Scott Moura, Chair

Today’s electric grid must be transformed to meet modern consumption behaviors and safely
integrate renewable energy sources. This has led to major efforts to develop grid-scale energy
management solutions and ensure safety and reliability of our modern power network. In particu-
lar, large penetrations of Plug-in Electric Vehicles (PEVs) are expected increase energy needs and
peak consumption, which would bring new challenges for utilities and grid operators.

In this work, we develop optimization methods to coordinate the charging of large fleets
of PEVs in distribution grids. We show that different methods should be applied, based on the
infrastructure requirements and the objective of the controller.

The first Chapter Optimal Charging of Fleets of Electric Vehicles with Discrete Charging
rates: PDE Modeling and Control Techniques presents a continuum modeling framework to coor-
dinate PEV charging with discrete charging rates. We consider PEVs as loads, which diffuse along
the State Of Energy (SOE) axis, and can be in three different categories: charging, discharging or
idle. We use a discretized form of Partial Differential Equations (PDEs) to model the dynamics of
the system and control the transitions between each category. The second Chapter Dual Splitting
Framework for Optimal Charging of Fleets of Electric Vehicles with Continuous Charging rates
proposes a tailored distributed optimization method to coordinate PEV charging for load shaping.
Three iteration methods are presented and their convergence characteristics are detailed. The third
Chapter Electric Vehicle Charging in the Smart Grid: Plug-and-Play Model Predictive Control
techniques studies a voltage-regulation scenario for PEV charging. Power flow and distribution
grid constraints are modeled, and PEV charging is controlled with Plug-and-Play Model Predic-
tive Control. Finally, the final chapter Behavioral study of Demand Response programs studies the
impact of non rational choices on energy consumption and on the success of Demand Response
programs.
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Chapter 1

Introduction

1.1 Background: traditional power network and Smart Grids

1.1.1 Power network: definition and challenges
The power network is one of the most complex, large and old infrastructure we have ever built in
our modern societies. In the US, the electrical grid was built more than 80 years ago, with the idea
that centralized energy sources would offer great economy of scale in order to produce electricity.
As a result, our electrical grid has been built to transfer the electricity from vast and distant energy
sources, to the end customers. It is traditionally composed of a transmission network that transfers
the electricity long distances through high voltage lines, and a distribution system where the power
is stepped down to the required service voltage, and the electricity transported to consumption
nodes. The US power grid is composed of 420,000 miles of high voltage lines, which connect
power plants and transformers. Its aging infrastructure has required extensive upgrade, and the
2009 American Recovery Act [2], enacted 4.5 Billion dollars investment for grid upgrade, in order
to enhance grid reliability. On the other hand, a lot of efforts have been made to reduce CO2
emissions from electricity production, and increase penetration of renewable energy sources [130].
Renewable energy can, in theory, provide 3078 times the global energy needs at low economic and
environmental costs [39], which provides great advantage compared to traditional sources. Figure
1.1 shows the share of US energy consumption from 1778 and 2016, and illustrates the modern
trend of using more renewable energy. Figure 1.2 shows the portfolio of energy production sources
in the US in 2015, when 10% was coming from renewable energy. Although this trends shows great
promises for the environment, it comes with two main challenges [28, 80]:

• Renewable energy sources, such as solar and wind, are variable, intermittent, unlike tradi-
tional sources that provide a controllable, steady stream of power. This creates new needs to
predict renewable energy production, and provide Demand Response (DR) services to adapt
the demand to the uncontrollable source.

• More and more energy sources are distributed, i.e. generating power at the distribution
level, requiring the electricity system to perform in ways for which it was not designed.
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Figure 1.1: Share of US energy consumption from 1778 to 2016 (source: US energy information).

Distribution generation can significantly impact the flow of power and voltage conditions at
customers and utility equipments.

In this rapidly changing context, grid modernization has become a key factor to safely integrate
new energy consumption and production habits.

1.1.2 Modernization of the power network: the “Smart grid”
For the past years, the concept of smart grid has emerged, revolutionizing the traditional vision
of the electrical grid. According to the US Department Of Energy: “Smart grid generally refers
to a class of technology people are using to bring utility electricity delivery systems into the 21st
century, using computer-based remote control and automation. These systems are made possible
by two-way communication technology and computer processing that has been used for decades
in other industries” [1]. Figure 1.3 illustrates major goals, technologies and transformations asso-
ciated with the modern smart grids, as the US Department Of Energy defines them in [31]. The
smart grid is based on two-way communication between utilities and customers, which relies on
advanced metering infrastructure. With more monitoring and control capabilities, the smart grid
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Figure 1.2: US energy consumption by energy source in 2015 (source: US Energy Information).

can be operated to safely integrate new technologies, such as distributed generation and electric ve-
hicles. This opens opportunities and research questions to define novel grid management methods,
that schedule loads and grid-control devices in order to improve network reliability, while avoiding
major upgrades. In that context, Demand Response (DR) and Demand Side Management (DSM)
programs are designed by utilities to influence or control energy demand. This can be achieved
through price incentives and automated load control. With DR programs, loads become additional
control variables to manage the power network.

1.2 The Vehicle Grid Integration Challenge

1.2.1 Challenge
Plug-in Electric vehicles (PEVs) are types of vehicles that are powered by electricity. They fall into
two categories: plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs). As
shown in Fig 1.4, their number has been growing for the past years. The two main electric car mar-
kets are China and the United States, and seven countries had reached over 1% EV market share in
2015 (Norway, the Netherlands, Sweden, Denmark, France, China and the United Kingdom). The
electric vehicle is a form of clean transportation, which is expected to reduce the environmental
impact of the transportation sector by shifting fuel consumption towards electricity consumption.
However, as their number increases, aggregate PEV consumption rises and the risk to strain the
grid becomes more and more serious. Past research has found that uncontrolled EV charging could
result in 8% increase of electricity consumption and 11% increase of peak consumption in Cali-
fornia by 2025 [49]. Following this observation, utilities are becoming more and more concerned
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Section NINE : Continued 
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TODAY’s GRID. AND TOMORROW’s.

Characteristic Today’s Grid Smart Grid

Enables active participation  

by consumers

Accommodates all generation  

and storage options

Enables new products, services  

and markets

Provides power quality for the  

digital economy

Optimizes assets & operates 

efficiently

Anticipates and responds to system 

disturbances (self-heals)

Operates resiliently against attack  

and natural disaster

Consumers are uninformed and  

non-participative with power system

Dominated by central generation- many 

obstacles exist for distributed energy 

resources interconnection

Limited wholesale markets, not well 

integrated - limited opportunities for 

consumers		

Focus on outages - slow response to power 

quality issues

Little integration of operational data with 

asset management - business process silos

Responds to prevent further damage- focus 

is on protecting assets following fault

Vulnerable to malicious acts of terror and 

natural disasters

Informed, involved, and active  

consumers - demand response and 

distributed energy resources.

Many distributed energy resources  

with plug-and-play convenience focus  

on renewables

Mature, well-integrated wholesale 

markets, growth of new electricity 

markets for consumers		

Power quality is a priority with a variety 

of quality/price options - rapid resolution 

of issues

Greatly expanded data acquisition of 

grid parameters - focus on prevention, 

minimizing impact to consumers

Automatically detects and responds 

to problems - focus on prevention, 

minimizing impact to consumer

Resilient to attack and natural disasters 

with rapid restoration capabilities 

Figure 1.3: Today’s grid versus tomorrow’s grid, according to the US Department of Energy.
Source: US Department Of Energy [31]

about the potential stresses and performance degradations that may occur in distribution systems
with large penetrations of EVs. Uncontrolled and random EV charging can cause increased power
losses, overloads and voltage fluctuations, which are all detrimental to the reliability and secu-
rity of the power network [33, 74, 58]. On the contrary, PEVs can be integrated into the smart
grid, communicate with other loads and utilities, and managed to charge at strategic times and
places for the power network. In particular, PEV fleets provide a compelling opportunity for
supplying demand-side management services in the smart grid. Namely, a vehicle-to-grid (V2G)
capable PEV communicates with the grid, stores energy, and can return energy to the electric
grid. If properly managed, PEVs can enhance energy infrastructure resilience, enable renewable
integration, and reduce economic costs for consumers and energy providers [105]. In addition to
these societal-level infrastructure and environmental benefits, V2G may provide additional revenue
streams to PEV owners [62]. Underscoring this opportunity, U.S. personal vehicles are parked and
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Figure 1.4: EV sales and market share in a selection of countries and regions, 2015. The penetra-
tion of PEVs is growing worldwide [101]

un-used 96% of time [69], which offers great flexibility for delaying and intelligently scheduling
EV charging. Two main concepts have emerged to describe these smart charging opportunities
[126]: Vehicle To Home (V2H) refers to power and communication exchange between one PEV
and one home, and Vehicle To Grid (V2G) refers to power and communication exchange between
PEVs and the electricity grid. A single PEV can generally provide 5-20 kW, which is insufficient
to participate in power grid markets. However, populations of PEVs can be aggregated to collec-
tively provide grid services [23], and V2G is most often considered in an aggregation scenario.
Next sections give more details about V2H and V2G concepts.

In this dissertation, we consider the latter case of V2G and aggregation. The first goal of this
dissertation is to schedule large fleets of PEVs, and maximize their benefits on the grid. Lots of pa-
rameters, including PEV characteristics, type of charging infrastructure and computation time must
be considered before selecting a modeling and optimization framework. This manuscript studies
three cases, namely a case with discrete charging rates, a case with continuous charging rates and
a combined case. We develop case-specific methods that effectively solve the PEV scheduling
problem in each scenario.

1.2.2 Vehicle To Home (V2H)
In a V2H framework, one vehicle is connected to one home or building, and a controller manages
the combined home/PEV consumption through an Energy Management System (EMS). The EMS
collects and analyzes data from various loads, appliances or energy sources, which may include
photovoltaic generation, stationary storage, smart HVAC system and remotely controllable appli-
ances. In most cases, the objective of the EMS is to minimize the energy consumption cost of the
building. Specific applications include optimization with time varying electricity rates [24, 136,
137], demand-charge reduction [98] or participation in DR programs [102, 140].
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1.2.3 Vehicle To Grid (V2G) and aggregation
In a V2G framework, PEVs can communicate with the electricity grid and provide different types
of grid regulation services. Because one PEV cannot participate in electricity markets alone, it
is necessary to consider aggregation and coordination of fleets of PEVs in that context [23]. A
growing body of literature addresses design of smart charging algorithms for PEV aggregation and
control. In that case, an aggregator gathers signals from all PEVs in the fleet and from the power
network, and schedules PEV charging to achieve grid regulation objectives (see Fig 1.5). The main
challenge is managing a large population of distributed PEV resources while ensuring (i) compu-
tational tractability, (ii) PEV drivers’ mobility requirements, and (iii) power system constraints.
Several models have been proposed to model and solve this problem. The proposed optimization
and control techniques highly depend on assumptions about the charging infrastructure: either a
continuous or discrete charging rate.

In the first case, the charging rate takes values in a continuous range. Because charging
power is modeled as a continuous function, lots of researchers seek to define convex optimiza-
tion programs, and leverage convex optimization methods to efficiently solve this PEV scheduling
problem. Both centralized and decentralized methods have been proposed to address this ques-
tion. Centralized algorithms [29], [119], utilize a central infrastructure to communicate with each
agent, collect information, and compute the optimal load profile of the fleet. The challenges for
centralized methods are scalability, with respect to communication, computation and privacy. In-
deed, as the number of agents grows, these methods require heavy communication, high memory
and computation time. In distributed optimization algorithms each PEV solves a local problem
and communicates information to its neighbors and/or a coordinator [106]. Previous work has
studied various aspects of load shaping and PEV smart-charging including filling the night valley
of loads (valley filling) in [86, 47], more general driving behaviors in [127, 107], market bidding
strategies and market uncertainty in [133, 52, 15] and grid constraints such as transformer over-
heating [115, 134] and local distribution grid constraints [26, 125, 84]. A wide range of distributed
algorithms has been used including game theoretic approaches and Nash Equilibrium in [86], prox-
imal methods in [47], Alternating Direction Method of Multipliers (ADMM) in [127, 107], regret
minimization in [85] and stochastic protocols in [48].

However, in reality, the vast majority of electric vehicle supply equipments and charging
standards only enables a discrete range of charging rates, which makes the above methods unsuit-
able. For example, the North American standard SAE J1772 defines two types of charging rates:
AC Level 1 chargers provide charging through 120V AC plugs and AC Level 2 chargers provide
charging through 240V or 208V AC plugs [122]. In practice, this leads to combinatorial opti-
mization problems, where the aforementioned distributed methods are not applicable, and where
direct centralized algorithms are intractable to study large systems. In this case, available meth-
ods include unit commitment [112], simulation-based algorithms [29], stochastic protocols [48]
or dynamic programming [110]. However, for all these methods, the problem becomes harder to
solve as the number of PEVs grows: either the convergence time increases or the optimality of the
computed solution decreases.

The second goal of this dissertation is to to develop optimization techniques that ensure com-
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putational feasibility of PEV scheduling methods. Namely, an aggregator may have limitation
requirements for the computational memory or time it can allocate to the scheduling decision.
These constraints need to be taken into account in the selection of the method. For the contin-
uous charging rate scenario, we define a tailored method for the distributed PEV smart charging
problem and analyze convergence to yield explicit linear rate-of-convergence bounds, providing
precise guidance on the relationship between iterations, error and algorithm parameters. For the
discrete charging rate, we develop a modeling framework that is computationally tractable for a
large number of agents. We define novel continuum models that are based on Partial Differential
Equations (PDE), and whose complexity does not depend on the number of PEVs in the fleet.

1.2.4 A more general approach: PEV aggregation within the smart grid
context, technologies and behaviors

Although PEV fleets are expected to have a big impact, and exert strong influence in the future
of power networks, their benefit will only be higher if considered in the broader context of the
smart grid. First, PEV charging should be managed in coordination with other loads or control
devices. Second, PEV charging should consider user choices, which often are non-rational in
the case of energy consumption behaviors. In particular the effectiveness of price-based demand
response programs is still under debate, and past trials have resulted in mixed conclusions [96].
Faruqui et al review 15 price-based experiments and find that time-of-use rates induce a drop in
peak demand that ranges between 3 to 6 percent whereas critical-peak pricing tariffs induce a drop
in peak demand that ranges between 13 to 20 percent [44]. Conversely, Jessoe et al [60] study a
time-of-use experiment through a regression discontinuity framework, and shows that the impact
is opposite from what was expected, i.e. households tend to reduce energy consumption when the
price goes down. These findings suggest that PEV-based demand response and PEV aggregation
models are likely to produce wrong results if they assume that PEV owners schedule their charging
based on cost reduction only. Therefore, it is essential to consider more realistic user behaviors to
understand and predict how drivers will respond to incentive signals sent by the aggregator.

The third goal of this dissertation is to propose advanced methods that improve our under-
standing of DR behaviors. Over the past 20 years, more than twenty DR trials have been conducted
worldwide. These programs seek to reduce or shift household electricity consumption through
various incentives or treatments, including time of use rates and information technologies. These
trials have highlighted energy consumption behaviors, that can be extended to the case of PEV
charging behaviors. These findings can be leveraged to effectively plan PEV-based DR programs,
and better predict the impact of PEV aggregation. Our vision of PEV aggregation is illustrated in
Fig 1.5, where we consider that the most important parameters are behavior choices and charging
infrastructure (i.e. continuous versus discrete charging rates).



CHAPTER 1. INTRODUCTION 8

Behavior	
choices	

Charging	
Infrastructure	 Electric	Grid	

+	

+	

+	

Aggregator	
Communica8on	

Control	

Figure 1.5: The PEV aggregator communicates with PEVs and the power network in order to
schedule and control PEV charging

1.3 Technical challenges and summary of contributions
This dissertation addresses modeling techniques and mathematical methods to solve the optimal
PEV charging problem in the case of large fleets of electric cars. The main challenge is to define
models and techniques that incorporate all aspects of such a complex system, but remain solv-
able for large scale systems. The dissertation proposes four types of contribution to address this
challenge:

• A novel modeling technique for fleets of PEVs with discrete charging rates (Chap 2)

– We propose a novel state-space modeling framework for large fleets of PEVs, via ag-
gregation and continuum modeling.

– We formulate a Linear Quadratic Regulator (LQR), and use Model Predictive Control
(MPC) techniques to track a power reference signal with PEVs. To the best of our
knowledge, power and voltage signal tracking with MPC methods has been proposed
for continuous charging rate [7, 76] or semi continuous charging rate [51], but this is
new to the field of PEV control with discrete charging rate.

• Dual splitting techniques with explicit convergence bounds (Chap 3)

– We derive a distributed dual-splitting optimization scheme that exploits the unique ag-
gregate charging problem structure (i.e. a summed objective, strong convexity, and
independent constraints). We additionally analyze convergence to yield explicit linear
rate-of-convergence bounds, providing precise guidance on the relationship between
iterations, error and algorithm parameters. To the best of our knowledge, this is the
first comprehensive convergence analysis of the coordinated PEV charging problem.
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– We propose stochastic variations of the main dual-splitting algorithm. These varia-
tions provide communication and computation trade-offs, thus providing options for
practitioners.

• Plug & Play MPC methods for combined voltage regulation and load shaping services
(Chap 4)

– We present a novel P&P MPC scheme that optimally schedule loads to be connected
and shape current loads while satisfying power network constraints at all times. We
model power flows in the distribution network using the Second Order Cone relaxation
of the DistFlow equations (see [41]) and improve the accuracy of the model compared
to the linear approximation used in [7].

– The controller is applicable to different types of loads. In particular, we define two
types of loads: deferrable loads that can be delayed but have a fixed profile, and
shapeable loads that have a flexible profile but need a fixed amount of energy. The
proposed algorithm satisfies users’ requirements by ensuring that every flexible load
reaches the desired energy level at the desired time and any deferrable load demand is
met before its deadline.

• Integrating Demand Response behavioral choices (Chap 5)

– We present a novel method to study DR program impacts. We segment households
based on the energy product that is most likely to have a positive impact on their energy
consumption behavior.

– Previous work has considered energy segmentation for DR enrollment, but to the best of
our knowledge, prior literature does not propose methods to predict both likelihood of a
consumer enrolling in a DR program, and the resulting response to DR events. We add
to previous literature by studying more comprehensive DR behaviors that describe how
households react when presented with DR opportunities. For the first time, we study
DR customer segments based on both enrollment choices and energy consumption, i.e.
energy saving and peak shifting behaviors.

1.4 Organization of the dissertation
In this dissertation we develop methods for optimal charging of large fleets of electric vehicles. In
Chapter 2 we develop Partial Differential Equation models to solve the PEV charging problem in
the case of discrete rates. In Chapter 3 we design distributed protocols to solve the PEV scheduling
problem in the case of continuous charging rates. We prove that the method converges to the
optimal solution and provide convergence rate analysis, that can be used to adapt the method in
case of limited computation capabilities. In Chapter 4, we combine the cases above, and develop
Plug & Play Model Predictive Control (MPC) technique, which can be used for fleets with both
continuous and discrete charging rates. This method enlarges the scope of the previous chapters
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by jointly scheduling loads, battery banks and capacitors in a distribution grid. In Chapter 5, we
address the question or electricity price sensitivity, with the goal of developing more realistic user
behavior models. We analyze a Demand Response program in Australia, and provide customer
segmentation techniques to target DR programs. We hope this can be used and extended to the case
of PEV-based DR programs, and result in more efficient and realistic PEV aggregation models.
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Chapter 2

Optimal Charging of Fleets of Electric
Vehicles with Discrete Charging rates: PDE
Modeling and Control Techniques

2.1 EV charging with discrete charging rates
Today, the majority of electric vehicle supply equipment and standards only enable a discrete
range of charging rates. For example, the North American standard SAE J1772 defines two types
of charging rates: AC Level 1 chargers provide charging through 120V AC plugs and AC Level
2 chargers provide charging through 240V or 208V AC plugs [122]. In practice, optimal PEV
charging with discrete charging rates can be formulated as combinatorial optimization problems.
In this case, available methods include unit commitment [112], simulation-based algorithms [29],
stochastic protocols [48] or dynamic programming [110]. However, for all these methods, the
problem becomes harder to solve as the number of PEVs grows: either the convergence time
increases or the optimality of the computed solution decreases.

We adopt a significantly different approach for PEV charging with discrete charging rates
that utilizes partial differential equations (PDEs). Rather than modeling each agent individually,
we use aggregation methods to model and control the population dynamics [12, 71]. Continuum
models have been largely applied to the case of Thermostatically Controlled Loads (TCLs) where
PDEs represent the diffusion of air conditioning loads′ temperatures within the deadbands of their
thermostats [11, 88, 92]. In this chapter we use a similar modeling framework and consider PEVs
as loads, which diffuse along the State Of Energy (SOE) axis. We utilize a discretized form of
PDEs and propose a novel state space model, where we can control flows between different discrete
charging rates. Contrary to other methods, the complexity of our problem does not depend on the
number of agents, and the accuracy of the model increases as the number of PEVs increases.
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Table 2.1: PDE aggregation symbols

Symbol Description
x PEV battery SOE
t Time
u(x, t) Density of charging PEVs (nb of PEVs per SOE)
v(x, t) Density of idle PEVs (nb of PEVs per SOE)
w(x, t) Density of discharging PEVs (nb of PEVs per SOE)
σi→c(x, t) Flow of PEVs from Idle to Charge
σi→d(x, t) Flow of PEVs from Idle to Discharge
σi→Or(x, t) Net Flow of PEVs from Idle to On Road

2.2 Modeling aggregation of PEVs with PDE techniques
We seek to model a large homogeneous population of N discrete PEVs as a continuous represen-
tation, mathematically represented by three coupled PDEs. PEVs in the population fall into three
discrete states:

• Charging: a PEV receives energy from the grid (Grid-to-Vehicle or G2V)

• Idle: a PEV is plugged-in but does not charge, nor discharge.

• Discharging: a PEV gives energy to the grid (Vehicle-to-Grid or V2G)

Each discrete state will be described by a transport PDE, i.e. a first order hyperbolic PDE. The
aggregator controls how PEVs switch from one discrete state to another. This ultimately renders
coupling terms and forms a system of three coupled transport PDEs.

2.2.1 PDE model
Consider a large homogeneous population of plugged-in PEVs over the State of Energy (SOE)
interval [0,1] at some fixed time, as visualized by Fig. 2.1. PEVs can be in three states: charge
u(x, t), idle v(x, t), and discharge w(x, t). The σ terms model PEVs moving between individual
states σi→c,σi→d , and between states and the environment, i.e. checked-in or out by drivers on the
road σi→Or. The three states described above (i.e. charging, idle and discharging) only account for
plugged-in PEVs. Hence, this framework does not model the dynamics of cars that are on the road
(uncontrollable). Instead, the contribution coming from departures and arrivals is modeled by the
uncontrollable flow σi→Or.

To derive this aggregated PDE population model, we consider a simple PEV battery model.
Denote the i’th PEV battery SOE and power by xi(t) and Pi(t), respectively. Then a simple battery
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Figure 2.1: PEV population state dynamics (see zoom on Fig. 2.2)
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dx 

= q(x,t)u(x,t) q(x+dx,t)u(x+dx,t) 

σ(x,t)dx 

F(x) F(x+dx) = 

Figure 2.2: Zoom over an infinitesimal segment of charging PEVs: flows between x and x+dx

model is given by

ẋi(t) =
ηm(xi)

Emax
Pi(t), i = 1, · · · ,N, (2.1)

m =

{
1 if Pi(t)≥ 0,
−1 if Pi(t)< 0,

(2.2)

where Emax, η , N are parameters that represent the battery energy capacity, power conversion
efficiency, and PEV population size. Efficiency η ∈ [0,1] is generally a function of SOE xi. We
assume Emax and η are homogeneous across the entire population. In this chapter we choose to
express x in terms of SOE instead of SOC because dx/dt is linearly related to power. This provides a
linear model (see Eq.2.1) that is amenable to the aggregation process we employ to derive a PDE.
Note that unit-wise, dx/dt is normalized kWh. Furthermore, the cumulative power consumption
from charging and power generation from discharging is given, respectively, by
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Pc(t) = ∑
N
i=1 Pi ·1(Pi > 0), Pd(t) = ∑

N
i=1 Pi ·1(Pi < 0), (2.3)

where 1(·) is the indicator function. More complex battery models could be considered in future
work.

Consider an infinitesimal segment of u(x, t) as shown in Fig. 2.2. The number of charging
PEVs at SOE level x at time t is denoted by u(x, t) and charge at rate qc(x, t) = η(x)/Emax ·P(t).
We seek to model the evolution of the number of charging PEVs contained in the infinitesimal
volume between x and x+ dx. Let F(x, t) denote the flow of PEVs at SOE x and time t, the
entering flow and exiting flow are respectively:

F(x, t) = qc(x, t)u(x, t), (2.4)
F(x+dx, t) = qc(x+dx, t)u(x+dx, t). (2.5)

An additional flow of PEVs from the idle state to charging state are denoted σi→c(x, t) (see Fig.
2.1). As illustrated in Fig. 2.2, u(x, t)dx is an approximate measure of the number of PEVs with
SOE between x and x+dx at time t. Therefore, the conservation law during the infinitesimal time
interval dt gives:

[u(x, t +dt)−u(x, t)]dx = (2.6)
qc(x, t)u(x, t)dt−qc(x+dx, t)u(x+dx, t)dt +σi→c(x, t)dt.

In Eq. (2.6), PEVs should pass through the idle state to go from the G2V state to the V2G state.
When dt→ 0 and dx→ 0, the relation becomes:

∂u
∂ t

(x, t) =− ∂

∂x
[qc(x, t)u(x, t)]+σi→c(x, t). (2.7)

PDEs for the idle and discharging are similarly derived as:

∂v
∂ t

(x, t) =−σi→or(x, t)−σi→c(x, t)−σi→d(x, t), (2.8)

∂w
∂ t

(x, t) =
∂

∂x
[qd(x, t)w(x, t)]+σi→d(x, t). (2.9)

2.2.2 Boundary Conditions
For the system to be well posed, we need to define boundary conditions at x = 0 for u(x, t) and
x = 1 for w(x, t) [124]. We set the following Dirichlet conditions:

• u(0, t) = 0: no flow of charging PEVs from the SOE range x≤ 0.

• w(1, t) = 0: no flow of discharging PEVs from the SOE range x≥ 1.
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Figure 2.3: Evolution of the uncontrolled system of transport PDEs for SOE ∈ [0.5,1]. All G2V
PEVs charge (transported towards high SOE values), and V2G PEVs discharge (transported to-
wards low SOE values).

In addition, we must define boundary values for qc(x, t) and qd(x, t) to ensure physical meaning of
the system:

• qc(1, t) = 0: no charging at x = 1.

• qd(0, t) = 0: no discharging at x = 0.

Figure 2.3 illustrates the PDE dynamics with the above boundary conditions. It shows the un-
controlled evolution of the PEV fleet during four hours when the boundaries of the system are
SOE ∈ [0.5,1]. In this case σi→c = σi→or = σi→d = 0. All G2V PEVs charge until they reach
SOE = 1. Then they are transferred to the Idle category. Similarly, V2G PEVs discharge until
SOE = 0.5. Then they are transferred to the Idle category. Figure 2.3 shows that PEVs tend to
accumulate in the Idle category at the boundary points SOE = 0.5 and SOE = 1.

2.2.3 Dynamic System Properties
In this section we verify the conservation of mass (i.e. the conservation of PEVs in the system)
when there is no external flow, σi→Or = 0.

Proposition 1. The system defined by the coupled dynamics (2.7), (2.8), (2.9) and the boundary
conditions in Section 2.2.2 verifies the following property when σi→Or = 0:

∂NbPEVs(t)
∂ t

= 0

where NbPEVs(t) =
∫ 1

0
[u(x, t)+ v(x, t)+w(x, t)]dx



CHAPTER 2. OPTIMAL CHARGING OF FLEETS OF ELECTRIC VEHICLES WITH
DISCRETE CHARGING RATES: PDE MODELING AND CONTROL TECHNIQUES 16

Proof. When σi→Or = 0, summing Eq (2.7), (2.8) and (2.9) leads to:

∂

∂ t
(u+ v+w)(x, t) =

∂

∂x
(−qcu+qdw)(x, t) (2.10)

By integrating each term of on x ∈ [0,1], we obtain:

d
dt

NbPEVs(t) =
[
(−qcu+qdw)(x, t)

]1

x=0
= 0 (2.11)

where Eq. (2.11) comes from the boundary conditions defined in Section 2.2.2.

2.3 Discretization and validation

2.3.1 Discretization
In the following sections we will discretize the PDEs. The model is discretized using the high-
resolution scheme with a Superbee flux limiter adapted to variable-coefficient linear transport
equations from [75, Ch. 9, S. 4]. Practically, this is an upwind scheme with high-resolution
corrections that makes it second-order in space.

2.3.2 V2G-Sim
We assess the aggregate PDE model’s accuracy against the Vehicle-to-Grid Simulator (V2G-Sim)
developed by the Grid Integration Group at Lawrence Berkeley National Laboratory [132]. V2G-
Sim is an agent-based simulator that models the driving and charging behavior of individual PEVs
and their grid impact. The necessary inputs for V2G-Sim are vehicle characteristics (e.g., battery
capacity, battery charging model, powertrain parameters), driving schedules (e.g. duration of ac-
tivities and drive cycles), and charging infrastructure (e.g. location of chargers, charging rate). The
simulator is initialized with statistical data for trip length, departure times, and destination types
derived from the 2009 National Household Travel Survey (NHTS) [131].

2.3.3 Validation method
The 2009 NHTS dataset includes trips from 17805 vehicles in California during a week-day. We
study four cases, which differ with respect to charging rates and control algorithms. PEVs param-
eters are adopted from the Nissan Leaf with battery energy capacity 26.8 kWh.

The first control algorithm is the standard open-loop strategy: vehicles begin to charge as
soon as they plug in, and stop when they are fully charged. The second control algorithm includes
V2G services. We apply a rudimentary V2G control algorithm to validate the PDE model: every
PEV discharges during peak hours (6pm to 9pm) if it has sufficient charge (SOE > 0.6) and PEVs
stop charging if SOE > 0.95.
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Table 2.2: Mean Normalized Error over Time

Case Mean e(t) over time
L1 Open Loop 0.011

L1 V2G 0.023
L2 Open Loop 0.002

L2 V2G 0.028

We assume the charging/discharging power is constant with respect to SOE, which is valid
for the low battery C-rates (normalized charge rates) considered here. We study two charging rates:
Level 1 (1.44 kW) and Level 2 (6.6 kW).

2.3.4 Validation results
We test our model for a 24 hour period in four different cases: {L1 charger, L2 charger } ×
{open loop, V2G control}. In every case, we use a 0.01 SOE step. Since we need to satisfy the
Courant Friedrichs Lewy (CFL) condition qdt

dx ≤ 1 [75], time step sizes differ for L1 chargers and
L2 chargers. Namely, we require a 11.4 minute interval for L1 chargers (120 time steps) and a 2.4
minute interval for L2 chargers (601 time steps).

We compute the L2 norm of the difference between the PDE model and the V2G-Sim distri-
bution as

e(t) =
||(u+ v+w)PDE(·, t)− (u+ v+w)V 2Gsim(·, t)||2

||(u+ v+w)V 2Gsim(·, t)||2
, (2.12)

where fPDE refers to the values from the aggregated PDE model and fV 2Gsim refers to V2G-Sim.
Table 2.2 provides the average normalized error over the 24 hour period. The PDE model

approximates the SOE distributions with an average normalized error of less than 3% and is more
accurate for the open loop cases. Figure 2.4 shows e(t) for each time step. For both L1 cases
and the open-loop L2 case, e(t) is always smaller than 10%. For L2 chargers with V2G, Fig.2.4
shows that e(t) has large values for some isolated time steps. These ”spikes” only occur during
the discharging period (from 6pm to 9pm) and have similar magnitudes. These errors are in fact a
numerical artifact of the PDE discretization technique. Namely, at the end of the charging period
(6pm), PEVs tend to be aggregated at the maximum allowable SOE. When PEVs discharge, then
this peak transports toward 0% SOE. This is highlighted in Fig. 2.6, which show snapshots of
the distributions immediately before, during, and immediately after the V2G period, for the PDE
model and V2G-Sim. The numerical phenomenon occurs when there is a one SOE-step difference
between the load peaks in V2G-Sim and the PDE model. This can be resolved via SOE smoothing.
Figure 2.4 shows the smoothed error esmooth(t) (in green) after averaging the load distribution with
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Figure 2.4: Error in the 4 different scenarios

the two closest SOE steps; the smoothed error esmooth(t) is smaller than 4% for every time step.

esmooth(t) = (2.13)
||(ua + va +wa)PDE(·, t)− (ua + va +wa)V 2Gsim(·, t)||2

||(ua + va +wa)V 2Gsim(·, t)||2
,

where ga(x, t) =
g(x−dx,t)+g(x,t)+g(x+dx,t)

3 .
The aggregated charging and discharging power is provided in Fig. 2.5. The aggregated

PDE provides excellent accuracy, even in the case of L2 charging with V2G control. Thus, the
PDE model predicts aggregated fleet charge and discharge sufficiently well, despite small offsets
in time or SOE due to numerical implementation. In the next section, we use this PDE formulation
to design a control algorithm to optimally schedule PEV charging and discharging.

2.4 Optimal control in a load-following case
We use the symbols defined in Table 2.3. The control objective is to minimize the cost of charging
PEVs, subject to supplying sufficient energy to the grid (for services contracted a priori) and
providing sufficiently charged EVs to drivers. We make the following assumptions:

(A1) The cost of electricity Celec(t) is known in advance.

(A2) EVs must be provided to drivers with a minimum required State of Energy (SOE), Xdep.

(A3) The driver demand for vehicles is known in advance.
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Figure 2.6: PEV distributions immediately before, during, and after V2G event for the PDE model
and V2G-Sim. Large errors occur due to distribution peaks that are slightly offset in SOE (or time)
between two models. This numerical error has relatively no impact for our control purposes.

(A4) The aggregator sells energy to the regulation market. It bids Pdes(t) one day in advance.

The real time regulation signal might be lower than Pdes(t). However, the optimization program
seeks a robust control, which ensures that the aggregator has the available power capacity during
the entire day.
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Table 2.3: Nomenclature for PDE-based optimal charging model

Symbol Description
Arr(x, t) Flow of PEVs from On Road to Idle
Dep(x, t) Flow of PEVs from Idle to On Road
qc(x) Instantaneous charging power
qd(x) Instantaneous discharging power
Xdep Min allowed SOE for departing PEVs
Xmax Min SOE for discharging and idle PEVs
Xmin Max SOE for charging cars
Nmin Min number of departure-ready PEVs at Tmax

2.4.1 Optimal problem
The aggregator minimizes the cost of charging vehicles over finite time period t ∈ [0,Tmax].

C =
∫ Tmax

0
Celec(t)

∫ 1

0
qc(x, t)u(x, t) dx dt, (2.14)

where only the charging state u(x, t) appears explicitly. To ensure physical meaning of the system,
we also impose boundaries on SOE values for each category. For x > Xmax, cars are restricted from
charging further and for x < Xmin, cars are forced to charge:

u(x, t) = 0, ∀ x≥ Xmax, (2.15)
v(x, t) = 0 = w(x, t), ∀ x≤ Xmin, (2.16)

The system must also satisfy three additional constraints.

2.4.1.1 Power supply constraint

We consider a scenario where the PEV aggregator participates in a regulation market. We as-
sume the bidding process has been completed and the system operator has assigned an available
frequency up regulation capacity. Hence, the V2G aggregator commits to be able to supply Pdes(t):∫ 1

0
qd(x)w(x, t)dx≥ Pdes(t), ∀ t. (2.17)

2.4.1.2 Drivers’ demand constraint

We assume the demand and arrival of cars are known in advance. This could be true in a reservation-
based system. This assumption is admittedly restrictive, and will be examined via a sensitivity
analysis in Section 2.4.4. The arrival of cars Arr(x, t) is known for all time and all SOE values.
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Similarly the total demand of vehicles over time Dem(t) is known one day in advance. The ag-
gregator decides which PEVs are vended to the drivers, i.e. at what SOE. In addition, we require
vended PEVs to have a minimum SOE level Xdep upon departure. Then, Dep(x, t) becomes a
controllable input, which satisfies the following constraint:∫ 1

Xdep

Dep(x, t) dx = Dem(t), ∀ t. (2.18)

2.4.1.3 Time horizon and final condition

Note that we consider a finite-time horizon optimization problem. To ensure continuity of the
system after time period Tmax, we require that the system contains a minimum number of PEVs
Nmin that are able to depart after Tmax.∫ 1

Xdep

(u+ v+w)(x,Tmax) dx≥ Nmin. (2.19)

2.4.2 Formulation of the optimization problem
The optimization problem is summarized as

minσi→d ,σi→c,DepC =

Tmax∫
0

Celec(t)
1∫

0

qc(x, t)u(x, t) dx dt, (2.20)

subject to
(2.7),(2.8),(2.9)
u(0, t) = 0, w(1, t) = 0, (2.21)
u(x,0) = u0(x), v(x,0) = v0(x), w(x,0) = w0(x), (2.22)
−w(x, t)≤ σi→d(x, t)≤ v(x, t), (2.23)
−u(x, t)≤ σi→c(x, t)≤ v(x, t), (2.24)
(2.15)− (2.19)

Note all the functions and constraints are linear with respect to states u,v,w, rendering a linear
program.

To generate a finite dimensional linear programming solution, we must discretize the PDEs.
Denote n ∈ [0,N] as the index for time with time step ∆t, Tmax = N∆t. Denote j ∈ [0,J] as the
index for SOE with step ∆x. Spatio-temporally dependent variables are discretized into the form
f n

j = f ( j∆x,n∆t).
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We denote Mc and Md as the transition matrices derived from discretization of PDEs (see
Section 2.3.1). The PDE dynamics are then approximated by:

un+1 = Mcun +σ
n+1
i→c , (2.25)

vn+1 = vn− [σn+1
i→c +σ

n+1
i→d +σ

n+1
i→Or], (2.26)

wn+1 = Mdwn +σ
n+1
i→d . (2.27)

We arrive at an explicit linear formulation after eliminating the control variables σi→d and σi→c
and expressing everything in terms of u,v,w. The optimization problem becomes

min
u,v,w,Dep

∆t ∆x
N

∑
n=0

J

∑
j=0

Cn
elecqn

jw
n
j (2.28)

subject to

[u+ v+w]n+1 +
Depn+1

∆x
= Mcun +Mdwn +

Arrn+1

∆x
(2.29)

un
0 = 0, vn

J = 0, (2.30)

u0
j = u0( j∆x), v0

j = v0( j∆x), w0
j = w0( j∆x), ∀ j, (2.31)

un,vn,wn,Depn ≥ 0, (2.32)
un

j = 0 ∀ j ≥ Xmax · J (2.33)

vn
j = 0 = wn

j ∀ j ≤ Xmin · J (2.34)

∆x∑
J
j=0 qn

d, jw
n
j ≥ Pdes,n (2.35)

∑
J
j=Xdep·J

Depn
j = Demn (2.36)

∆x∑
J
j=Xdep·J

uN
j + vN

j +wN
j ≥ Nmin (2.37)

The program is linear in u,v,w,Dep and we use an off-the-shelf linear programming solver.

2.4.3 Results
2.4.3.1 Data

We extract data from the 2009 NHTS for 2300 California vehicles [131]. The data includes daily
trips (departure and arrival time of vehicles). Figure 2.7 shows the total number of plugged-in
cars over the day. Vehicles have a 28.6 kWh capacity and are charged with L1 chargers (1.9kW).
A 30 minute time step is used. The price of electricity is taken from the California Independent
System Operator website (CAISO [21]). We use the electricity price on the Day-Ahead market for
an arbitrarily selected weekday (August 22nd 2014), from the local utility, PG&E (Fig. 2.8).

We also need to specify a sample regulation-up signal Pdes(t); generally, this is defined on
a hourly basis. That is, the aggregator bids a Contracted Power Capacity (CPC) and the System
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Figure 2.7: Number of Plugged-in cars

Operator provides orders for regulation up and down one day in advance. Due to uncertainties in
the number of plugged-in cars and the required energy to satisfy drivers, determining a V2G CPC is
a difficult question [64, 54]. One idea is to determine the Achievable Power Capacity (APC) from
the number of plugged-in vehicles [54]. That is, APC(t) is defined by the number of plugged-
in PEVs (Fig. 2.7) and their discharging rate qd = 1.9kW . APC(t) provides the instantaneously
available capacity and gives an upper bound for the fleet discharge power. Then a simple energy
management method is to bid for a percentage α ∈ [0,1] of the APC,

CPC(t) = α ·APC(t). (2.38)

In the remainder of the section we define Pdes(t) = α ·APC(t) for different values of α . Remaining
simulation parameters include: Xdep = 0.75, Xmax = 0.95, Xmin = 0.2, Nmin = 800, u(x,0) = 2225,
v(x,0) = w(x,0) = 0.

2.4.3.2 Optimal Charging

The control algorithm ultimately provides the distributions of PEVs between the three categories:
Charging, Idle, and Discharging. Figure 2.8(a) presents the resulting distribution for α = 0.25.
Figure 2.8(b) shows V2G power and requested power during the day.

The controller ensures enough PEVs exist in the discharging category to meet the power
supply demand (Fig. 2.8(b)). Then the remaining PEVs are managed between Charge and Idle in
order to meet demand from drivers and to minimize overall cost (Fig. 2.8(a)). In this case study,
PEVs mainly charge from 1am to 3pm, when the price of electricity is low. After 4pm large flows
occur from Charge to Idle to avoid charging during peak hours.

A second aspect of the controller is to optimize the distribution of cars along SOE values.
Figure 2.9(a) shows how the controller tends to aggregate cars around particular SOE values. At
the end of the optimization period, PEVs are mostly in the idle category and are charged at the
minimum required value Xmin = 0.2. A second peak occurs at Xdep = 0.75, which corresponds to
the final constraint of having a minimum number of cars Nmin = 800 at Tmax. The controller also
optimizes at which SOE level cars depart with respect to the condition x ≥ Xdep. Figure 2.9(b)
shows that almost all cars depart with the minimum required charge value, Xdep.
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2.4.4 Sensitivity Analysis and Feasibility
A major assumption is that PEV arrivals and departures are known in advance. Even if statistical
studies or reservation-based systems provide very good estimates of driver behavior, it is impossi-
ble to have an exact prediction. Therefore, we investigate how the program reacts to uncertainties
in driving schedules. I n the optimization program detailed above, the demand for cars (Dem and
Arr) impacts the constraints and does not impact the cost function. Therefore, if the actual de-
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Figure 2.10: Sensitivity analysis to higher demands

mand is different from the expected one, then the cost will remain the same but constraints may be
violated.

2.4.4.1 Higher demand than expected

We run the optimization with several parameters and various values for the expected demand.
Then, we apply the resulting control signal with a higher demand than the expected one and exam-
ine the impact on the constraints. The simulations demonstrate the following:

• The final constraint (2.19) is almost always violated. If the overall demand for cars is D+∆D
instead of D, the constraint will be violated and the available number of cars at Tmax will be
Nmin−∆D instead of Nmin.

• The demand departure constraint x ≥ Xdep is never active in our simulations. Figure 2.10
shows how much the demand can increase before the departure constraint becomes active,
for different values of α . Except for small values of α , the demand can double (more than
100% margin) without violating x ≥ Xdep, thus demonstrating robustness to this particular
constraint.

2.4.4.2 Lower demand than expected

In this case, every constraint is satisfied but the solution is suboptimal. Since the aggregator over-
estimates the demand the resulting cost is higher. Figure 2.11 shows how the realized cost relates
to the optimal cost for lower demands than expected.
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2.4.4.3 Impact of control parameters on cost and feasibility

We examine two sets of parameters for the aggregator:

• α is a grid-related parameter. If α increases, the aggregator bids more power and V2G power
increases

• Nmin, Xdep are driver-related parameters. If their values increase, SOE capacity offered to
drivers increases.

Figure 2.12 shows the variability of cost with respect to variations in these three parameters and
Fig. 2.13 shows the variability of cost per unit of V2G power ($/kWh). The graphs show how the
parameters impact cost and feasibility of the system, and the tradeoffs in selecting these values.

• If α increases, then more power is necessary for the regulation up and the cost of PEV
charging increases.

• If α , Xdep and Nmin simultaneously take sufficiently high values, then the constraints are too
restrictive and the problem becomes infeasible. High values of α imply less flexibility to
keep energy for drivers.

• Figure 2.13 shows that the optimization program leads to economies of scale. Cost per kW
decreases with increasing α . That is, the aggregator is more aggressive in utilizing excess
PEV SOE for V2G services.



CHAPTER 2. OPTIMAL CHARGING OF FLEETS OF ELECTRIC VEHICLES WITH
DISCRETE CHARGING RATES: PDE MODELING AND CONTROL TECHNIQUES 27

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
500

1000

1500

2000

2500

3000

α

D
a
ily

 C
o
s
t 
($

)

Sensitivity of Cost regarding parameter alpha and Xdep

 

 

Xdep=0.75 ,Nmin=800

Xdep=0.8 ,Nmin=800

Xdep=0.85 ,Nmin=800

Xdep=0.9 ,Nmin=800

Xdep=0.75 ,Nmin=400

Xdep=0.8 ,Nmin=400

Xdep=0.85 ,Nmin=400

Xdep=0.9 ,Nmin=400
: Feasibility limit
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Figure 2.13: Sensitivity analysis regarding α and Xdep and Nmin

2.4.4.4 Impact of charging rate on cost and feasibility

The optimization program depends on the available charging infrastructure and especially charge/discharge
rates qc(x, t),qd(x, t). Figure 2.14 presents the results for different rate values); fast charging al-
lows more flexibility and higher instantaneous power. Cost per generated power is therefore lower
with fast chargers and more stringent constraints can be satisfied.

2.5 State Space representation
In this section, we use the same discretization technique, we represent the dynamics in state space
form, and we formulate a model predictive controller to track a power signal. The control problem
is formulated as a Linear Quadratic Regulator, which is a particularly efficient method for tracking
a signal.

We assume that the aggregator is free to control vehicles in a specific SOE range [SOE,SOE]⊂
[0,1] as shown in Fig. 2.15. In practice, drivers agree to receive their PEV with any SOE ∈
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Figure 2.14: Sensitivity analysis regarding α , q and Nmin

Table 2.4: State Space symbols

Symbol Description
k Discrete time index
X(k) State: number of PEVs in bins
U(k) Control input (flow Idle-G2V and Idle-V2G)
Y (k) Output vector (eg: total power)
S(k) Uncontrollable input (flow from drivers and SOE < SOE)

[SOE,SOE] upon departure (i.e. SOE is the minimum SOE when PEVs depart). In exchange,
the aggregator manages the charging and discharging of PEVs between these bounds and bids this
aggregated storage capacity for load following applications. Figure 2.15 shows the boundaries of
the system: the grey part is not modeled in this framework, and any contribution from this part is
considered as an uncontrollable input.

2.5.1 State Space model
We divide the space [SOE,SOE] into Nb bins and discretize the system in time and SOE as shown
in Fig. 3. The variables uk

j, vk
j and wk

j denote the number of charging, idle and discharging PEVs in
bin j at time k, respectively. The flows between bins are due to transportation dynamics (charging
and discharging), controllable flows (σi→c and σi→d), and uncontrollable flows due to driving
(σi→or). We discretize the system as presented in Section 2.3.1. Because the numerical scheme is
explicit in time, we are able to represent the discretized dynamics of the system with the following
state-space model:
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Figure 2.15: State transition model

X(k+1) = AX(k)+BuU(k)+BsS(k) (2.39)
Y (k) = CX(k) (2.40)

The variable X represents the state of the system, which is the number of PEVs in each
category: (G2V , idle, and V 2G). The variable U is the control input, which controls the flows of
PEVs between the three categories. Finally, the variable S is the uncontrollable input, which comes
from arrivals and departures of PEVs. This relates to the PDE model described in Section 2.2 as
follows:

X(k) =

u(·,k∆t)
v(·,k∆t)
w(·,k∆t)

 ,U(k) =
[

σi→c(·,k∆t)
σi→d(·,k∆t)

]
,S(k) = σi→or(·,k∆t)

Matrix A is the dynamic transition matrix, which includes boundary conditions and results from
the Lax Wendroff discretization scheme. The output Y (k) = CX(k) gives the power consumed or
supplied by the fleet of PEVs. We assume a uniform power rate p such that:

C =
[
−p · · ·−p 0 · · ·0 p · · · p

]
(2.41)

In practice, U gives the SOE distribution of PEVs that are shifted from one charging category
to another. In the proposed aggregate model, all the PEVs with the same SOE x at time k are
indistinguishable. Thus, to implement the optimal control signal on the real system at time k, the
controller chooses bmax(0,σi→c(x,k∆t))c PEVs at random in the idle category and shifts them
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to the charging category. Similarly, it selects bmax(0,−σi→c(x,k∆t))c PEVs at random in the
charging category and shifts them to the idle category. The implementation of σi→d follows the
same control rule. Note that the control signal needs to be rounded before it is implemented.

2.5.2 Uncontrollable input and modified State Space model
As specified previously, the contribution from drivers and PEVs with SOE < SOE is incorporated
into the uncontrollable input σi→Or(x, t) in the PDE model, and S(k) ∈ RNb in the state space
model. The uncontrollable flow S(k) only impacts idle cars and can be divided into negative
contributions due to arrivals Arr(k), and positive contributions due to departures Dep(k) such that:
S(k) = Arr(k)+Dep(k) and a corresponding Bs = [0,−I,0]T .

Arrivals into the system comes from drivers who plug-in with SOE ∈ [SOE,SOE] and from
PEVs reaching SOE = SOE; this input is completely uncontrollable. In contrary, departures
occur at any SOE ∈ [SOE,SOE], and depends on the state dynamics and the previous control
signals. Consider two distinct control inputs [U1(0), ...,U1(k)] and [U2(0), ...,U2(k)], which re-
sult respectively in the state values X1(k + 1) and X2(k + 1) at time k + 1. The distribution of
PEVs at time k+ 1 in scenario 1 and scenario 2 are distinct, which implies that Dep1(k+ 1) and
Dep2(k + 1) may be distinct (i.e. drivers don’t get their cars with the same amount of energy).
However, the total number of departures, calculated by the sum of departures from each bin as
1T Dep1(k+1) = 1T Dep2(k+1), remains the same in both scenarios We incorporate this charac-
teristic by modeling Dep ∈ RNb by a controllable input with equality constraint 1T Dep(k) = d(k),
where d(k) is the expected number of departures at time k. In contrary Arr is modeled as an
uncontrollable input. Thus, we augment the state space model as follows:

X(k+1) = AX(k)+BuU(k)+BsDep(k)+BsArr(k) (2.42)
Y (k) = CX(k) (2.43)

We will use the state space model (2.42), (2.43) in the remainder of this chapter.

2.5.3 Linear Quadratic Regulator for Signal Tracking
Regulation and load following are ancillary services provided to balance the short term mismatch
between generation and demand. Their main difference is their time horizons: while regulation
occurs on the second-to-second basis, load following addresses longer-term changes in demand
[94, 38]. Regulation and load following are particularly interesting for storage and PEV smart
charging because they require fast response and are high price energy markets (see [63, 62]), Since
we propose a single discrete charging rate for PEVs that is managed by hysteresis type actions, we
choose a longer time horizon and assume that the aggregator provides load following reserves and
is located in a unique balancing area.
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2.5.3.1 Objective

The problem is formulated as a tracking problem where the reference Pdes(t) is updated every
15 minutes. The controller penalizes three items: deviation from the reference signal, battery
degradation and large controllable flows. Experimental aging studies [100] have shown aging is
highly correlated to the integral of power transferred through the battery. Therefore, degradation
at time l is measured using Dg(l) =CgX(l) where Cg is defined as follows:

Cg(l) =
[
p · · · p 0 · · ·0 p · · · p

]
(2.44)

The objective function then becomes:

Jk(X ,U,Y ) = ∑
N+k
l=k Qtrack[Y (l)−Pdes(l)]2 +U(l)T RU(l)

+ Qdegrad[CgX(l)]2 (2.45)

In this formulation R penalizes large control values and thus limits flows between the three states
G2V , Idle and V 2G. The relative value of Qtrack and Qdegrad shows how much the aggregator
prioritizes the compliance to balancing services, versus battery degradation.

2.5.3.2 Linear Quadratic Regulator

The optimal smart charging control comes from the solution of the following LQR - MPC scheme:

min
U,Dep

Jk =
N+k

∑
l=k

Qtrack[Y (l)−Pdes(l)]2 +U(l)T RU(l)+Qdegrad[CgX(l)]2 (2.46a)

st X(l +1) = AX(l)+BuU(l)+Bs(Dep(l)+Arr(l)) (2.46b)
Y (l) = CX(l) (2.46c)
X(l)≥ 0 (2.46d)

1T Dep(l) = d(l), Dep(l)≥ 0 (2.46e)
X(k) = Xk measured at time k (2.46f)
X(N + k+1)≥ 0 (2.46g)
l ∈ {k, ...,k+N}

In this MPC formulation, the control horizon is TLQR = N∆t, the full horizon is Tf = L∆t and the
MPC is computed for k ∈ {0, ...L−N}. At each time step, we consider the control horizon TLQR
but implement only the first control action. The MPC stops when we reach the full horizon Tf . We
assume Pdes and d are known or forecasted a priori.

Assumption 1. We assume that the number of departures is always smaller than the number of
PEVs in the system, i.e.

l

∑
k=0

[d(k)−1T |Arr(k)|]< 1T [AlX(0)] ∀l ∈ {0, ...,L}. (2.47)
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Proposition 2. Under Assumption 1, the LQR (2.46) is recursively feasible: for all initially feasible
points, X0, and for all optimal sequences of control inputs, the MPC optimization problem remains
feasible at all times.

Proof. In practice, this comes directly from the PDE aggregation model, where we formulate
boundary and initial conditions to ensure that the problem is well posed (Section 2.2.2). In the
case of convection PDEs, this guaranties the conservation of loads. We denote Uidle(l) the control
sequence that transfers all the PEVs in the Idle category Then, under Assumption 1, we can show
that the following control sequence is feasible:

Uidle(l) =
[
−INb 0 0

0 0 −INb

]
AX(l) (2.48)

Dep(l) = d(l)
AX(l)+BuU(l)+BsArr(l)

1T [AX(l)+BuU(l)+BsArr(l)]
(2.49)

The detailed derivation is presented in the Appendix A.

2.5.4 Simulations with real-world mobility data
In this section, we demonstrate how the proposed LQR framework applies to a particular case
study, and provide general intuition for other cases. We use data presented in reference [61], which
comes from more than 2000 non residential charging equipments in Northern California for the
year of 2013. Figure 2.16 shows the maximum capacity of PEVs in the modeled aggregate system
(see Fig 2.15) for a typical weekday. Thus, we derive the time-dependent forecasted maximum
capacity based on the forecasted number of PEVs

Cap = p×NbPEVs (2.50)

where p is the power rate of the charging stations and NbPEVs the number of PEVs in the system.
Most Independent System Operators (ISO) have not developed a regulated market for load

following yet. Because load following and regulation applications share a lot of similarities (see
NERC operating manual [94]), we use existing attributes for regulation markets to base our perfor-
mance analysis. In particular, if the aggregator bids the available capacity Cap, we assume that the
load following signal Pdes ∈ [−Cap,Cap] has a zero average over the horizon time. In the follow-
ing cases studies, we draw a signal uniformly in [−Cap,Cap] and subtract the average to simulate
realistic balancing signals.

We measure the performance of the aggregator with the Pennsylvania - New Jersey - Mary-
land Interconnection (PJM) precision score for regulation services. Specifically, the precision score
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Figure 2.16: Maximum power capacity

is defined as follows [103]:

Error(i) =
∣∣∣Y (i)−Pdes(i)

Pdes(i)

∣∣∣, (2.51)

Precision score = 1− 1
N

N

∑
i=1

Error(i). (2.52)

PJM sets a resource compliance score that includes the precision score defined in (2.52). In
their market eligibility rules, PJM requires that the compliance score be higher than 0.75 [103].
For the purposes of this chapter, we use a 0.75 precision score as a metric to represent acceptable
performance.

We define the time step ∆t = 15min, the time horizon Tf =24h and the control horizon
TLQR =4h. Every 15 minutes, the values of Pdes and d are updated for the next four following
hours, a new control sequence is computed based on the LQR (2.46) for the next four follow-
ing hours, and only the first control response is executed. This MPC algorithm is iterated until
it reaches the time horizon Tf =24h. In the next section, we show how to tune the controller
parameters to satisfy the minimum 0.75 precision score condition.

2.5.4.1 Impact of the LQR parameters

In the LQR (2.46), the parameters R, Qtrack and Qdegrad penalize, respectively, large control val-
ues, large deviations from the reference signal and large numbers of non-idle cars. These param-
eters must be tuned to meet the aggregator’s objectives. Figure 2.17 depicts a signal Pdes between
[−Cap,Cap]. The signal is zero-mean over the entire horizon, it is updated every 15 minutes and
sent to the aggregator. We assume SOE = 0.8, SOE = 0.95. Figure 2.18a shows the precision
score for different ratios ||R||

||Qtrack|| and Qdegrad = 0. As expected, the tracking improves when the

ratio ||R||
||Qtrack|| decreases and in this specific case study, the aggregator meets the acceptable perfor-

mance requirement for ||R||
||Qtrack|| ≤ 10. Figure 2.18b shows the number of PEVs during the day in

each category G2V, V2G or Idle and Table 2.5 shows the precision score for four different ratios.
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Table 2.5: Precision scores

||R||/||Qtrack|| 1 10 100 200
Precision Score 0.91 0.77 0.40 0.26

The number of idle PEVs tends to increase when less importance is given to tracking, however this
has an impact on the aggregator performance and Table 2.5 shows that only ||R||

||Qtrack|| ≤ 10 satisfies
the acceptable performance requirement.

Figure 2.19a shows the precision score for different ratios of ||Qdegrad||
||Qtrack|| and R = 0, Fig 2.19b

visualizes the distribution of PEVs. As before, the tracking improves when the ratio ||Qdegrad||
||Qtrack||

decreases. The effect of ||Qdegrad|| > 0 is to limit the number of PEVs in the G2V and V2G
categories. Figure 2.19b shows that when ||Qdegrad|| > 0, one of the G2V or V2G categories is
empty at each time step: a positive reference signal is attained with only V2G PEVs and a negative
reference signal is attained with only G2V categories, which is the minimum-degradation solution
to attain this signal.

2.5.4.2 Impact of the SOE range [SOE,SOE]

As stated in Section 2.5, [SOE,SOE] defines the boundaries of the system. The lower bound SOE
comes from a tradeoff between flexibility in driver mobility and flexibility in storage capacity for
the aggregator. Figure 2.20 shows the performance of the aggregator for different values of SOE,
when SOE = 0.95 is fixed. The green curve illustrates a pessimistic case, where the reference
signal is always positive Pdes = 0.7Cap (i.e. not zero mean) and shows that the aggregator is not
able to meet the requirements for SOE ≥ 0.5. The aggregator looses flexibility as the interval
[SOE,SOE] becomes narrower. Let T max

V 2G denote the longest time period a PEVcan stay in the V2G
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Figure 2.18: (a) Precision score and (b) number of PEVs in each charging category for Qdegrad = 0
and varying ||R||

||Qtrack||

category, i.e. can produce a positive balancing signal. According to Equations (2.1) and (2.2), for
a constant power p:

T max
V 2G(SOE) = [SOE−SOE]

ηEmax

p
. (2.53)

Thus, for high values of SOE, the aggregator is unable to track an all positive reference signal,
which results in low precision scores when Pdes = 0.7Cap.

The blue curve shows the average and the interquartile range (IQR) error bars of the precision
score after 50 simulations of zero-mean reference signals. In this case, simulated reference signals
fluctuate between positive and negative values, and a small SOE range suffices to create short
charge and discharge cycles to track the load following signal. However, IQR error bars show that
the statistical dispersion increases as the SOE range narrows, and the risk to violate the acceptable
performance requirement increases. In particular, the aggregator is unable to meet the acceptable
performance requirement in more than 25% of cases when SOE ≥ 0.85.
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2.5.4.3 Analysis on capacity bidding

In this section we are interested in finding the best capacity to bid Cbid . We assume the aggregator
bids a percentage α of its available capacity Cap:

Cbid(α) = αCap (2.54)

We seek to examine the impact of conservative bidding strategies α < 1 versus aggressive bidding
strategies α > 1.
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Figure 2.21: Average precision score and IQR error bars for different values of α

Figure 2.21 shows simulation results for α ∈ [0,1.5], SOE = 0.75, ||Qtrack|| = ||R||, and
Qdegrad = 0. For each α , we simulate 400 reference signals Pdes ∈ [−Cbid(α),Cbid(α)], and we
compute the average precision score and the interquartile range. We compare this result with
the precision score obtained for the worst-case scenario where Pdes = Cbid(α) = αCap. Figure
2.21b shows that the reference signal generally does not attain the maximum bid capacity, and the
average performance of the aggregator is higher than 75% for α ∈ [0,1.5]. The statistical dispersion
tends to increase when α increases, and the aggregator is able to meet the acceptable performance
requirement in more than 75% of cases, only when α ∈ [0,1.2]. This shows that the aggregator
could bid more than its actual capacity, and still reach the necessary precision score with a high
probability.

However in the worst case scenario, the aggregator cannot bid more that 50% of its capacity.
Figure 2.21a shows the cumulative power during the day when Pdes =Cbid(α) = αCap. The total
supplied power increases when α increases, until it attains a maximum reachable power around
1MW: the aggregator is not able to provide an all-positive or all-negative signal during the day.
This example justifies that it is essential that the aggregator participates in a market with zero
average signals and it confirms the relevance of balancing markets.

2.6 Optimal capacity bidding
Previous sections have explored sensitivity with bidden capacity. In this section we push this
question further and seek to determine the optimal capacity to bid in a regulation market.
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2.6.0.1 Feasibility analysis

Let X0 denote the initial condition and Nt the time horizon. In this section, we seek to describe
the set of reachable output trajectories R(X0) = [Y1,Y2, ....,XY+1] as a polyhedron.
Let U = [U0,U1, ...,UN ] and Dep = [Dep0,Dep1, ...,DepN ], a feasible control trajectory. The feasible
set PŨ is a polyhedron defined as follows:

PŨ = {Ũ = [U,Dep ∈ R3×Nbin×(Nt+1)] st −Dep≤ 0, (2.55)

HuU +HdDep ≤−HdArr +HX0X0, MdepDep = bdep}

where

Hu =


−Bu 0 · · · 0
−ABu −Bu · · · 0

...
... . . . ...

−AN−1Bu −AN−2Bu · · · −Bu

 ,

Hd =


−Bs 0 · · · 0
−ABs −Bs · · · 0

...
... . . . ...

−AN−1Bs −AN−2Bs · · · −Bs

 ,Hx0 =


A
A2

...
AN

 ,

Mdep =


1T 0 · · · 0
0 1T · · · 0
...

... . . . ...
0 0 · · · 1T

 ,bdep =


d0
d1
...

dN


We note f and g the following affine maps:

f (Ũ) = [−Hu,−Hd]Ũ +(HX0X0−HdArr) (2.56)
g(X) = CX (2.57)

Then the reachable output time trajectories is the following polyhedron, which can be written i-as
a H− polyhedra.

R(X0) = g◦ f ◦PŨ (2.58)

=
{

Y ∈ RNt |HyY ≤ by
}

(2.59)

2.6.0.2 Capacity bidding for a random signal

We assume that the regulator bids an absolute capacity Cbid ∈ RNt . Then, any signal −Cbid ≤ y≤
Cbid , can be asked by the utility, and has to be reachable. Therefore the bidden reserve capacity
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with initial condition X0 has to satisfy the following property:

Pc =
{

y ∈ RNt | [INt ,−INt ]
T y≤ [Cbid,Cbid]

T}⊂ R(X0) (2.60)

Equation (2.60) can be reformulated :

∑
j
|hi j|c j ≤ bi ∀i ∈ RN (2.61)

where Hy = (hi j) ∈ RN×Nt , by = (bi), Cbid = (ci)
Proof:

Hyy≤ by ∀y st − c≤ y≤ c (2.62a)

⇔ max
−c≤y≤c∑j

hi jy j ≤ bi ∀i ∈ {1, ...,N} (2.62b)

⇔ ∑
j
|hi j|c j ≤ bi ∀i ∈ {1, ...,N} (2.62c)

Now, let λ ∈ RNt denote the capacity price. The optimal capacity problem is given by the
following linear program:

max
C

λ
TC (2.63a)

st ∑
j
|hi j|c j ≤ bi ∀i ∈ {1, ...,N} (2.63b)

min
C,y

−λ
TC+P max

−c≤s≤c
−ε≤1T s≤ε

|s− y| (2.64a)

st y ∈ R(X0) (2.64b)

2.6.0.3 Capacity bidding for a zero-average signal

Some utilities ensure that the overall average of the regulation signal is close to zero. In this case,
condition (2.62) is modified as follows:

Hyy≤ by ∀y st {−c≤ y≤ c ; − ε ≤ 1T y≤ ε} (2.65a)

⇔ max
−c≤y≤c
−ε≤1T y≤ε

∑
j

hi jy j ≤ bi ∀i ∈ {1, ...,N} (2.65b)

where ε is a small number provided by the utility. The overall problem 2.66 is a Linear Program
with Complementary Constraints (LPCC), which is a special case of bilevel programming [83, 56]:
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max
c,y1,...,yNt

λ
T c (2.66a)

st Hyy∗i ≤ by ∀i ∈ {1, ...,N} (2.66b)
c≥ 0 (2.66c)

where y∗i is solution of:

max hi
T

yi (2.66d)
st − c≤ y≤ c (2.66e)

− ε ≤ 1T yi ≤ ε (2.66f)

where hi = [hi1, ...,hNt ] ∈ RNt , and {Γyy≤ β +ΓcC} is a short notation for the 2Nt +2 constraints
{−C≤ y≤C ; −ε ≤ 1T y≤ ε}. A classic method to transform the bilevel problem into a one-level
problem is to use the Karush-Kuhn-Tucker (KKT) conditions [35].

max
C,µi,yi

λ
TC (2.67a)

st −hi
T
+µi

T
Γ = 0 (2.67b)

Γyi−β −ΓcC ≤ 0, µi ≥ 0 (2.67c)
µi(Γyi−β −ΓcC) = 0 (2.67d)
Hyyi ≤ by (2.67e)
i ∈ {1, ...,N}

Constraints (2.67b), (2.67c) and (2.67d) are the KKT conditions, which characterize the lower-level
problem: respectively the stationarity condition, the feasibility conditions and the complementary
slackness. Finally constraint (2.68f) ensures that the solution is feasible for the upper-level prob-
lem. This problem is not convex because of the complementary slackness condition (2.67d). A
possible method to solve problem (2.67) is to introduce binary variables and transform the system
into a Mixed Integer Linear Program (MILP):

max
C,µi,yi,zi

λ
TC (2.68a)

st −hi
T
+µi

T
Γ = 0 (2.68b)

−L(1− zk
i )≤ (Γyyi−β −ΓcC)k ≤ 0 (2.68c)

0≤ (µi)k ≤ Lzk
i (2.68d)

zk
i ∈ {0,1} ∀k ∈ {1, ...,2Nt +2} (2.68e)

Hyyi ≤ by (2.68f)
i ∈ {1, ...,N}

The appendix shows that the solution to the LP (2.65b) can take 2Nt + 1 different values
y∗k = Γkc+βk, k ∈ [1,2Nt +1] where Γk, βk (see Appendix B).
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y∗ = Γc+β where

∃m st


γ j j = sgn(hi j−him),β j = 0 for j 6= m,

γm j =−sgn(hi j−him),βm = ε for j 6= m,

γlk = 0 otherwise
(2.69a)

OR

∃r st


γ j j = sgn(hi j−hir),β j = 0 for j 6= r,
γr j =−sgn(hi j−hir),βr =−ε for j 6= r,
γlk = 0 otherwise

(2.69b)

OR
γ j j = sgn(hi j), γl j = 0, β j = 0 ∀i, j st i 6= j (2.69c)

We can derive simplified feasibility conditions for solutions (B.5). We define v∗i , the maximum of
LP (2.65b). If y∗k , then v∗i is higher than ∑ j hi jy∗j . This can be summarized as follows:

(B.5a) is feasible ⇔

{
∑

Nt
j=1 sgn(him−hi j)c j− cm ≤−ε

∑
Nt
j=1 sgn(him−hi j)c j + cm ≥−ε

⇒ v∗i ≥ εhim +
Nt

∑
j=1

c j|him−hi j|

(B.5b) is feasible ⇔

{
∑

Nt
j=1 sgn(hir−hi j)c j− cr ≤ ε

∑
Nt
j=1 sgn(hir−hi j)c j + cr ≥ ε

⇒ v∗i ≥−εhir +
Nt

∑
j=1

c j|hir−hi j|

(B.5c) is feasible ⇔

{
∑

Nt
j=1 sgn(hi j)c j ≤ ε

∑
Nt
j=1 sgn(hi j)c j ≥−ε

⇒ v∗i ≥
Nt

∑
j=1

c j|hi j|

The above statements form a set of conditional constraints, which can be modeled by introducing
integer variables [17]. δ is a small deviation and L is a large number.{

∑
Nt
j=1 sgn(hi j)c j ≤ ε

∑
Nt
j=1 sgn(hi j)c j ≥−ε

⇒ v∗i ≥
Nt

∑
j=1

c j|hi j|

⇔

{
∑

Nt
j=1 sgn(hi j)c j ≤ ε

∑
Nt
j=1 sgn(hi j)c j ≥−ε

false OR v∗i ≥
Nt

∑
j=1

c j|hi j|

⇔


∑

Nt
j=1 sgn(hi j)c j > ε +δ −Lx

∑
Nt
j=1 sgn(hi j)c j <−ε−δ +Lz

v∗i ≥ ∑
Nt
j=1 c j|hi j|−L(2− (x+ z))

x,z ∈ {0,1}; x+ z≥ 1
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Finally, the problem can be written as a Mixed Integer Linear Program:

max
C,v∗,z,x

λ
TC (2.70a)

st ∀i ∈ {1, ...,Nt},k ∈ {1, ...,2Nt +1} (2.70b)
Nt

∑
j=1

αk
i jc j > θ k

i +δ −Lk
i xk

i (2.70c)

Nt

∑
j=1

α
k
i jc j < θ

k
i −δ +Lk

i zk
i (2.70d)

v∗i ≥ vk
i −L(2− (xk

i + zk
i )) (2.70e)

xk
i ,z

k
i ∈ {0,1}; xk

i + zk
i ≥ 1 (2.70f)

v∗i ≤ bi (2.70g)

2.7 Time series forecasting of the available capacity
With the PDE technique developed in this Chapter, the aggregator does not need to forecast travel
behaviors for every car. Instead, we only needs to forecast the available capacity, i.e. the number
of idle cars per time step. This is a unique characteristic, and strong advantage of this model as
one driver’s behavior is usually much harder to predict than one fleet’s aggregate availability. In
this section, we show how we can forecast fleet available capacity through time series.

Data is collected from more than 2000 non residential charging equipments in Northern Cal-
ifornia for the year of 2013 (see [61] for an extensive study of this dataset). For each charging
session, we collect the start and end period, and each charging port reports the average consumed
power every 15min. In this chapter, we are only interested in estimating the aggregate regulation
signal that can be reached with idle cars. In our dataset, idle cars are the ones that are connected
but already fully charged.

Figure (2.22) shows the number of idle cars for each 15-minute time step, for the year of 2013.
Figure a) focuses on 5 weeks of the dataset and exposes a regular pattern of the time series. During
weekdays, the number of idle PEVs seem to peak around 250 vehicles (in the late afternoon),
and during weekends the number of idle PEVs stays pretty constant around 80 vehicles. Because
of this very distinct profiles, we analyze and forecast separately the “weekday’ time series and the
“weekend” time series. In this chapter we focus on the “weekday’ time series, which is represented
in figure (2.22b). The number of PEVs in the system has increased along the year 2013, which
results in a time series with increasing average and increasing variance. We preprocess the dataset
with a log transformation in order to fit a standard seasonal ARIMA model.

Table 2.6 compares five models, and shows their AIC and BIC values. The model ARIMA
(1,0,1;1,1,0) has the lowest AIC and BIC values, and is therefore chosen. Figure 2.23 analyzes
the residuals and 2.24 shows prediction results for this model.This analysis shows that the model is
a good fit for the time series: Fig 2.23 shows that the standardized residuals distribution is normal.
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Figure 2.22: Number of idle cars for the year of 2013

Table 2.6: Fit from ARIMA models

Model AIC AIC
ARIMA(1,1,0;1,1,0) -2.9131×104 -2.9096×104

ARIMA(2,0,0;1,1,0) -2.9275×104 -2.9240×104

ARIMA(1,0,1;1,1,0) -2.9297×104 -2.9255×104

ARIMA(1,1,1;1,1,0) -2.9266×104 -2.9231×104

ARIMA(2,0,1;1,1,0) -2.9138×104 -2.9096×104

Fig 2.24 illustrates the real time series, the ARIMA prediction with the 95% confidence interval,
and shows that it can appropriately forecast five week-days in advance, which corresponds to one
calendar week.
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Figure 2.23: Analysis of residuals
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Chapter 3

Dual Splitting Framework for Optimal
Charging of Fleets of Electric Vehicles with
Continuous Charging rates

3.1 EV charging with continuous charging rates
For the past five years, major efforts have been dedicated to develop the charging infrastructure
in the US. This has resulted in an increasing number of charging stations, and more connected
and smart equipment. In particular, with newer models of charging stations and their PEV battery
communication protocols, it becomes possible to control power in a continuous charging setting.
Instead of being controlled in an ON/OFF manner, charging stations can deliver power in a con-
tinuous range, between 0 and their maximum deliverable (i.e. limited by the station) or acceptable
charging power (i.e. limited by the car).

Mathematically, this results in very different types of non-discrete problems. Prior work has
studied this question, and the vast majority of proposed solutions are based on convex formula-
tions of the PEV charging problem. This provides a wide variety of methods, which can be used
to efficiently reach the optimal solution. This work can be classified into centralized or distributed
protocols. Centralized algorithms [29], [119], [71] utilize a central infrastructure to communicate
with each agent, collect information, and compute the optimal load profile of the fleet. The chal-
lenges for centralized methods are scalability, with respect to communication, computation and
privacy.

In distributed optimization algorithms, each PEV solves a local problem and communicates
information to its neighbors and/or a coordinator [106]. Previous work has studied various aspects
of load shaping and PEV smart-charging, including filling the night valley of loads (valley filling)
in [86, 47], more general driving behaviors in [127, 107], market bidding strategies and market
uncertainty in [133, 52, 15] and grid constraints such as transformer overheating [115, 134] and
local distribution grid constraints [26, 125, 84]. A wide range of distributed algorithms has been
used including game theoretic approaches and Nash Equilibrium in [86], proximal methods in
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[47], Alternating Direction Method of Multipliers (ADMM) in [127, 107], regret minimization in
[Ma2014Distributed] and stochastic protocols in [48]. The aforementioned methods successfully
address various aspects of PEV smart-charging but do not provide precise convergence analysis.
In particular, finding the necessary number of iterations to reach a specific precision is crucial to
assess implementation burdens for practitioners. In this chapter, we seek a tailored method for the
distributed PEV smart charging problem, and derive computation requirements. We add to existing
studies on optimal charging strategies for load shaping as follows:

• We derive a distributed dual-splitting optimization scheme that exploits the unique aggregate
charging problem structure (i.e. a summed objective, strong convexity, and independent con-
straints). We additionally analyze convergence to yield explicit linear rate-of-convergence
bounds, providing precise guidance on the relationship between iterations, error and algo-
rithm parameters.

• We propose stochastic variations of the main dual-splitting algorithm. These variations pro-
vide communication and computation trade-offs, thus providing options for practitioners.

As a particular case study of interest we incorporate mobility and power system constraints to
quantify demand response opportunities coming from PEVs to shape the California “Duck Curve”.

3.2 Problem formulation

Table 3.1: Chapter 3 nomenclature

Symbol Description
N Number of PEVs
Th Time horizon
ut

n Charging rate of PEV n at time t
ct

n Discharging rate of PEV n at time t due to driving
xt

n State Of Charge (SOC) of PEV n at time t
Dt Net Load at time t (consumption - renewable generation)
Bn Battery capacity of PEV n
Pt

n Maximum charging power of PEV n at time t
Pt

n Minimum charging power of PEV n at time t

In this chapter, we use the notation in Table 3.1 and develop an optimization program for
synthesizing PEV charging schedules. We use double brackets to denote a discrete set, e.g.
[[1,Th]] = {1,2, · · · ,Th− 1,Th} and we note the vector inner product: 〈x,y〉 = xT y, for x,y ∈ Rn.
We use the vector notations: un = (u1

n, ...,u
Th
n ), xn = (x1

n, ...,x
Th
n ), cn = (c1

n, ...,c
Th
n ).
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3.2.1 PEV Charging constraints
Let xt

n denote the State of Charge (SOC) of vehicle n at time t, ut
n denotes the charging rate when

vehicle n is plugged-in, and ct
n denotes the driving discharging rate when vehicle n is on road. The

battery dynamics are described by a piecewise linear model, with a power conversion efficiency
η ≤ 1.

xt+1
n = xt

n +
ηmut

n
Bn

∆t− ct
n

ηBn
∆t. (3.1)

m =

{
1 if ut

n ≥ 0,
−1 if ut

n < 0,
(3.2)

xmin
n ≤ xt

n ≤ xmax
n (3.3)

Equations (3.1), (3.2) and (3.3) define a constraint set, which is more binding as η increases,
and attains the most binding case when η = 1 (in practice, η = 1 models a perfect battery effi-
ciency). Therefore, satisfying the constraints associated with a perfect efficiency ensures that the
constraints (3.1), (3.2) and (3.3) are true at every time step t ∈ J1,ThK, for any value of η ≤ 1. For
simplicity, and similarly to previous work ([55], [7], [57]), we will use η = 1 to determine the PEV
energy constraints:

Bn
∆t (x

min
n − xinit

n )+
t
∑

τ=1
cτ

n ≤
t
∑

τ=1
uτ

n ≤ Bn
∆t (x

max
n − xinit

n )+
t
∑

τ=1
cτ

n (3.4)

Pt
n ≤ ut

n ≤ Pt
n, ∀t ∈ J1,ThK (3.5)

The variable ut
n can be non zero if and only if PEV n is plugged-in at time t. We denote Rn as

the indicator vector

Rt
n =

{
1, if PEV n is plugged in at time t
0, otherwise (3.6)

From this definition, we can derive the equality constraint:

(1−Rn)
T un = 0 (3.7)

3.2.2 Finite Time Horizon constraints
The above problem has a fixed time horizon Th. In practice, the lack of a terminal constraint could
deplete all the PEVs’ energy at the end of the period Th. For simplicity, we impose that every PEV
reaches at least SOC x f inal

n at the end of the period.

Th

∑
τ=1

uτ
n ≥

Bn

∆t
(x f inal

n − xinit
n )+

Th

∑
τ=1

cτ
n (3.8)

This is a conservative constraint, which can be improved in future formulations of the problem.
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3.2.3 Objective
We denote by Dt the aggregate uncontrollable electric loads combined with the uncontrollable
renewable generation. Symbol Dt is the net load and does not include PEV loads [22].

We seek to minimize the variance of net load while preserving battery health. This is formu-
lated by the following optimization program:

min
u

Th

∑
t=1

(Dt +
N

∑
n=1

ut
n)

2 +σ

N

∑
n=1
||un||2 (3.9a)

st (1−Rn)
T un = 0 ∀n ∈ J1,NK (3.9b)

Pt
n ≤ ut

n ≤ Pt
n ∀n ∈ J1,NK,∀t ∈ J1,ThK (3.9c)

(3.4),(3.8) ∀n ∈ J1,NK,∀t ∈ J1,ThK (3.9d)

The first term ∑
Th
t=1(D

t +∑
N
n=1 ut

n)
2 accounts for the variance of the total load curve. The sec-

ond term σ ∑
N
n=1 ||un||2 penalizes the distance from un to the zero vector. Therefore σ can be

viewed as a battery degradation cost [91]. Battery degradation encompasses a variety of complex
mechanisms, which partially depends on charging power magnitude among factors such as tem-
perature, cell chemistry, manufacturing quality, etc. However, for simplicity, we will call this term
“degradation cost” in the rest of the chapter.

The optimization program is a Quadratic Program (QP) with Th×N linear equality constraints
and 1+ 4Th×N linear inequality constraints. For context, consider the Zero Emission Vehicle
(ZEV) Action Plan [20] to reach N = 1.5 million ZEVs in California by 2025. For Th = 24h
and ∆t = 1h, this yields a QP with 32M variables and 144M inequality constraints. Despite the
structural simplicity of a QP, the shear problem size requires an untenable amount of memory, thus
motivating parallelization methods.

3.3 Dual decomposition
In this section we develop a dual splitting method and provide a distributed protocol to solve prob-
lem (3.9). Dual splitting strategies are often used to parallelize large scale optimization problems
and various methods have been applied to computer vision [18], machine learning [121] or signal
processing [30]. Close to the setting under consideration here, the primal-dual approaches devel-
oped in [139, 25] deal with block constrained problems. In the following section, we leverage the
particular structure of the PEV smart charging problem and develop a novel dual splitting strategy
tailored to the average-based input in the objective and the independent constraints. We show that
the resultant Gradient Ascent Method assumes updates from every PEV at each time step, and
converges to the optimal solution with a linear rate. We later propose two variations based on the
Incremental Stochastic Gradient Method (ISGM), which requires updates from only one agent at
a time, but converges with a slower rate of convergence.
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3.3.1 Dual splitting
In the remainder of this chapter, we will study the optimization program (3.9). Let Ωn denote
the feasible set of charging schedules for PEV n given by (3.9b), (3.9c), (3.9d). We define the
consensus variable zt = Dt +∑

N
n=1 ut

n. Then (3.9) becomes:

min
u,z

Th

∑
t=1

(zt)2 +σ

N

∑
n=1
||un||2 (3.10a)

st zt = Dt +
N

∑
n=1

ut
n (3.10b)

un ∈Ωn ∀n. (3.10c)

The above problem is a quadratic minimization problem with linear constraints, and therefore
a convex program. We can dualize the equality constraint (3.10b) and form the Lagrangian with
dual variable λ . Moreover, assume there exists a feasible point u in the convex set formed by
constraints (3.10c) and (3.10b). Since (3.10b) is affine and always feasible, (3.10) is a convex
program and admits a feasible point. Slater’s condition holds (c.f. [19]) and the strong duality
property gives the equivalent problem:

max
λ t∈ℜ

min
u,z

Th

∑
t=1

(zt)2 +
Th

∑
t=1

λ
t(zt−Dt−

N

∑
n=1

ut
n)+σ

N

∑
n=1
||un||2

st un ∈Ωn ∀n. (3.11)

We first perform the minimization with respect to variable z;

∀t ∈ J1,ThK zt∗ = argmin [ ft(zt) = zt2
+λ

tzt ]

zt∗ =−λ t

2
and ft(zt∗) =−(λ t)2

4

Now, we define µ t =−λ t and plug the value of zt∗ into (3.11). Then, the problem is equivalent to:

max
µ∈ℜ

Th

−||µ||2

4
+µ

T D+
N

∑
n=1

(
min

un
µT un +σ ||un||2

st un ∈Ωn.

)
(3.12)

Note that the contributions of un in the objective function (3.12) are decoupled along n ∈
J1,NK. The N minimization subproblems are now independent from each other and can be solved
in parallel. In the next sections we will study the Gradient Ascent Method and the Incremental
Stochastic Gradient Method to solve this optimization program.
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Algorithm 1 Gradient ascent

Initialization µ = µ0 ; Choose α ≥ 0, β ≥ 0
1) Find local optimal solution uk

n
for n=1 to N do

Solve uk
n = argmin

un

µkT un +σ ||un||2 st un ∈Ωn.

end for
2) Update µ

Compute Gradient step µk+1 = µk + α

kβ
(−µk

2 +D+∑uk
n)

if Stopping criteria not reached then
k← k+1 , Go to 1)

end if

3.3.2 Gradient ascent method
Algorithm 1 gives the gradient ascent protocol to solve the optimization program with pa-

rameters α ≥ 0, β ≥ 0, such that the gradient ascent step at iteration k is α

kβ
. In this section,

we prove that Algorithm 1 converges to the optimal solution and we give complexity bounds. Let
g : ℜTh →ℜ denote the dual objective function:

g(µ) =
−||µ||2

4
+µ

T D+
N

∑
n=1

min
un

µ
T un +σ ||un||2

st un ∈Ωn ∀n.

Theorem 1 (Gradient Ascent with constant step-size). The dual problem in Eq (10) has a unique
solution µ∗ and the gradient ascent with step-size α = 2σ

σ+N converges according to

g(µ∗)−g(µk)≤
( N

σ +N

)k
(g(µ∗)−g(µ0)) (3.13)

Proof: We will prove Theorem 1 in two steps: (i) show strong concavity of g, then (ii) show
that that function g admits Lipschitz gradients.

Step 1: The function g : ℜTh →ℜ is strongly concave with constant m = 1
2 .

We refer to [19] for generic results about convex functions and for the detailed definition of
the strong convexity constant m. Function g is a sum of a strongly concave quadratic function and
N functions ψn defined by:

ψn(µ) = min
un

µ
T un +σ ||un||2

st un ∈Ωn.
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The set Ωn is a non-empty convex set. For each µ , ψn(µ) appears as a minimum of a strongly
convex function over a convex set, thus it has a unique solution u∗n(µ). Let τ ∈ [0,1], µ1,µ2 ∈ℜ.

τψn(µ1)+(1− τ)ψn(µ2)

= τ min
un∈Ωn

µ
T
1 un +σ ||un||2 +(1− τ)min

un∈Ωn
µ

T
2 un +σ ||un||2

≤ min
un∈Ωn

τ(µT
1 un +σ ||un||2)+(1− τ)(µT

2 un +σ ||un||2) (3.14)

= ψn(τµ1 +(1− τ)µ2)

Therefore, ψn is concave. Now, g(µ) = −||µ||2
4 +µT D+

N
∑

n=1
ψn. The quadratic part is strongly

concave with constant 1
2 , therefore g is at least 1

2 strongly concave.

Step 2: The function g : ℜTh → ℜ has a Lipschitz continuous gradient with constant Lg =
1
2(1+

N
σ
). Since ψn(µ) admits a unique minimum and the function is linear in µ , ψn is differen-

tiable and ∇ψn(µ) = u∗n(µ) (see [14]). Using the characterization of minimum of convex functions
with u∗1n = u∗n(µ1) and u∗2n = u∗n(µ2), we have:

〈µ1 +2σu∗1n ,un−u∗1n 〉 ≥ 0 ∀un ∈Ωn

〈µ2 +2σu∗2n ,un−u∗2n 〉 ≥ 0 ∀un ∈Ωn (3.15)

Applying these relations respectively to u∗2n and u∗1n we get:

〈µ1 +2σu∗1n ,u∗2n −u∗1n 〉 ≥ 0

〈µ2 +2σu∗2n ,u∗1n −u∗2n 〉 ≥ 0 (3.16)

Adding these lines, and using Cauchy Schwarz yields :

〈(µ1−µ2)+2σ(u∗1n −u∗2n ),u∗2n −u∗1n 〉 ≥ 0
〈(µ1−µ2),u∗1n −u∗2n 〉−2σ ||u∗1n −u∗2n ||2 ≥ 0
||µ1−µ2||||u∗2n −u∗1n || ≥ 2σ ||u∗1n −u∗2n ||2 (3.17)

We conclude that ||u∗1n −u∗2n || ≤ 1
2σ
||µ1−µ2||. Thus, with operations (3.15), (3.16) and (3.17) we

can conclude:
||∇ψn(µ1)−∇ψn(µ2)|| ≤

1
2σ
||µ1−µ2|| ∀n, ∀µ1, ∀µ2.

Coming back to the definition of function g, we obtain:

∇g(µ1)−∇g(µ2) = −µ1−µ2

2
+∑

n
(u∗1n −u∗2n )

||∇g(µ1)−∇g(µ2)|| ≤
σ +N

2σ
||µ1−µ2|| (3.18)
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Figure 3.1: Impact of σ on convergence rate and results

Therefore, g has a Lipschitz continuous gradient with constant Lg =
σ+N

2σ
.

Now, from [19, Ch. 9, p. 466], the gradient ascent method with stepsize 1
Lg

converges and gives

g(µ∗)−g(µk) ≤
(
1− m

Lg

)k
(g(µ∗)−g(µ0))

≤
( N

σ +N

)k
(g(µ∗)−g(µ0)) (3.19)
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Remark 1. Algorithm 1 with constant step-size converges to accuracy ε in O
(
(1+ N

σ
)log(1

ε
)
)

it-

erations; the complexity is O
(
(N + N2

σ
)log(1

ε
)
)
. In other words, the convergence rate is linear

with respect to parameter σ

N and the complexity is quadratic with respect to N. Hence, it is impor-
tant to tune the parameter σ

N to accelerate the convergence. On the other hand, σ

N measures how
selfish the agents are: as σ

N increases, the penalization for battery degradation increases and the
result looses optimality in terms of variance minimization. Fig 3.1 illustrates this tradeoff for 200
agents. In each case µ0 = D where D is the initial load curve. We stop the algorithm when we
reach a relative duality gap of 10−5. We note that for σ

N ≥ 1, 10 iterations are enough to reach this
precision.

Remark 2. The derived dual splitting algorithm and Theorem 1 apply for any feasible convex set of
constraints Ωn. Consequently, the algorithm can be adapted to similar problems where each agent
has an independent set of convex constraints. This feature is useful for extensions that consider
uncertainty via a robust convex set of constraints.

3.3.3 Incremental Stochastic Gradient Method

Algorithm 2 Incremental Stochastic Gradient Method

Initialization µ = µ0 , Choose α , γ , β ≥ 0
1) Find local optimal solution uk

i
Select i at random in J1,NK
Solve uk

i = argmin
ui

µkT ui +σ ||ui||2 st ui ∈Ωi.

2) Update µ

Compute Gradient update step
µk+1 = µk + α

γ+kβ
(− µk

2N + D
N +uk

i )

if Stopping criteria not reached then
k← k+1 , Go to 1)

end if

This section develops a variation of the proposed dual-splitting optimization framework to
solve (??), called the Incremental Stochastic Gradient Method (ISGM). The stochastic method is
an iterative method, which uses unbiased estimates of gradients. This is similar to standard gradient
methods in the sense that iterate directions are descent directions only in expectation. We keep the
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same notations and remark that g can be expressed as:

g(µ) =
1
N

N

∑
n=1

−||µ||2

4
+µ

T D+N min
un

µ
T un +σ ||un||2

st un ∈Ωn.

=
1
N

N

∑
n=1

gn(µ) (3.20)

The incremental gradient method is a version of Stochastic Gradient Method where we pick i ∈
J1,NK uniformly at random, and choose the iterate direction ∇gi. Note µ∗ is the optimum for g
and µ∗n is the optimum for gn. Convergence of IGSM with constant and decreasing step-size are
given by the following two theorems.

Theorem 2 (ISGM with constant step-size). ISGM with constant step-size α ∈ [0, 1
(1+N/σ)2 ] reaches

the ball B(µ∗,r) with precision ε where r = 1
1+2αL2

g

2α

N L3
g

N
∑

i=1
||µ∗i −µ∗||2 in 1

α(1−2αL2
g)

ln( ||µ0−µ∗||
ε

)

iterations.

Theorem 3 (ISGM with decreasing step-size). ISGM with decreasing step-size αk =
1

(1+N/σ)2+k
converges to the optimal solution µ∗ and

E(g(µ∗)−g(µk))≤
1
N

N

∑
i=1
||µ∗i −µ

∗||2 1
(1+N/σ)2 + k

(3.21)

Proof of Theorems: We prove Theorem 2 and 3 by showing that we can find L and B such
that E

(
||∇g(µ)||2

)
≤ L2||µ−µ∗||2 +B2.

Step 1: The function gn : ℜTh → ℜ has a Lipschitz continuous gradient with constant Ln =
Lg =

1
2(1+

N
σ
). This is shown by following the same procedure as Step 2 of Theorem 1 proof.

Step 2: Show E
(
||∇gi(µ)||2

)
≤ 2L2

g||µ − µ∗||2 +B2 with Lg = 1
2(1+

N
σ
) and B2 = 1

2N (1+

N
σ
)2

N
∑

i=1
||µ∗i −µ∗||2. Using the Cauchy Schwarz inequality and the Lipschitz condition, we obtain:

E
(
||∇gi(µ)||2

)
≤ E

(
L2

i ||µ−µ
∗
i ||2
)

≤ E
(
2L2

i ||µ−µ
∗||2 +2L2

i ||µ∗i −µ
∗||2
)

=
2
N

N

∑
i=1

L2
g||µ−µ

∗||2 + 2
N

N

∑
i=1

L2
g||µ∗i −µ

∗||2

= 2L2
g||µ−µ

∗||2 +B2 (3.22)

This is the condition E
(
||∇g(µ)||2

)
≤ L2||µ − µ∗||2 +B2. With these particular values of L and

B, results in [93] can be used to establish the step-sizes and convergence rates of Theorem 2 and
3.
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Remark 3. Similarly to Remark 1, Theorem 2 and Theorem 3 show that the computation time
depends only on the parameter σ

N . Parameter σ

N measures the tradeoff between the regularity
of the objective function (convergence speed) and the optimality of the solution (load shaping
performance). In particular, when σ

N increases, the number of necessary iterations decreases but
the optimal solution becomes less optimal in terms of load shaping.

3.3.4 Comparison of algorithms
This sections shows computation and communication tradeoffs between the algorithms.

3.3.4.1 Convergence speed

Theorem 2 states that the convergence rate of Algorithm 2 with constant step size is linear, similar
to Algorithm 1. Theorem 3 states that the convergence rate of Algorithm 2 with decreasing step
size is 1

k , which is much slower than Algorithm 1. Note that an Incremental Method iteration
is N times faster than a Gradient Ascent iteration. Thus, the convergence speed of Algorithm 2
with constant step-size is usually faster, but converges only to a certain precision r. Algorithm 2
should be used when the aggregator needs a fast convergence and is satisfied with an approximate
solution.

3.3.4.2 Privacy

In the stochastic configuration, only one random PEV needs to communicate with the aggregator at
each time step. This significantly reduces the required communication between each PEV and the
aggregator, thus increasing resistance to hacking attacks and improving cyber-security [118]. Con-
sequently, Algorithm 2 with decreasing step-size should be used when the aggregator is concerned
about privacy.

Figure 3.2 and 3.3 show the values of the primal and dual objectives for each of the three
methods. We stop Algorithm 1 and 2 when the number of iteration exceeds 2×105, or the relative
duality gap reaches 10−3; Nit denotes the number of necessary iterations to converge to the desired
precision ε = 10−3. For each case, we choose the starting point µ0 = D where D is the load
curve (“Duck Curve”). This shows that all the algorithms converge faster as the parameter σ

N
increases. For σ = 200, Algorithm 1 and Algorithm 2 with constant step-size converge to the
required precision:

• Algorithm 1 needs 5 full-gradient iterations.

• Algorithm 2 needs 6193 stochastic iterations, which corresponds to 6193
200 ' 31 full-gradient

iterations.
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3.4 Power network capacity constraints
In this section we adapt the above methodology to include grid capacity constraints, as studied in
[115, 134].

3.4.1 Integration of congestion constraints
The algorithms from Section 3.3 are likely to create scenarios where most vehicles charge during
low net-load hours, and discharge during high net-load hours. This coordination pattern may
provoke power congestion and reverse power flows on distribution lines. In particular, distribution
system substations may become overloaded and induce equipment failure and large power outages
[128, 65]. We consider preventing these dangerous side effects by setting active power capacity
constraints for each feeder.
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We consider a network with S feeders and denote by Sd the set of agents that are connected
to the feeder d. The aggregator constrains the aggregated PEV power as follows:

Lt
d ≤ ∑

j∈Sd

ut
j ≤Mt

d ∀d ∈ J1,SK, t ∈ J1,ThK. (3.23)

where Mt
d and Lt

d denote the remaining capacity of Sd at time t and can be determined by fore-
casting the net load connected to Sd at time t (without PEVs). In this chapter we do not model
the impact of PEVs at the distribution network bus level, instead we assume an independent sys-
tem operator or utility provides constraints for the aggregated PEV power at the feeder level and
ensures grid reliability. The optimization problem with congestion constraints is:

min
u

Th

∑
t=1

(Dt +
N

∑
n=1

ut
n)

2 +σ

N

∑
n=1
||un||2 (3.24a)

st ∀n ∈ J1,NK,un ∈Ωn (3.24b)

∀d ∈ J1,SK,Ld ≤ ∑
j∈Sd

u j ≤Md (3.24c)

We define the same consensus variable zt = Dt +∑
N
n=1 ut

n, and the conclusions from equation
(3.11) still hold. Then, the distributed problem becomes:

max
µ∈ℜ

Th

−||µ||2

4
+µ

T D +
S

∑
d=1

∑
n∈Sd

min
un

µ
T un +σ ||un||2 (3.25)

st ∀n ∈ J1,NK,un ∈Ωn

∀d ∈ J1,SK,Ld ≤ ∑
j∈Sd

u j ≤Md

We can further dualize the congestion constraints with dual variables λd,γd to obtain:

max
µ∈ℜ

Th

λd ,γd∈ℜ
+Th

−||µ||2

4
+µ

T D+
S

∑
d=1

∑
n∈Sd

min
un

µ
T un +σ ||un||2 +λ

T
d (un−Md)+ γ

T
d (Ld−un) (3.26)

st ∀n ∈ J1,NK,un ∈Ωn

Equations (3.25) and (3.26) show two ways to solve the optimization program with conges-
tion:

• In (3.25), the problem is semi-distributed (see fig 3.4). Each subsystem Sd is associated with
a Quadratic Program of size Th×Nd where Nd is the number of vehicles in Sd . Thus, the
complexity of each Quadratic Program scales as O(T 3

h ×N3
d ). All the results from Section

3.3 still hold, where N agents are replaced by S subsystems. This formulation is not scalable,
but may be computationally tractable if the size of each subsystem is small.
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• In (3.26), the introduction of dual variables λd and γd enables a fully distributed system (see
fig 3.5). The triplet of dual variables (µ,λ ,γ) is comprised of the global price µ and the
congestion prices (λd,γd).

3.4.2 Distributed optimization under congestion constraints
In this subsection we study formulation (3.26) in more detail. Algorithm 3 proposes an accelerated
projected gradient ascent to solve (3.26). Let y denote the full dual variable [µ,λ ,γ], the dual
objective f : (R×R+×R+)→ R is:

f (y) =
−||µ||2

4
+µ

T D+
S

∑
d=1

Nd(γ
T
d Ld−λ

T
d Md)

S

∑
d=1

∑
n∈Sd

min
un

(µT +λ
T
d − γ

T
d )un +σ ||un||2

st ∀n ∈ J1,NK,un ∈Ωn

Let Pr denote the projection on the set (R×R+×R+). We can find the optimal solution of (3.26)
with a projected gradient ascent. Algorithm 3 presents an accelerated projected gradient ascent
using Nesterov iterations [95].

Theorem 4 (Accelerated Projected Gradient Method). The accelerated projected gradient ascent
in Algorithm 3 with step-size α = 2σ

σ+N converges to an optimal solution y∗ with

f (y∗)− f (yk)≤
2(σ +N)

σ(k+2)2 ||y
∗− y0||

Proof: Note that f is weakly concave and has Lipschitz continuous gradients with constant
Lg = σ+N

2σ
(see proof of Theorem 1 for details). Reference [95] gives the corresponding conver-

gence rate for the accelerated Nesterov method.
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Algorithm 3 Accelerated Projected Gradient Method
Initialization y0,y1, θ0 = 1, Choose α

1) Find local optimal solution uk
n

for d=1 to S do
for n=1 to Nd do

Solve Local Quadratic Program QPn(µ
k,λ k,γk)

uk
n = argmin

un

(µk +λ k
d − γk

d)
T un +σ ||un||2 st un ∈Ωn

end for
end for
2) Compute βk

θk =
1
2(−θ 2

k−1 +
√

θ 4
k−1 +4θ 2

k−1)

βk = θk(
1

θk−1
−1)

3) Nesterov Gradient update step y = (µ,λ ,γ)
zk = yk +βk(yk− yk−1)
yk+1 = yk +α Pr(∆ f (zk))
if Stopping criteria not reached then

k← k+1, Go to 1)
end if

Figure 3.6 shows the result for 500 EVs and 5 distribution subsystems with and without
congestion constraints. For the 5 subsystems we simulate congestion constraints, which are pro-
portional to the number of PEVs and charger power rate, such that all PEVs cannot be charging
or discharging at the same time.Figure 3.6 shows that the congestion constraints limit the charg-
ing and discharging flexibility of the aggregator, especially during the peaks of underconsumption
(2pm) and overconsumption (9pm).

Remark 4. A simple projected gradient ascent could be performed to find the optimal solution
of problem (3.26). However, Theorem 4 states that the number of iterations to reach precision ε

scales as 1√
ε

for the accelerated method, as compared to 1
ε

for a simple projected gradient ascent.
Figure 3.6 b) and 3.6 c) show the distance from the feasible set after 200 iterations for both the
accelerated and standard projection methods. In these two plots the feasible set is the half plan
of positive Remaining Capacity values. This shows that 200 iterations are sufficient to approach
feasibility with the accelerated method but not with the standard method.

3.5 Results, application to the Duck Curve
In this section we apply the proposed dual splitting algorithm to flatten the California “Duck
Curve” via managed PEV charging. In this section, we do not consider capacity constraints.
The Vehicle-to-Grid Simulator (V2G-Sim), developed at Lawrence Berkeley National Labora-



CHAPTER 3. DUAL SPLITTING FRAMEWORK FOR OPTIMAL CHARGING OF FLEETS
OF ELECTRIC VEHICLES WITH CONTINUOUS CHARGING RATES 60

f 0 5 10 15 20
5

6

7

8

9

10

Time (h)

L
o

a
d

 (
M

W
)

Congestion impact − 500 vehicles, 5 distribution networks    

 

 

No EVs

EVs without control

Optimal − no congestion

Optimal − congestion

a)

0 5 10 15 20
−1.5

_1

0.5

0

0.5

1

1.5

2

2.5

Time (h)

R
e

m
a

in
in

g
 c

a
p

a
c
it
y
 (

M
W

)

Capacity before congestion  

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time (h)

 

 

Capacity before reverse power flow  

Proj gradient 

Accelerated proj gradient

No congestion constraints

Result after 200
iterations

Infeasible setInfeasible set

b) c)

Figure 3.6: Impact of congestion constraints

tory [132], is used to model the driving and charging behavior of individual PEVs. V2G-Sim
is an agent-based simulator that incorporates mobility data from the 2009 National Household
Travel Survey (NHTS) [131]. Reference [113] provides more details about the V2G-Sim model-
ing methodology.

3.5.1 Impact of PEV penetration on Demand Response
In this section, we fix the scale Number of cars

Maximum Peak Load . We assume that the total peak load in California
is 26000 MW and the total number of cars in California is 13.3×106. This ratio is kept constant
to simulate areas of different size and study the impact of PEV penetration in California. Figure
3.7 shows the impact of PEV penetration on a 3MW peak area, which approximately corresponds
to 1600 cars. We consider the only available charging infrastructure is Level 1 chargers at home.
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It is interesting to see that 20% penetration (315 PEVs) suffices to reduce the evening ramp by a
factor of 2.

3.5.2 Comparison with other algorithms
In this section, we compare the load shaping performance of the proposed distributed algorithm
against decentralized strategies, such as exogeneous marginal pricing and Time Of Use (TOU)
pricing ([86, 37]). We seek to assess the performance with respect to the demand response im-
pact. As such, other distributed methods are not considered, since they would yield the same load
shaping result, although may require different numbers of iteration.

• Exogenous Marginal Price: In this scenario, we consider a fixed pricing signal µ t = σ104

Cap Dt ,
where Cap is the maximum Load capacity from loads and PEVs, and D is the Net Load
without PEVs. This price signal is synthesized by multiplying the net load signal D by
scaling factor σ104

Cap . Thus, this method naturally assigns high prices to peak consumption
times, and low prices when total net load is low. This concept is explored in [86] for example.

• TOU Price: This pricing method is based on off-peak, partial peak and peak periods. It has
been used by several utilities to regulate the demand (see PG&E for example [37]). In this
scenario we divide the 24h period into 3 groups and assign the corresponding PG&E rates
for off-peak, partial-peak, and peak periods.

Figure 3.8 shows the effect of the 3 price signals in two different penetration scenarios. In
general, the three methods tend to flatten the net load curve, however TOU and Exogenous prices
are suboptimal. Figure 3.8 b) shows that TOU pricing yields non-flat load for a large penetration of
PEVs. Because we assume that all the agents are price takers, the transitions between partial-peak
and off-peak periods (9am and 6pm) create large undesirable ramping. That is, all the PEVs start
charging at 9am and stop at 6pm.
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Figure 3.8: Comparison of various pricing methods

This example shows that exogenous methods can be counterproductive in certain scenarios. It is
preferable to have a systematic, model-based method to determine price signals.

3.5.3 Load continuity and real implementation
Equation 3.9 is a finite time horizon optimization program. In practice, this method could create
discontinuities (ramping) between two separate time periods. This is critical in the context of load
shaping since we aim to flatten a continuous energy curve. This point can be handled with rolling
horizon techniques. Let Tr define the Rolling Horizon and Te the execution horizon, we augment
the objective function (3.9a) with additional costs due to time steps t ∈ JTe,TrK but implement the
given solution only for time steps in J1,TeK:

min
u

Te

∑
t=1

(Dt +
N

∑
n=1

ut
n)

2 +
Tr

∑
t=Te+1

(Dt +
N

∑
n=1

ut
n)

2 +σ

N

∑
n=1
||un||2 (3.27)

Figure 3.9 shows a four day implementation. Figure 3.9 a) shows the case where Te = Tr = 24h
and Figure 3.9 b) shows the case where Te = 24h and Tr = 48h. In Figure 3.9 b) there are no
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Figure 3.9: Rolling horizon implementation: the colored lines represent the load shape after PEV
smart charging, full lines are real implementation and dashed lines planned implementation

discontinuities between two distinct execution periods (full lines), whereas figure a) shows some
high power ramping between two different days (particularly between Day 1 and Day 2). The plot
illustrates that this implementation method ensures load continuity between different execution
periods.

3.6 Summary
In this chapter, we have proposed a method to solve the opetimal PEV scheduling problem with
power network congestion constraints. However, power congestion is not the only risk associated
wit PEV aggregation, and voltage deviation is also a major threat. To prove complete safety of PEV
aggregation, it is necessary to consider a complete model of the power network, and incorporate
detailed power and voltage constraints at every node of the grid. Next chapter studies this extended
problem, and proposes Plug & Play Model Predictive Control for real time implementation in a
computationally efficient manner.
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Chapter 4

Electric Vehicle Charging in the Smart
Grid: Plug-and-Play Model Predictive
Control techniques

4.1 Controlling PEV charging in the broader context of smart
grids

The development of smart meters has led to the modernization of distribution networks by enabling
real-time bidirectional communication [135]. In this context of smart grids, demand side manage-
ment allows system operators to control the energy consumption at the household level, offering
new opportunities to improve the reliability, efficiency and sustainability of the grid [97, 50]. In
particular, automated load shifting is expected to play a key role in stabilizing the grid in the case
of high penetration of plug-in Electric vehicles (PEVs) and uncontrollable renewable sources, such
as photovoltaic solar energy [72, 82]. Many efficient distributed algorithms have been proposed
to address the load scheduling problem, but neglecting distribution grid constraints [73, 47, 87].
In Chapter 2, no grid constraints is considered, and in Chapter 3 only potential line congestion
is considered. As a result, these approaches may result in infeasible solutions for the distribution
grid [85]. In particular, with the growing penetration of renewable and distributed resources, the
risk of voltage instability and reverse power flow increases, and it becomes essential to coordinate
loads by considering the extensive set of distribution grid constraints. In this Chapter, we develop
a control scheme that integrates flexible loads in the existing distribution network, provides local
and aggregated grid services and satisfies users’ requirements, as well as grid constraints.

There are two key challenges in designing such a controller. First, it should be able to handle
variations in the number of connected loads, i.e. plugging in and out operations. In a real sce-
nario, a user can request to connect or disconnect any load at any desired time and bus. Modeling
all the possible requests results in a very large scale and uncertain system, which has been stud-
ied through model predictive control (MPC) [34], maximum sensitivity selection [33], and solved
by using parallel computing methods [117]. These solutions with fixed-order models (centralized
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Deferrable	loads	
Fixed	Power	

Shapeable	loads	
Fixed	Energy	

Controllable	Loads:		

Figure 4.1: Schematic representation of the protocol: loads plugging in and out of the distribution
network.

or distributed) do not account for changes in state dimension when PEVs plug-in and plug-out.
In contrast, the proposed framework models only the static state of the network and deals with
plug-in requests when new loads require supply. Contrary to most available results, the proposed
controller is not based on flexible load forecasting, but is redesigned each time a new load is
connected. Second, the controller should consider two different objectives and time scales: lo-
cal voltage regulation and aggregate load shaping. Previous work has proposed multilevel and
multi-horizon approaches [34, 114, 81] and decentralized protocols [90] but does not consider
the available distribution grid control devices. In opposition, this method does not only include
the state of the network, but also the control of battery banks and capacitors, which are jointly
optimized with the load profiles.

The proposed solution is based on a two-stage plug-and-play model predictive controller.
While the main focus of MPC so far has been on the control of networks with constant topology,
the concept of plug and play (P&P) MPC [109, 138, 123] considers network changes by subsys-
tems that want to join or leave the network, while ensuring feasibility and stability of the global
system. By providing an automatic redesign of the control laws in response to changing network
conditions, P&P MPC is an attractive scheme for modern control systems of increasing complex-
ity. We provide a P&P framework to deal with the connection and disconnection of loads from
the grid, which requires an online feasibility handling as introduced in [7]. Compared to previous
work in [7], which considers voltage control in a distribution grid, we propose a methodology to
control loads with fixed charging deadlines, and achieve both load shaping and voltage control. A
procedure for updating the controller together with a transition scheme is proposed, which prepares
the system for the requested modifications, and we provide a new proof of recursive feasibility, i.e.
satisfaction of network constraints and user deadlines. A schematic representation of the protocol
is given in Fig. 4.1.
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4.2 Preliminaries
This section introduces the different elements of the network, including deferrable and shapeable
loads, battery banks and capacitors. The overall system is modeled as a constrained dynamic
system with linear dynamics and energy constraints.

4.2.1 Load modeling
Let consider a load with proposed energy profile e(k) and power profile c(k), where k is the discrete
time step. The role of the scheduling operator is to generate another energy profile ẽ = τ(e). Three
types of loads with different maps τ are distinguished (see Fig. 4.1):

• Fixed loads do not participate in demand response and cannot be controlled : ẽ f (k) = e f (k).

• Deferrable loads can be delayed but have a fixed load profile. In this case ẽde f (k) = ede f (k−
d) with d bounded by a constraint on the maximum allowable delay. This includes PEVs
with constant charging rate.

• Shapeable loads have a flexible profile but need a fixed amount of energy in a fixed time
period T: ∑

T
k=0 ẽshp(k) = ∑

T
k=0 eshp(k). It includes PEVs with continuous charging rate.

In the following sections, we model the load dynamics.

4.2.1.1 Deferrable loads

Consider a deferrable load with a proposed power profile cde f
0 (k) > 0 (see Ref [36, 66] for typ-

ical profile examples). As soon as the deferrable load plugs in, its power profile cde f becomes
deterministic:

ede f (k+1) = ede f (k)+η
de f

∆T cde f (k) (4.1a)

cde f (k) = cde f
0 (k) (4.1b)

In Eq (4.1a), ∆T and ηde f ≤ 1 are parameters corresponding respectively to the duration of time
intervals and the efficiency coefficient, which accounts for energy conversion losses.

Remark 5. The only control on deferrable loads comes from P&P operations, which determines
when to plug-in the load. After it is connected, the load is deterministic and can be considered as
a fixed load.

4.2.1.2 Shapeable loads

Power at shapeable loads cshp can take values in a continuous range [0,cshp
max]. We define eshp

low, eshp
max
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Table 4.1: Nomenclature - Load dynamics

Symbol Description
Variables
ede f (k) Deferrable load energy level at time k (kWh)
cde f (k) Deferrable load power at time k (kW)
eshp(k) Shapeable load energy level at time k (kWh)
eshp

min(k) Minimum shapeable load energy at time k (kWh)
cshp(k) Shapeable load power at time k (kW)
ebat(k) Battery energy level at time k (kWh)
pbat(k) Battery power at time k (kW)
Parameters
∆T Duration of time step (h)
ηde f Deferrable load efficiency coefficient (1)
cde f

0 Deferrable load fixed power profile (kW)
η Shapeable load efficiency coefficient (1)
eshp

low Shapeable load energy physical lower limit (kWh)
eshp

max Shapeable load energy physical maximum limit (kWh)
eshp

des Shapeable load desired energy level (kWh)
cshp

max Shapeable load maximum power (kW)
kout Charging deadline (h)
pbat

max Battery maximum power (kW)
pbat

min Battery minimum power (kW)

and eshp
des as the physical lower limit, physical upper limit and desired energy level of the load,

respectively. The dynamics of shapeable loads are given by:

eshp(k+1) = eshp(k)+η∆T cshp(k) (4.2a)

eshp
min(k)≤ eshp(k) ≤ eshp

max (4.2b)

0≤ cshp(k) ≤ cshp
max (4.2c)

where η < 1 is an efficiency parameter. The user’s constraint implies that the load is fully charged
by time kout , where kout is a parameter communicated to the controller when the load requests
supply: eshp(kout)≥ eshp

des . As a result, the lower bound constraint eshp
min(k) is due to two independent

factors: (i) the user’s constraint in Eq (4.3), and (ii) the physical energy lower limit in Eq (4.4):

eshp
min(k) ≥ eshp

des − (kout− k)cshp
max∆T η ∀k ≤ kout (4.3)

eshp
min(k) ≥ eshp

low ∀k (4.4)

Equations (4.3) and (4.4) can be combined as follows:



CHAPTER 4. ELECTRIC VEHICLE CHARGING IN THE SMART GRID:
PLUG-AND-PLAY MODEL PREDICTIVE CONTROL TECHNIQUES 68

eshp
min(k) = max[eshp

des −max(0,(kout − k)cshp
maxη∆T ),eshp

low]. (4.5)

We use the notation:

1k<kout =

{
1 if k < kout

0 otherwise

4.2.2 Battery banks
On-site batteries are modeled with a linear state space model:

ebat(k+1) = ebat(k)+∆T pbat (4.6a)
ebat

low ≤ ebat(k) ≤ ebat
max (4.6b)

pbat
min ≤ pbat(k) ≤ pbat

max (4.6c)

where ebat
low, ebat

max are the fixed physical lower and upper limits of the battery’s energy level and
pbat

min, pbat
max are the minimum and maximum power. This model assumes perfect battery efficiency,

which is a simplified approximation of the battery dynamics. The introduction of an efficiency
factor η < 1 would result in a non-convex program as shown in [77, 70]. As a result, the perfect
efficiency assumption in (Eq 4.6) is frequently used in the power system literature to formulate the
overall system as a linear dynamical system, and to simplify the resulting control scheme ([55, 7,
57]).

4.2.3 Network Model
We consider a radial distribution network, which is a structure commonly used in the power sys-
tems literature. To characterize the power flow in this network we adopt the DistFlow equations
first introduced in [9] and the notation introduced in [40], restated here for completeness.

The power flow equations for a radial distribution network can be written as the following
DistFlow equations [8]:

Pi j = pl
j + pbat

j + pde f
j + pshp

j + ri jLi j + ∑
k:( j,k)∈L

Pjk (4.7a)

Qi j = ql
j−qg

j + xi jLi j + ∑
k:( j,k)∈L

Q jk (4.7b)

v2
j = v2

i +(r2
i j + x2

i j)Li j−2(ri jPi j + xi jQi j) (4.7c)

Li jv2
i = P2

i j +Q2
i j (4.7d)

∀ j ∈N \{1}, and (i, j) ∈L
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Table 4.2: Nomenclature - Radial distribution network

Symbol Description
Sets
N Set of buses, N := {1, . . . ,n}
L Set of lines between the buses in N
Li Set of lines connecting bus 0 to bus i
Parameters
Mi Number of shapeable loads connected at bus i
Variables
pl

i Real power consumption by fixed loads at bus i (kW)
pbat

i Real power consumption by battery banks at bus i (kW)
pshp

i Real power consumption by shapeable loads at bus i (kW)
pde f

i Real power deferrable loads at bus i (kW)
ql

i,q
g
i Reactive power consumption and generation at bus i (Var)

ri j,xi j Resistance and reactance of line (i, j) ∈L Ω

Pi j,Qi j Real and reactive power flows from bus i to j (kW, Var)
vi Voltage magnitude at bus i (V)
Li j Squared magnitude of complex current from bus i to j (A2)

where Pi j, Qi j, v j and Li j are defined in Table 4.2. Because the above formulation is non-convex,
the Second Order Cone relaxation (SOCP) defined in [41] is used, and equation (4.7d) is relaxed
as follows:

Li j ≥
P2

i j +Q2
i j

v2
i

. (4.8)

The variables are the reactive power generation input (column) vector qg := (qg
1, . . . ,q

g
n)∈Rn,

the battery input vector pbat := (pbat
1 , . . . , pbat

n ) ∈Rn and the shapeable, deferrable and fixed loads:
pshp, pde f , pl ∈ Rn, where pshp

i ∈ R+ and pde f
i ∈ R+ denote the net shapeable loads and net

deferrable loads charging at bus i, respectively. Symbols Mshp
i and Mde f

i denote the number of
shapeable and deferrable loads connected at bus i, respectively. These values can vary over time
due to plugging and unplugging operations. This relates with the notation in Section 4.2.1 as
follows:

pshp
i =

Mshp
i

∑
j=1

cshp
j , pde f

i =
Mde f

i

∑
j=1

cde f
j (4.9)

The substation voltage v0 is assumed to be given and constant. Furthermore, load profiles pl

and ql are time-varying but their 24-hour forecast is assumed to be given.
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4.2.4 Network Constraints
Depending on the load, bus voltages can fluctuate significantly. For reliable operation of the distri-
bution network, it is required to maintain the bus voltages v within a tight range around the nominal
value vnom at all times (generally 5% deviation): vnom−∆vmax ≤ v≤ vnom +∆vmax. We define the
variable Vi = v2

i and write this condition as:

Vmin ≤Vi ≤Vmax. (4.10)

Moreover, storage devices can supply energy at the nodes of the network when Pbat < 0,
which may introduce reverse power flow in the lines [10] and create operational issues in traditional
power networks [79]. This issue is avoided by imposing the following constraint:

Pi j ≥ 0 ∀(i, j) ∈L (4.11)

In addition, there are inherent physical limitations on the capacitor control input, which is limited
to:

qmin ≤ qg ≤ qmax. (4.12)

4.2.5 Dynamic System
In this section, the overall system is represented as a constrained dynamic system with energy

levels as states. Recalling that pshp
i =

Mshp
i
∑
j=1

cshp
j , we can write pshp = Kshpushp where ushp :=

(cshp
1 , . . . ,cshp

Mshp)
T ∈ RMshp

, and Mshp is the total number of shapeable loads connected to the grid,

i.e. Mshp =
n
∑
j=1

Mshp
j . Matrix Kshp ∈ Rn×Mshp

is defined such that:

Kshp
i j =

{
1 if shapeable load j is connected to bus i
0 otherwise

The overall system model is described as follows:

x(k+1) = Ax(k)+Bu(k) (4.13a)
(x(k),u(k)) ∈Zk (4.13b)

x =
[
x1,x2

]T
=
[
(eshp

1 , . . . ,eshp
Mshp),(ebat

1 . . . ,ebat
n )
]T

, u =
[
qg ushp pbat

]T
A = I, B =

[
0 η∆T 0
0 0 ∆T

]
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Zk = {(x(k),u(k),Pi j(k),Qi j(k),Vi(k),Li j(k)) : (4.14)
(4.7a),(4.7b),(4.7c),(4.8),(4.11), (4.15)
Vmin ≤Vi(k)≤Vmax, emin(k)≤ x(k)≤ emax, (4.16)

pbat
min ≤ pbat ≤ pbat

max, qmin ≤ qg(k)≤ qmax, (4.17)

0≤ ushp(k)≤ cshp
max}. (4.18)

4.3 Controller Design
The controller is designed with three control objectives:

• Peak reduction: Smooth the aggregated power profile.

• User satisfaction: Provide the desired energy to shapeable and deferrable loads.

• Voltage control: Ensure that voltage deviation from nominal voltage remains within bounds.

For the purpose of this section, the number of loads connected to the grid is assumed constant.
Plug and play connections are introduced in Section 4.4.

4.3.1 Stage 1: Feasible reference
In the remainder of this Chapter, Eq. (4.13) with pde f = 0, ushp = 0 refers to the dynamics with no
deferrable and no shapeable loads. We assume that the system has a feasible trajectory and has the
following periodic property, with period Nr:

Assumption 2. There exists an initial value x̂0 and a sequence of control inputs û(k), such that
the corresponding sequence of states x̂(k) according to dynamics (4.13a) with pde f = 0, ushp = 0
satisfies the constraints in (4.13b), i.e. (x̂(k), û(k)) ∈Zk for all k ∈ {0, ...,Nr−1}.

Assumption 3. If problem (4.13) with pde f = 0, ushp = 0, x(k) = x0 is feasible at time k, then
problem (4.13) with pde f = 0, ushp = 0, x(k+Nr) = x0 is feasible at time k+Nr.

In practice, Assumption 2 means that the traditional control devices (battery banks and capac-
itors) are selected according to the traditional fixed loads pl . When new loads, such as PEVs, are
not plugged-in, traditional control devices have enough flexibility to regulate voltage. Assumption
3 means that if the problem is feasible at time k, then the problem with same initial state is feasible
at time k +Nr, where the period Nr is typically a day. Deferrable and shapeable loads increase
power demand and voltage drop, which requires extra control capacity. In this case, the problem
with extra loads may not be feasible, requiring to solve the problem in a hierarchical way. First
an optimal solution is computed for the system without extra loads, second this reference signal
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is used to formulate a model predictive controller. The optimization problem for computing the
solution with only fixed loads (x̂(k); û(k)) is referred to as stage-1:

(x̂(k), û(k)) := argmin
x̃,ũ

Nr−1

∑
i=0
||ũ(i)||2T1

+ ||V (i)−Vnom||2T2

s.t. x̃(i+1) = Ax̃(i)+Bũ(i) (4.19a)
x̃(0) = Ax̃(Nr−1)+Bũ(Nr−1) (4.19b)
(x̃(i), ũ(i)) ∈Zi; i = 0, . . . ,Nr−1 (4.19c)

Mde f = Mshp = 0

where T1 and T2 are respectively positive definite and positive semi-definite weight matrices of
appropriate dimensions (see [129, Chapter 1] for details about weighted norms). The terminal
constraint (4.19b) ensures that batteries recover their initial energy level at the end of the control
horizon.

Remark 6. At stage-1, a cost function is chosen that penalizes the generation control input and
the deviation of voltage from its nominal value. The matrix T2 is defined positive semi-definite
since tracking the nominal voltage improves the power quality for loads, but the constraint (4.19c)
is enough to ensure that voltage remains between operational bounds at every time step i ∈
{0, . . . ,Nr−1}.

4.3.2 Stage 2: Model Predictive Controller
In the second stage, a predictive controller is designed to minimize the overall cost of the system
for time steps in {0, ..,N− 1}, with N < Nr. Problem stage-1 is computed once, at the begining
of the horizon, and the corresponding solution is used to ensure that the stage-2 problem remains
recursively feasible under a receding horizon strategy. Let λ (t) denote the price of electricity at
time t. The price λ (t) is given as an input to the MPC and reflects demand peaks and congestion in
the grid. This price can change at every time step, and reflect dynamic price markets. We propose
the following MPC problem (referred to as stage-2):

min
x,u

N−1

∑
i=0

λ (i+ k)
(Mshp

∑
j=1

ushp
j (i+ k)

)
+ ||V −Vnom||2T3

(4.20a)

s.t x(i+1+ k) = Ax(i+ k)+Bu(i+ k) (4.20b)
x(k) = xk (4.20c)
(x(i+ k),u(i+ k)) ∈Zi+k; i = 0, . . . ,N−1 (4.20d)
x(N + k) ∈ XN+k (4.20e)

In the MPC problem (4.20), the first term achieves peak reduction through the time-varying
price λ , while the second term penalizes voltage deviation. In the first term, the contribution from
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fixed loads pl , and deferrable loads pde f is uncontrollable, therefore load shaping can only be
achieved by controlling ushp. The loads directly respond to the price, and we refer to [72, 70] for
methods to set this price. In the second term, the weight matrix T3 is positive semi-definite and can
be used to penalize large voltage deviations from vnom.

Remark 7. The solution from stage-1 is used to define the terminal set XN+k in the next Section.
Thus, the horizon time N is chosen such that N < Nr.

4.3.3 Terminal Set
In this section, we detail the terminal set (4.20e). This constraint ensures that the system has
enough flexibility to charge shapeable and deferrable loads before their plug-out time kout , and keep
voltage between the regular bounds after the control horizon N. The terminal set is defined such
that the battery banks have enough energy to meet the real power demand of additional (shapeable
and deferrable) loads at the end of horizon. Moreover, the capacitors supply the reactive power
to satisfy the network constraints under base load. Feasibility of the stage-1 problem thus ensures
that all network constraints are satisfied even with the additional loads.

The terminal constraint for the shapeable loads' energy x1 = (eshp
1 , . . . ,eshp

Mshp)
T should guaran-

tee that each load can be fully charged before their plug-out time. This is given by Eq. (4.5), which
ensures the recursive feasibility of the constraint emin(k)≤ x(k)≤ emax, where emin(kout) = eshp

des .
The terminal constraint for the battery banks' energy x2 = (ebat

1 . . . ,ebat
n )T guarantees that

batteries have enough capacity at time N to track the reference signal from stage-1 and supply the
additional deferrable and shapeable loads. We denote (q̂i, êbat

i ) the optimal solution to the stage-1
problem in (4.19), and kout

max the maximum plug-out time of all the deferrable and shapeable loads
that are currently connected to the grid.

Definition 1. The terminal set XN+k at time N + k is defined as follows:

XN+k :=



[
x1(N+k),x2(N+k)

]T
=
[
eshp(N + k),ebat(N + k)

]T
such that ∀i ∈ {1, ...,n} ∀ j ∈ {1, ...,Mshp}

eshp
j (N + k)≥ eshp

des, j - max(0,(kout
j - (N + k))η∆T cshp

max, j)

eshp
j (N + k)≥ eshp

low, j

eshp
j (N + k)≤ eshp

des, j

ebat
j (N+ k) = êbat

i (N+ k)+
kout

max
∑

l=N+k
∆T pde f

i (l)+ p̃shp
i (l)

p̃shp(l) = Kshpc̃shp(l) (4.21)

c̃shp
j (l) =

eshp
des, j− eshp

j (N + k)

(kout
j − (N + k))η∆T

1l<kout
j

(4.22)
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Lemma 1. If the following conditions hold: ∀l ∈ [N + k,kout
max], ∀i ∈ 1, ...,n:

p̂i
bat(l)− pde f

i (l)− p̃shp
i (l)≥ pi

bat
min (4.23)

êbat
i (l)+

kout
max

∑
m=l

∆T pde f
i (m)+(eshp

des,i− eshp
i (N + k))

(kout
i − l)

η(kout
i − (N + k))

≤ ebat
max,i (4.24)

then problem (4.20) with terminal set XN+k as defined in Definition 1, is recursively feasible, i.e.
if the MPC optimization problem is feasible for x(k), then it is also feasible for x(k+1) defined in
Eq. (4.13).

Proof. We provide an outline of the proof, which can be found in the Appendix C. A feasible
control sequence for stage-2 at time k+N, (pshp(k+N), pbat(k+N),q(k+N)) is defined based
on the solution of stage-1 at time k+N, (p̂shp(k+N), p̂batk+(N), q̂(k+N)):

cshp
j (N + k) =

eshp
des, j− eshp

j (N + k)

(kout
j − (N + k))η∆T

1N+k<kout
j

(4.25)

qi(N + k) = q̂i(N + k) (4.26)

pbat
i (N + k) = [p̂i

bat- pde f
i - pshp

i ](N + k) (4.27)

In practice, Eq (4.21) and (4.22) define a feasible control sequence after time k +N where the
shapeable power c̃shp

j at load j is constant until the plug-out time kout
j . Then, Problem (4.20) is

recursively feasible assuming that Equations (4.23), (4.24) are true.

Remark 8. Lemma 1 shows that under conditions (4.23), (4.24) the MPC problem is feasible at all
times, if it is feasible for an initial state x0. The next section shows that the P&P operation ensures
that conditions (4.23), (4.24) are always satisfied, proving constraint satisfaction at all times.

4.4 Plug-And-Play PEV Charging
In real distribution systems, users can connect or disconnect their appliances randomly. This
changes the overall load on the system and can affect bus voltages significantly. This section
extends the MPC scheme to the case where the system dynamics in (4.13) change due to loads
joining or leaving the network by employing the concept of P&P MPC in [138]. The introduction
of P&P capabilities poses two key challenges ([138], [108]): (i) P&P operations may produce in-
feasible operating conditions; (ii) the control law has to be redesigned for the modified dynamics.
In the considered case, the problem is reduced to the first issue since the controller is computed
centrally by the stage-2 MPC (Section 4.3). In this section, the first challenge is addressed by
means of a preparation phase ensuring recursive feasibility and stability during P&P operation.
We first address the case of shapeable, then deferrable loads.
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4.4.1 Shapeable loads
As shown in Eq. (4.2c), shapeable loads can be plugged-in without drawing energy from the grid:
0≤ cshp≤ cshp

max. Therefore it is always optimal for a shapeable load to plug-in as soon as it requests
it: it can plug-in with cshp = 0 and wait for the system to allow strictly positive values cshp > 0.
Thus, the output of the P&P stage is to accept shapeable requests immediately. Additionally, we
assume that it is feasible to meet the user’s requirements, i.e. fully charge the load before the
maximum required time kout , and satisfy equations (4.23), (4.24). In practice, if a user makes an
infeasible request, he would be asked to lower his/her requirements by allowing a later kout or a
lower desired energy eshp

des .

4.4.2 Deferrable loads
The goal of the P&P operation is to find a time to safely connect deferrable loads, and modify the
response of shapeable loads and control devices to allow this connection as soon as possible. In
this section, a Mixed Integer Program (MIP) is defined to find the minimum time to safely plug-in
a deferrable load. After finding this time, the list of connected deferrable loads is updated, and
stage-2 is executed with the new system.

Deferrable loads do not impact the dynamics of the system, and only change the feasible set.
An additional deferrable load at node j modifies the set Zk via the equality:

Pi j = pl
j + pbat

j + pde f
j + pshp

j + ri jLi j + ∑
k:( j,k)∈L

Pjk

Moreover, it modifies the terminal set XN+k. In the following, Z k (respectively XN+k) denote
the feasible set (respectively terminal set) constraints that remain unchanged when a deferrable
load plugs in. Let’s consider a P&P request from a deferrable load at time k. The request can be
postponed by dmax < N maximum time steps. This creates dmax possible load shapes. For each
possible time-delay 0≤ d ≤ dmax we note pnew,d

j the corresponding shifted vector:

pnew,d
j = [0, ...,0︸ ︷︷ ︸

size d

, pnew,0
j ] (4.28)

Thus the following constraints are defined when a deferrable load requests to plug-in at node j and
is delayed by d time steps:

Pi j(l) = [pl
j + pbat

j + pde f
j + pshp

j ](l)+ ri jLi j(l)+ ∑
m:( j,m)∈L

Pjm(l)+
dmax

∑
d=0

zd pnew,d
j (l) (4.29)

ebat(N + k) = êbat(N+k)+
1
η

Kshp
(

eshp
des − eshp(N + k)

)
+

kout
max

∑
r=N+k

∆T [pde f +
dmax

∑
m=0

zm pnew,m](r) (4.30)
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The solution (x∗,u∗,z∗) of the Mixed Integer Program (MIP) (4.31) gives the optimal transi-
tion time d∗ = ∑

dmax
m=0 mz∗m.

min
x,u,z

V3(u,z) =
dmax

∑
m=0

mzm (4.31a)

s.t System Dynamics:
x(l +1) = Ax(l)+Bu(l), x0 = x(0) (4.31b)

(x(l),u(l),Pi j(l),Qi j(l),Vi(l),Li j(l)) ∈Zl

x(N + k) ∈ XN+k (4.31c)
Connection:

zm ∈ {0,1} ∀m ∈ {0,1, ...,dmax},
dmax

∑
m=0

zm = 1 (4.31d)

(4.29),(4.30) (4.31e)
Power flow: (4.29) (4.31f)
Battery banks: (4.30) (4.31g)

p j
bat
min ≤ p̂ j

bat(s)- [pde f
j +

dmax

∑
m=0

zm pnew,m
j ](s)

eshp
des, j− eshp

j (N + k)

(kout
j - (N + k))η

(4.31h)

ebat
max, j ≥

kout
max

∑
r=s

∆T [p j
de f +

dmax

∑
m=0

zm pnew,m
j ](r)+

(eshp
des, j- eshp

j (N + k))(kout
j - s)

η(kout
j - (N + k))

+ êbat
j (s) (4.31i)

s ∈ [N + k,kout
j ], l = k, . . . ,k+N−1

Objective (4.31a) minimizes the transition delay and ensures that the problem remains feasi-
ble when the load plugs in.

Remark 9. Constraints (4.31h), (4.31i) correspond to the conditions in Lemma 1 Eq. (4.23), (4.24)
respectively.

We execute the request by (i) updating the system with the new load that plugs in at time d∗,
and (ii) going back to stage-2. If d∗ > 0, then the control devices and shapeable loads update their
signal during the transition phase [N + k,N + k+d∗]. The full controller is shown in Fig. 5.1.

Theorem 5. The model predictive controller (4.20) with network reconfigurations and transition
times given by the MIP (4.31) is recursively feasible. For all initially feasible state x0 and for
all optimal sequences of control inputs, the MPC problem (4.20) with P&P network modifications
(Fig. 5.1) remains feasible for all time.

Proof. Assume the problem is feasible at time k and a request occurs at time k. The P&P MIP
(4.31) ensures that all constraints are satisfied during the transition time and that the conditions in
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yes no

Figure 4.2: Full controller flow: the solution at stage-1 is used to define the terminal set at stage-2.
When a new deferrable load requests to plug-in, the MIP determines the optimal plug-in time, the
system is updated with the new load and the controller executes stage-2 on the new system.

Lemma 1 are satisfied for the modified network. Hence the overall procedure maintains feasibility
during transition, and recursive feasibility is ensured after the modification.
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4.5 Numerical results
This section shows simulation results on a 55 bus Southern California Edison distribution network
(see Fig. 4.3). This network was previously studied in [42]. Seven additional storage devices
are modeled at nodes 2, 8, 10, 14, 21, 30, 41. We assume that the price of electricity is given
and reflects the requirements of the system operator. In this case study, we choose the time step
∆t = 0.5h, the stage-2 MPC time horizon N

∆T =5h and the stage-1 time horizon Nr
∆T =48h. The

controller response is illustrated for a period of 30h in order to show daytime and night-time load
schedules. These parameters are chosen for illustration purposes, and may be set differently to
meet practical grid requirements. It is important to note that the choice of ∆T contains a tradeoff
between reactivity and planning horizon. In particular, the controller response may be up to 30
minutes (∆T ) later than the request time of a load, and in practice, aggregators may require a
smaller interval ∆T to reduce the response time and satisfy grid and users’ requirements, however
generally at the cost of not being able to plan optimally over a long time period of a day or more.

Figure 4.3: 55 bus feeder. Additional battery banks are indicated in green (capacitors are not
represented here).

4.5.1 Load scheduling
As mentioned in Section 4.4.1, shapeable loads plug-in as soon as they requests it, can be zero-
power during a certain time and fully charge before their desired plug-out time kout . Figure 4.4
shows the power and SOC at three shapeable loads. The vertical green lines show the connected
period: the first green line is the request time, the second green line is kout . Figure 4.4a shows that
loads draw power only when they are plugged-in and Fig. 4.4b shows that they reach their desired
SOC before kout . In these three examples, the loads tend to charge when the price of electricity is
cheaper. In particular, the load at bus 4 avoids the evening peak time (5pm to 9pm), and charges
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Figure 4.4: Power and SOC of three different Shapeable Loads in the network. Green vertical lines
show when the load requests to plug in and plug out.

Table 4.3: Description of Defferable Loads in the System

Request Time (h) Requests Bus number Plug-in Time
4 1 8 4
6 1 33 6
10 5 4, 5, 5, 16, 17 10, 10, 10, 10, 10
11 1 28 11.5
12 2 19, 38 14.5, 12
17 3 8, 20, 22 17, 17, 17
18 1 12 18
18.5 2 5, 22 18.5, 18.5
19.5 1 12 19.5

during the night time (10pm to 6am). Shapeable loads have the flexibility to adapt their power
signal to the conditions and constraints of the network. In particular, they can adapt their response
when a deferrable load requests to plug-in, allowing the new load to connect without violating the
network constraints. Table 4.3 details all the plug-in requests and shows that only two deferrable
loads need to be deferred in this case: one load at time 11h and bus 28 and one load at time 12h
and bus 19. Figure 4.5 shows the overall state of the system when the deferrable load is delayed
at 11h. It shows the total implemented and planned loads (shapeable in the top plot and deferrable
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Figure 4.5: Evolution of loads: one deferrable load requests to plug-in at 11h and is delayed to
connect at 11h30. During the transition phase (11h-11h30), shapeable loads adapt their signal to
enable safe connection of the deferrable load.

0 5 10 15 20 25 30

Time (h)

0

1

2

3

4

P
o

w
e
r 

(p
.u

.)

Real Power for the uncontrolled system 

             with Deferrable Loads (baseline)                

Fixed Loads

Def Loads

Shp Loads

a)

0 5 10 15 20 25 30

Time (h)

0

1

2

3

4

P
o

w
e
r 

(p
.u

.)

Real Power for the controlled system      

      with Deferrable Loads               

Fixed Loads

Def Loads

Shp Loads

b)

0 5 10 15 20 25 30

Time (h)

0

1

2

3

4
P

o
w

e
r 

(p
.u

.)

Real Power for the controlled system

 without Deferrable Loads           

Fixed Loads

Def Loads

Shp Loads

c)

Figure 4.6: Cumulative real power in the network for a) the uncontrolled system with deferrable
loads, b) the controlled system with deferrable loads, c) the controlled system without deferrable
loads

in the middle plot) before and after the delayed request. During the transition phase (11h-11h30),
shapeable loads adapt their signal, i.e. reduce their demand, to enable safe connection of the
deferrable load at 11h30.

4.5.2 Peak reduction impact
In this section the peak reduction impact of the controller is illustrated. Figure 4.6 shows the
aggregate load in the network in three cases: a) in the uncontrolled case, b) when the controller is
applied to the network with deferrable and shapeable loads and c) when the controller is applied
to the network without deferrable loads. In the uncontrolled case, every load plugs in as soon as it
requests it. The total peak in the uncontrolled case (Fig. 4.6a) is 3.5 p.u. whereas it is 2 p.u in the
controlled case (Fig 4.6b), providing 40% reduction. In the uncontrolled case, a lot of additional



CHAPTER 4. ELECTRIC VEHICLE CHARGING IN THE SMART GRID:
PLUG-AND-PLAY MODEL PREDICTIVE CONTROL TECHNIQUES 81

0 5 10 15 20 25 30

Time (h)

0

20

40

60

N
o

d
e

Voltage

0.96

0.97

0.98

0.99

1

V
o

lt
a

g
e

Figure 4.7: Voltage at each mode of the network

loads plug-in during the peak time (3pm to 9pm) and immediately charge. On the contrary, in the
controlled case, shapeable loads are delayed to the night time, which results in a smoother load
curve. The difference between Fig. 4.6b and Fig. 4.6c illustrates how shapeable loads’ schedules
change when deferrable loads are connected to the network. Fig 4.6b shows that shapeable loads
adapt their load profile to enable connection of deferrable loads: in Fig 4.6b shapeable power tends
to be delayed to the night time, in order to allow connection of deferrable loads in the evening
(6pm to 9pm).

4.5.3 Network constraints
Network constraints include voltage and battery banks constraints. Figure 4.7 illustrate the voltage
at each bus and time step and shows that voltage remains between the bounds 0.95 and 1. Figure
4.8 shows the power and SOC at the seven battery banks and Fig. 4.9 shows the aggregated real
power over time. Figure 4.8a shows that batteries tend to highly discharge, i.e. have high negative
power, around 10h, 15h and 20h. Figure 4.9 shows that these are times when the network is highly
loaded, i.e. a lot of shapeable loads and deferrable loads are connected and fixed loads are high.
Storage devices are used to supply additional power in case of load peaks. Note that we impose
the minimum SOC, ebat

low = 0.12 however the SOC never goes below 0.3. This limit is due to the
terminal constraints (4.19b): the initial SOC has to be recoverable at the final time Nh = 48h. Fig
4.10 and Fig 4.11 show the output of stage-1, for capacitors and batteries respectively. We use
a different color scale to highlight that the variation is very different from the stage-2 response.
Indeed, the objective in stage-1 penalizes large control inputs whereas the objective in stage-2
penalizes large peak consumptions, as a result the input in stage-1 is lower than in stage-2. Fig
4.11 a) and b) show that the SOC at battery banks remains between 0.42 and 0.57. Batteries supply
energy around 15h (peak consumption) and consume energy during the night to be able to recover
the initial SOC. This stage-1 response is used as a reference signal in stage-2.
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Figure 4.8: a) Real power and b) SOC at battery banks. Values are normalized
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4.6 Summary
In this Chapter, a predictive controller capable of handling P&P requests of flexible and deferrable
loads, is proposed. First, an MPC approach for minimizing the global cost of the system is used
to aggregate flexible loads and provide load shaping objectives under distribution grid constraints.
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Figure 4.10: Capacitor reactive power computed at Stage 1

Second, a MIP is defined to safely connect loads and minimize waiting times. The article proved
that the algorithm achieves recursive feasibility, by appropriately defining the connection condi-
tions and the terminal constraint set. The performance of the proposed method was demonstrated
for the control of a radial distribution system with 55 buses.
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Figure 4.11: a) Real power and b) SOC at battery banks computed at Stage 1 (values are normal-
ized)
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Chapter 5

Behavioral study of Demand response
Programs

5.1 Motivation: the irrational driver
Previous chapters have proposed optimization methods to solve the PEV optimal charging problem
in various scenarios. If the three proposed methods highly vary with their use case and mathemat-
ical techniques, they share one common aspect: driver behaviors are assumed “perfect”. The
common underlying assumption is that drivers minimize their charging costs and require enough
battery capacity to meet their mobility constraints at all time. However, current PEV charging
behaviors tend to go against this assumption, as many PEV drivers decide to charge as soon as
they plug-in, without seeking to minimize their cost. In particular, the choice of when to charge
seems to be driven by two important factors: cost and range anxiety. Smart-charging implies that
drivers choose to give up their charging flexibility in exchange of lower charging costs, but this
is not unanimous. For example, risk averse drivers choose to maximize battery SOC at all time
and charge as soon as they plug-in, in order to ensure enough capacity in case of unexpected trips.
On the other hand, cost-sensitive drivers choose to charge when the price is lower, with the risk of
lacking battery capacity if they need to take an unexpected trip.

With the observation that charging behaviors vary across drivers, it becomes fundamental to
understand and characterize how people choose their PEV charging schedule. In particular, what is
the tradeoff between range anxiety and charging costs? In this chapter, we seek to provide answers
to this question by studying price sensitivity in the context of energy consumption. Understanding
electricity price sensitivity will help practitioners design effective PEV charging programs that
incentivize drivers to minimize their costs and benefit the electricity grid. A small number of PEV
smart charging programs currently exist, and very little data is available today. As a result, we
study electricity price sensitivity in the broader context of Demand Response (DR). We analyze
the Smart Grid Smart City Trial data in Australia, which proposes more than four electricity tariffs
and measures how households respond to price through smart meter readings.
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5.2 Data analytics for Demand Response programs
The development of smart meters has led to the modernization of distribution networks by enabling
real-time bidirectional communication between utilities and households [135]. In this context of
smart grids, demand side management allows system operators to shape the energy consumption
at the household level, offering new opportunities to improve the reliability, efficiency and sustain-
ability of the grid [97, 50]. Demand response programs are designed to change energy consump-
tion behavior with two objectives: (i) reduce energy consumption and (ii) shift peak consumption
from peak times to off-peak times. In that regard, it is essential to understand how to effectively
incentivize households in to modify energy habits.

Over the past 20 years, more than twenty Demand Response (DR) trials have been conducted
worldwide. These trials have looked at two main types of programs to institute energy behavior
change: (i) information and feedback technologies like In Home Displays (IHD) or mobile appli-
cations [45, 116], and (ii) economics incentives through time-of-use tariffs and dynamic pricing
[3, 44, 60, 59]. Although it is widely accepted that information and feedback technologies result
in energy-saving outcomes [45], the effectiveness of price-based demand response programs is
still under debate, and past trials have resulted in mixed conclusions [96]. Faruqui et al review 15
price-based experiments and find that time-of-use rates induce a drop in peak demand that ranges
between 3 to 6 percent whereas critical-peak pricing tariffs induce a drop in peak demand that
ranges between 13 to 20 percent [44]. Similarly, Alberini et al [3] finds beneficial impacts in
price-based demand response, and shows that price elasticity of electricity demand ranges between
-0.860 and -0.667 over the ten-year period 1997-2007 in the United States. Conversely, Jessoe et al
[60] study a time-of-use experiment through a regression discontinuity framework, and shows that
the impact is opposite from what was expected: households tend to reduce energy consumption
when the price goes down.

These mixed findings make it difficult to draft recommendations for designing a success-
ful and effective demand response program, and have created confusion amongst policymakers,
utilities, and system operators. In this chapter we seek to improve the understanding of demand
response behavior by segmenting households based on their energy consumption profile. In partic-
ular, previous work has showed that households have very diverse reactions to demand response,
and this high diversity results in few actionable insights for policymakers and utilities. We intend
to define ‘Demand Response Profiles’ that group households which have similar reactions to De-
mand Response events. Based on these profiles, a successful demand response program would
be composed of a portfolio of offers that target different behaviors. For example, price sensitive
households should be offered time-of-use and peak pricing tariffs, whereas environment-conscious
households may better respond to information and feedback.

A growing body of literature addresses the question of customer profiles in the context of
electricity consumption. Specifically, with the transition towards Advanced Metering Infrastruc-
ture (AMI, also called ‘smart meters’), utilities now measure household electricity consumption at
the hour or 15-minute interval. This creates very rich datasets that bring new opportunities to study
and understand energy consumption patterns. As a result, past research has proposed different
methods for analyzing smart meter data, including Kmeans clustering [46, 68, 67, 104], follow-
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the-leader algorithms and self-organizing maps [27], Hidden Markov Models [5] and Hierarchical
clustering and Ward’s method [53]. More recently, several articles have focused on combining
smart meter data with external data sources to understand more general behavior patterns. For ex-
ample, Gouveia and Seixas [53] perform a door-to-door survey, and study the correlation between
demographics and energy clusters. Similarly, Kwac et al in [68] seek to determine lifestyle pat-
terns based on smart meter and demographics data, but do not associate lifestyle patterns with DR
program effectiveness. Albert and Maasoumey [4] address DR program effectiveness by defin-
ing predictive customer segments that share similar demographics attributes, and have a higher
probability of enrolling into DR programs than the population as a whole. However, the latter
article does not study how these customer segments respond to DR programs after their enrollment
decision.

Previous work has considered energy segmentation for DR enrollment, but to the best of our
knowledge, prior literature does not propose methods to predict both likelihood of a consumer en-
rolling in a DR program, and the resulting response to DR events. We add to previous literature
by studying more comprehensive DR patterns that describe how households behave when pre-
sented with DR opportunities. For the first time, we study DR customer segments based on both
enrollment choices and energy consumption, i.e. energy saving and peak shifting behaviors (see
Fig 5.1). We use smart meter data to identify seven representative energy profiles, and combine
these energy consumption characteristics with survey-based attributes such as income, climate and
dwelling type. We add to the literature by showing how these household characteristics influence
both enrollment and energy consumption during DR events, providing complete DR pattern spec-
ifications. We develop new discrete choice models that show how household attributes influence
DR choices, and regression models that show how household attributes influence response to DR
events. The chart in Fig 5.1 depicts the proposed method.

The chapter is organized as follows: Section 5.3 presents the Australia Smart-Grid Smart-City
(SGSC) trial data, while Section 5.4 introduces the method to cluster households into energy use
profiles based on smart meter data. Section 5.5 shows a logit binary regression model that takes into
account energy profile, demographics and DR program attributes to predict DR enrollment choices.
Section 5.6 measures the impact of Dynamic Peak Pricing (DPP) events and hourly electricity
prices on energy consumption, and shows how it differs with household profiles. Section 5.7
concludes and summarizes our findings.

5.3 Background on the Smart Grid Smart City trial
The Smart Grid Smart City (SGSC) program was initiated in 2010 by the Australian government
to explore the economic benefits of smart grid technologies. The SGSC trial dataset contains de-
mographic information and smart meter data for more than 10,000 households over a 2-year period
in 2012-2014. Several DR programs were offered to participants, including Dynamic Peak Pricing
(DPP), Seasonal Time Of Use (STOU) and Dynamic Price Rebate (DPR). The complete SGSC
trial program and resulting dataset is described in [89], and summarized by the Venn diagram in
Fig 5.2. Figure 5.2 shows the number of households in the three main tables, namely the demo-
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Attributes of
the household

Attributes
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Attributes of the
DR program

Profile
(Section 5.4)

Acceptance rate
(Section 5.5)

Response to DR
(Section 5.6)

Figure 5.1: Depiction of model structure: green blocks shows the original data features, the red
color shows the electricity consumption profiles obtained after clustering smart meter data, and the
blue color shows the model outputs.

graphics statistics data in green, smart meter readings in red and DR offering data in blue. For the
treatment group, the set of customers with complete information is described by demographics,
smart meter and DR offering data, and composed of 5,110 households. For the control group, most
participants are not offered any DR choices, and the set of customers with complete information is
described by demographics and smart meter data, and composed of 3,292 households. In the re-
mainder of this chapter, we jointly analyze these three tables to provide a comprehensive analysis
of DR behaviors. In Section 5.4, we analyze meter data to define energy consumption profiles. In
Section 5.5, we analyze demographics, meter and DR offering data to understand why customers
decide to accept or decline a DR product. In Section 5.6, we analyze meter data for the treatment
group and the control group, and evaluate the impact of DR programs on energy consumption.

5.4 Smart meter data clustering
The smart meter table records household energy consumption every 30 minutes. In order to eval-
uate the impact of energy consumption on DR acceptance and DR energy response, we need to
transform this large and unstructured dataset into meaningul information. As a result, in this sec-
tion we seek to define a discrete number of energy consumption patterns, that will be further used
to segment bouseholds and better characterize DR behaviors.
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Figure 5.2: Venn diagram of the Smart grid Smart City trial dataset. The dataset contains three
types of data: DR offering data, demographics data and meter data.

Table 5.1: Nomenclature - Clustering method

Symbol Description
K Total number of clusters
p Data point: daily consumption curve as a 48-element consumption vector
Ci Cluster i: set all of points p assigned to cluster i - {p s.t. p ∈Ci}
mi Center of cluster i
Pn(Ci) Probability that household n has a daily energy consumption p ∈Ci
Sn Entropy of household n
Tn Highest cluster frequency of household n

5.4.1 Clustering Method
The energy profiles should represent both the shape and the magnitude of the consumption. The
shape gives information about how the consumer distributes his/her energy during the day (e.g.
morning peak, evening peak) whereas the magnitude gives information about how much total
energy the household consumes during the day. We use the notations described in Table 5.1 and
measure the performance of the clustering result with 4 metrics:
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• Inertia, or within-cluster sum of squares, is the sum of the Euclidean distances between each
pattern and its cluster center. The K-means algorithm aims at minimizing this metric:

K

∑
i=1

∑
p∈Ci

||p−mi||2 (5.1)

• Average Silhouette Index measures the separation of clusters between each others (see
[111] for complete definition). It ranges between -1 and 1, where the best value is 1 and
the worst value is -1. Values near 0 indicate overlapping clusters. Negative values generally
indicate that a sample has been assigned to the wrong cluster, as a different cluster is more
similar.

• Entropy as defined by Kwac in [67]. The entropy of household n is calculated as:

Sn =−
K

∑
i=1

Pn(Ci) log(Pn(Ci)) (5.2)

The entropy is highest if all the clusters are equally likely (i.e. Pn(Ci) =
1
K and Sn = log(K))

and lowest if household always use the same cluster (i.e. Sn = 0).

• The highest cluster frequency, which represents how well the household is defined by its
most likely cluster.

Tn = max(Pn(Ci)) ∈ [
1
K
,1] (5.3)

In practice, we will use the center of the most probable cluster as an approximation of the
household’s consumption shape. As a result, this should be a good proxy of the actual energy
consumption, and we will favor higher values of Tn.

5.4.2 Clustering Results
In general, energy consumption is strongly dependent on season (i.e. summer vs winter) and the
day of the week (i.e. week-day vs weekend). In this work, we research consumption patterns that
are caused by household characteristics. To mitigate the effect of seasonal and weekday/weekend
confounding variables, we choose to study only summer week-days. This subset is of greatest
interest to utilities when considering programs to manage peak demand.

The selected dataset is composed of two years of summer weekdays in Australia, with 11,057
households and 1,110,076 datapoints in total. We use the K-means clustering method as imple-
mented in the Scikit-learn package in Python [99]. The four metrics are shown in figure 5.3 for
the total number of clusters K ∈ [2,21]. The objective of the standard K-means algorithm is to
minimize inertia, for a given number of clusters. Consequently, it is logical that inertia decreases
monotonically with number of clusters, which is illustrated by the green line in figure 5.3. The
black line shows the silhouette, which decreases monotonically between 2 and 6 clusters, and in-
creases between 6 and 7 clusters. The blue line shows the entropy, which increases with the number
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Figure 5.3: Analysis of K-means performance for the number of clusters ranging between 2 and
21

of clusters. The entropy is a measure of chaos, and quantifies energy consumption heterogeneity.
Conversely, the red line shows the average proportion of time that household’s most probable shape
is the best cluster. This metric decreases with the number of clusters, but always remains higher
than 0.5. Note that no single metric is uniformly best for selecting the appropriate number of
clusters. These four metrics, however, provide different views on clustering performance. Con-
sequently, analyzing all four metrics together provide a comprehensive decision support tool for
selecting the appropriate number of clusters.

After considering the metrics shown in Figure 5.3, we choose to keep seven clusters. The
clustering results with seven clusters gives a particularly good silhouette index, with the highest
cluster frequency exceeding 60%. The resulting clusters are visualized in Fig 5.4. This shows
consumption in kWh of the 7 typical energy consumption at each hour of the day. Figure 5.5
represents the number of points falling in each cluster, and shows that clusters C1 and C3 are
particularly frequent. In comparison with other clusters, C1 seems to be a low-consumption profile
and C3 a medium consumption profile. Figure 5.6 shows the normalized shapes of these two
profiles, which is defined as the consumption divided by the total daily consumption, i.e. the area
under the curve. As a result, Fig 5.6 shows how households distribute their energy consumption
during the day, and shows that both profiles correspond to double peak consumption: the first peak
at morning around 6am and a second peak during the evening (4pm- 9pm). By combining Fig 5.5
and Fig 5.6 we find that the most probable energy profiles are low double peak consumption and
medium double peak consumption.
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Figure 5.4: Seven energy clusters, showing both cluster centroids (red) and individual households’
consumption as thin traces. The y axis shows the cluster identification number, and n denotes the
number of data points belonging to that cluster.



CHAPTER 5. BEHAVIORAL STUDY OF DEMAND RESPONSE PROGRAMS 93

C0 C1 C2 C3 C4 C5 C6
Cluster id 

0

1000

2000

3000

4000

5000

N
u
m

b
e
r 

o
f 

H
o
u
se

h
o
ld

s

Distribution of Energy Profiles

Figure 5.5: Number of households assigned to
each cluster

0 5 10 15 20 25
Time (h)

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.028

0.030

E
n
e
rg
y
 d
is
tr
ib
u
ti
o
n

Normalized shape of C1 and C3

C1 shape

C3 shape

Figure 5.6: Normalized shape of the two most
probable clusters (Cluster C1 and C3)

In the rest of this chapter, we will describe energy consumption profiles by using the cluster-
ing results in this Section, and defining key energy characteristics:

• Cluster: number between 0 and 6 describing the most probable cluster for each household.
The distribution is shown in Fig 5.5.

• Entropy: measure of energy consumption heterogeneity as defined in Section 5.4.1. The
distribution is shown in Fig 5.7.

• Average daily consumption: the distribution is shown in Fig 5.7.

• The standard deviation of daily consumption
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Figure 5.7: Average daily consumption and entropy distribution across the population
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The clustering process has segmented daily load profiles into seven representative loads, and
transformed large unstructured smart meter data into four simple and meaningful energy metrics.
Next sections will show that these metrics characterize households’ energy consumption, and im-
pact how households choose and respond to DR programs.

5.5 Demand Response program enrollment
In this section, we seek to understand what attributes have an impact on DR enrollment, and use the
the results of Section 5.4 to define energy profile attributes. As shown in Fig 5.1 we consider both
household attributes (e.g.: demographics, energy profile...) and product attributes (e.g. dynamic
pricing, time-of-use, feedback technology...). In particular, for utilities and energy providers it is
important to understand which customers should be targeted with each product in order to improve
marketing efficiency and reduce customer acquisition costs.

5.5.1 Data
Tables 5.2, 5.3 and 5.4 show the available variables for estimating DR choice models. Table
5.2 shows the list of initial categorical variables, with the possible values and frequency of each
value. Table 5.3 shows the continuous variables defined from the clustering results in Section
5.4, i.e. average daily consumption, standard deviation of daily consumption, and entropy. We
further define categorical variables for average consumption and entropy by defining three group
levels: the lower third is defined as ’Low’, the second third is defined as ’Medium’ and the highest
third is defined as ’High’. Table 5.4 shows these categorical variables which are derived from the
clustering results in Section 5.4.

5.5.2 Model
In this work, we use the binary logit regression model, and refer to [13, 78] for a detailed exposition
of this model and its properties. Binary choice models are a specific case of discrete choice models,
which are generally defined by four elements:

• Decision makers: in our case decision makers are households who receive at least one DR
offer. Decision makers can receive more than one offer, and therefore, make more than one
choice. Decision makers are described by characteristics, which can influence their choice
(see Table 5.5).

• Alternatives: the options available to the decision maker. In our case, decision makers have
only two options - accept or refuse the DR offer. Therefore, this is a case of binary choices.

• Attributes: alternatives are described by a set of attributes (see Table 5.5). Decision makers
make choices based on these attributes and their own characteristics.
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Table 5.2: Categorical variables from initial dataset

Variable Value Frequency

Income
High 3201
Med 4320
Low 4263

Climate
Mild temperate 990
Warm temperate 19794

Dwelling
Single-family 9999
Multi-Unit 1785

Electricity usage
High 1586
Med 4127
Low 6071

Has Children
No 7886
Yes 3898

Has Generation
No 11503
Yes 281

Has solar
No 11549
Yes 235

Has Poolpump
No 10429
Yes 1355

Has HVAC
No 3467
Yes 8317

Product

EA-DPP 2740
EA-ILAC 392
EA-STOU 1835
EA-TOPUP 2793
NetAir 11
NetDPRPPE 962
None 2951

Feedback
No 4671
Yes 7113

Feedback 2
No 686
Yes 11098

Table 5.3: Continuous variables, obtained after clustering results

Average daily consumption Standard Deviation of daily consumption Entropy
Mean 13.02 3.80 0.929
Std 5.06 1.74 0.44
Min 2.67 0.20 0
Max 28.99 10.99 1.88
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Table 5.4: Categorical variables obtained after clustering results

Variable Value Frequency

Measured Entropy
Low 2723
Med 6195
High 2866

Average daily consumption
Low 4750
Med 5926
High 1108

Energy Profile

0 471
1 4018
2 620
3 3760
4 1239
5 768
6 908

• Decision rule: the process used by decision makers to choose their preferred alternative. The
decision maker’s preference is described by the utility function U , and the logit distribution
is applied to measure the probability of choosing an alternative with utility U .

We define the utility function of decision maker n for alternative i as follows:

Ui,n = β
T Xi,n + εi,n (5.4)

where Xi,n is a vector of attributes for alternative i and characteristics for decision maker n, β is
the vector of model parameters, and εi,n is the random component. The logit model is particularly
well suited for discrete choices, as it offers a closed form for the choice probability. In this case,
εi,n is logistically distributed and the probability of choosing alternative i versus alternative j, with
utility functions described in Eq 5.4 can be written:

Pn(i) = P(Ui,n ≥U j,n) (5.5)

=
1

1+ e−β (Xi,n−X j,n)
(5.6)

5.5.3 Results
Decision makers are faced with two alternatives: accepting or rejecting the Demand Response
offer, denoted by:

yn =

{
1 if household n accepts the DR offer
0 otherwise. (5.7)
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In a utility-maximizing model, only the difference in utilities matters. As a result, Un measures the
utility of accepting relative to not accepting:

Un = βXn + εn (5.8)

yn =

{
1 if Un > 0
0 if Un ≤ 0 (5.9)

The proposed model includes all regressors described in Tables 5.2, 5.3, 5.4, except the discrete
energy profiles, as we find that these are highly correlated with other energy characteristics and do
not improve the discrete choice model. We use the discrete choice regression software Biogeme
[16] to estimate parameter values β . Two optimization algorithms are used to estimate parameters
using the global maximum of the likelihood function, and both converge to the solution in Table
5.5. The first algorithm is a trust region algorithm explained in [16, 32], and the second algorithm
is a sequential equality constrained quadratic programming method, developed by Spellucci [120].

The result from the Logit regression model is shown in Table 5.5, where all regressors are
normalized to take value on [0,1]. It is remarkable to see that all coefficients are significant at the
95% level, except poolpump ownership. The Alternative Specific Constant (ASC) value is negative
(-0.993), which means that people generally prefer refusing the offer rather than accepting it.

5.5.3.1 Energy product attributes

The proposed product has a large impact on the decision making, as the difference in parameter
values of DPP (Dynamic peak Pricing), STOU (Seasonal Time of Use) and DPR (Dynamic Price
Rebate) shows. The DPP and DPR products share many similarities, namely customers are notified
one day in advance of an energy reduction event, although the incentive differs. In the case of DPP,
households pay higher prices during peak times, whereas in the case of DPR, households receive
rebates if they lower their energy consumption during peak times. The rebate incentive is more
than four times more popular than the pricing incentive and five times more popular than time-of-
use tariff. It is also interesting to notice that offering a feedback system increases the probability
of accepting the offer.

U f eedback = ASC+βFeedback =−0.993+1.98 = 0.987 > 0 (5.10)

Equation (5.10) shows that, while accepting the offer is generally less favored than refusing the
offer, this is reversed as soon as the household is offered a feedback system along with the energy
product.

5.5.3.2 Household characteristics

Table 5.5 shows eight household characteristics that are statistically significant in DR enrollment
choices. Households who live in single family homes, who are equipped with solar panels, and who
have higher income are more likely to accept a DR product. Conversely, households with children,
with HVAC systems, and who live in warmer areas are less likely to accept DR programs. In this
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dataset, all sample households are in Australia, where a large portion of electricity consumption
is due to cooling systems. Our model confirms that customers in warm areas and equipped with
cooling systems are less likely to commit to energy reduction programs.

5.5.3.3 Electricity consumption behaviors

The last two parameters measure the impact of electricity consumption habits on DR enrollment.
Our model shows that customers with higher average consumption and higher entropy are more
reluctant to accept DR offers. Entropy is a measure of heterogeneity in energy consumption, and
previous work has assumed that higher entropy would result in less interest in demand response
[68, 67]. This model verifies and quantifies this assumption: being in the highest entropy group
tends to increase refusal rates by 13%. For the first time, this model confirms that higher entropy
customers are more reluctant to commit to DR programs, and utilities should target households
with more consistent energy habits. On the other side, although customers with higher energy
consumption on average have more flexibility to reduce and shift their usage, Table 5.5 shows that
they are less likely to enroll in DR programs.

5.5.3.4 Summary

This section has characterized DR program acceptance choices, while the next sections will an-
alyze responses to DR events for households who enroll in one of the offered programs. From
the above analysis, we conclude that rebate-based DR programs are preferred, and that feedback
systems are very efficient at incentivizing households to accept DR programs, probably because
they bring more transparency to DR. The analysis of demographic characteristics shows that Aus-
tralian utilities should target customers with low entropy, who live in colder areas, and who live in
single-family housing. Some characteristics like owning a solar panel anecdotally tend to be a sign
of environment-awareness, which is a good target profile for DR programs. In the next section,
we deepen our analysis of DR programs, by evaluating the response to DR events and electricity
prices for customers who enrolled in DR.

5.6 Demand Response Impact and Price of flexibility

5.6.1 Difference-in-difference Analysis of Dynamic Peak Pricing
As shown in Section 5.3, DPP is the most common product accepted in the SGSC trial. More
generally, DPP has become an attractive solution for utilities, as it is easy to implement and can
be dynamically set to regulate the grid during peak-consumption days. As a result, we study this
specific tariff and seek to measure the response to DPP events. Our objective is to estimate the
quantity of load reduction as a response to a DPP event signal,and investigate if load shape clusters
(as defined in Section 5.4) can improve these estimates. In this section, we use the difference-
in-difference method [6] method, as has been used in prior literature to measure the impact of
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Table 5.5: Logit regression for DR enrollment choice

Parameter Value of β Std t-test p-value
ASC (constant) -0.993 0.116 -8.56 0.00
Attributes
DPP 0.668 0.0553 12.54 0.00
STOU -0.596 0.069 -8.63 0.00
DPR 4.40 0.165 26.64 0.00
Feedback 1.98 0.0561 35.26 0.00
Decision maker’s characteristics
Single family home 0.204 0.0710 2.87 0.00
Has Children -0.127 0.0495 -2.56 0.01
High income 0.157 0.0515 3.04 0.00
Has poolpump -0.102 0.0749 -1.35 0.18*
Has Solar 1.50 0.186 8.05 0.00
Has HVAC -0.474 0.0533 -8.90 0.00
Warm climate -0.624 0.0831 -7.51 0.00
Avg daily consumption -2.297 0.144 -2.07 0.00
High entropy -0.139 0.0621 -2.25 0.02

DPP treatments on energy consumption [44, 43]. We build on this approach, and show that the
clustering results presented in Section 5.4 can improve the predictability of load reduction..

Table 5.6: Variables for DPP impact assessment

Symbol Description
Variables
Wi,t ∈ R+ Hourly consumption of household i during peak hours on day t
Gi ∈ {0,1} Binary variable for household i being in the DPP group
Pi,t ∈ {0,1} Binary variable for household i experiencing a peak event during day t
Ck

i ∈ {0,1} Binary variable for household i being part of cluster k
Parameters
ut Day level effects
bpeak Impact of the DPP event on the DPP group
bpeak,Ck Impact of the DPP event on the Cluster k DPP group
bd pp DPP group fixed effect
bCk Cluster k group fixed effect

Three regression models are tested, with the notations presented in Table 5.6. The dependant
variable Wi,t is the average hourly consumption during peak hours on day t for customer i. More
precisely, for each day with a dynamic peak event, utilities set a period of 2 to 10 hours during
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which the price of electricity is elevated. For each peak-event day, we average the hourly con-
sumption of customer i in the predetermined peak period, and note this value Wi,t . We compare
three regression models that include day-level effects, treatment effects, and use the information
obtained from the clustering analysis in Section 5.4:

(M1) Difference in differences:
Wi,t = b0 +ut +bd ppGi +bpeakPi,t + εi,t (5.11)

(M2) Difference in differences with cluster level fixed effects:

Wi,t = b0 +ut +bd ppGi +bpeakPi,t +
6

∑
k=0

bCkCk
i + εi,t (5.12)

(M3) Difference in differences with treatment parameters depending on cluster:

Wi,t = b0 +ut +bd ppGi +
6

∑
k=0

[bCk +bpeak,CkPi,t ]Ck
i + εi,t (5.13)

5.6.1.1 Model (M1)

Model (M1) presented in Eq (5.11) is a difference-in-differences model with day-level fixed effects.
Parameter ut is the day-level effect, which accounts for all specific aspects of day t (e.g: weather,
holiday, etc). Parameter bd pp measures the overall difference between the DPP group and the
control group, irrespective of peak events. Parameter bpeak is the main parameter of interest, as it
measures the impact of the peak event. The value and statistics of (M1) parameters are shown in
Table 5.7, where the green color means that DPP treatments have a beneficial impact on electricity
consumption, i.e. result in lower energy consumption during peak times. From this measure,
we can conclude with more than 95% confidence that the DPP program results in lower energy
consumption during peak times. More precisely, Fig (5.8) shows the estimated impact of each
DPP event, as the estimated percentage of electricity reduction r j for peak event index j:

r j =
bpeak

b0 +bd pp +upeak j

(5.14)

In Eq (5.14), upeak j denotes the day-level effect for the day corresponding to peak event index j.
Figure (5.8) shows that the (M1) estimated impact is between 15% and 20% energy reduction per
peak event. This is in accordance with previous DPP experiments [44], which found an impact of
between 13% and 20%.

5.6.1.2 Model (M2) and (M3)

We seek to improve our understanding of DPP impact by using the concept of energy clusters
as defined in Part 5.4. Model (M2) in Eq. (5.12) assumes that clusters have different baseline
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Figure 5.8: Estimated electricity reduction due to peak events, as defined in Eq 5.14 - model (M1).
Blue lines show 95% confidence intervals.

Table 5.7: (M1) model parameters

(M1) Difference in differences
Coef Pvalue 95 conf interval

b0 0.1989 0.000 0.193 0.205
bd pp 0.0755 0.000 0.073 0.078
bpeak -0.0488 0.000 -0.064 -0.034

consumption, and include a cluster-level fixed effect bCk for each cluster Ck. Model (M3) in Eq.
(5.13) assumes that clusters have different reactions to peak events, and include a cluster-level
treatment parameter bpeak,Ck for each cluster Ck. Table 5.8 shows the regression results, where the
green color means that DPP has a beneficial impact on energy consumption, red means that it has a
negative impact and blue means that it is not statistically significant. Table 5.9 shows comparison
metrics for the three models, and shows that clustering information tends to improve the model.
Indeed, model (M3) has the largest adjusted R-squared value, and the lowest Bayesian Informa-
tion Criterion (BIC) and Aikaike Information Criterion (AIC). Moreover, Table 5.8 shows that all
the cluster-specific parameters are significant, except bpeak,C4. Fig 5.9 shows the percentage of
energy reduction during peak times, per peak event. Each line corresponds to a different cluster,
and shows clear heterogeneity in the energy reduction as a function of cluster index. This obser-
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Table 5.8: (M2) and (M3) model parameters

(M2) Cluster level fixed effects (M3) Cluster level dpp coefficient
Coef Pvalue 95 conf interval Coef Pvalue 95 conf interval

b0 0.2369 0.000 0.231 0.243 0.02054 0.000 0.199 0.212
bd pp 0.0290 0.000 0.027 0.031 0.0764 0.000 0.074 0.079
bpeak -0.0486 0.000 -0.063 -0.035 NA NA NA NA
bC0 0.0259 0.000 0.254 0.264 0.2531 0.000 0.248 0.258
bC1 -0.0839 0.000 -0.087 -0.081 -0.0837 0.000 -0.087 -0.080
bC2 0.1337 0.000 0.129 0.138 0.1343 0.000 0.130 0.139
bC3 0.0619 0.000 0.059 0.065 0.0614 0.000 0.058 0.065
bC4 -0.0114 0.000 -0.016 -0.007 -0.0133 0.000 -0.018 -0.009
bC5 0.0129 0.000 0.009 0.017 0.0128 0.000 -0.008 0.017
bpeak,C0 NA NA NA NA 0.1292 0.000 0.101 0.157
bpeak,C1 NA NA NA NA -0.0700 0.000 -0.085 -0.055
bpeak,C2 NA NA NA NA -0.0836 0.000 -0.107 -0.060
bpeak,C3 NA NA NA NA -0.0473 0.000 -0.062 -0.032
bpeak,C4 NA NA NA NA 0.0035 0.739* -0.024 0.017
bpeak,C5 NA NA NA NA -0.0624 0.000 -0.085 -0.040
bpeak,C6 NA NA NA NA -0.0628 0.000 -0.084 -0.041

Table 5.9: Model comparison - cluster information in (M2) and (M3) tends to improve model
performance

(M1) (M2) (M3)
Adj R2 0.063 0.162 0.163
BIC 3.07 104 -4237 -4444
AIC 3.62 104 -7776 -8058

vation is true for models (M2) and (M3), and suggests that clustering is a useful tool for targeting
customers with high DR potential. In particular, customers belonging to Cluster 1 have the most
beneficial response to peak events, reducing their consumption between 15% and 60% during peak
periods. In contrary, customers in Cluster 0 have the worst response to DPP, as Model (M3) finds
that DPP is counter-effective and customers tend to increase consumption during peak times. For
electrical utilities using conventional customer segmentation, Cluster 0 might seem to be a good
target for DPP programs, as Fig 5.4 shows that customers in Cluster 0 have a late afternoon peak
consumption. However, this study shows that the DPP program fails to induce energy reduction
within this part of the population. In contrary, utilities should target customers in Clusters 1, 2, 3
or 5, who tend to reduce energy consumption during peak events.
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Figure 5.9: Percentage energy reduction due to DPP events, per cluster
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5.6.2 Customer-Level DPP assessment
While we have demonstrated a significant opportunity for improving predictions of demand re-
sponse by clustering households, electric utilities would like to be able to further target programs
at the household level. This section shows how we analyze the response of individual households,
by matching each households in the DPP program to a similar household in the control group,
and performing a difference-in-differences analysis. We then compare the results with the profile-
cluster approach above.

To perform this matching, we scale each household’s consumption to [0,1] and remove the
average consumption in each hour. This creates a vector of each household’s consumption relative
to the average baseline. From this vector, which includes all hours in the study period, we extract
the data for the peak consumption hours of the day, i.e. 13:00-18:30.

We then matched each household in the DPP experimental group with the n nearest neighbors
in the control group, excluding days when DPP calls were made. In this model, we use mean
Euclidean distance between the vectors described above, as a metric of fit quality. A number of
different specifications were considered, and we found that n = 9 neighbors from the control group
produced the highest-quality fit (lowest RMSE averaged across all households participating in the
DPP).

This matching allows us to estimate baseline consumption of each household, in order to
calculate the effect of the DPP treatment. Using the non-DPP hours to inform our matching, we
then compute the difference in consumption between the experimental household and the baseline
household during the DPP call hours. The average response of each household, as a portion of its
peak consumption, is shown in Figure 5.10.

We find significant variance in results that is hidden in the profile-level analysis, although
the average response of 17% reduction in consumption during DPP periods is consistent with the
results found above.

The set of households in each profile group were analyzed, but a strong correlation between
profile groups and fit quality or variance was not found.

Attempting to improve model fit by including the household attributes from Table 5.2 2 did
not produce a significant improvement in fit quality, and instead led to over-fitting and a loss in
statistical power.

These results show that predicting energy reduction for individual households during DPP
hours is extremely difficult due to variations in appliance use and consumer behavior. By showing
the relative weakness of household-level approaches, this section gives strength to the profile-
cluster approach advanced in this chapter. While still able to differentiate between the response
patterns of different consumption profiles, using clusters allows for improved prediction quality
thanks to the law of large numbers.

5.6.3 Price sensitivity
The goal of this section is to understand the impact of price on energy consumption, instead of
considering a binary indicator for peak event occurrence only. The DPP study above shows how
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Figure 5.10: Response of each household to dynamic peak pricing events, along with the fit quality
for each household’s prediction. The response is computed as the difference between the DPP
household’s power consumption and the mean power consumption of the 9 households in the
control group with the most similar power consumption patterns. The quality of the fit between the
DPP household and the baseline reference is shown on the x-axis.

people react to DPP events, but cannot capture if this is due to the psychological impact of the
event, or if this is due to price. In other words, if the DPP peak event was half the price or twice
as expensive, would that change how people behave? For each day and each hour of the day, we
report the hourly price of electricity, i.e. the price will be very high during DPP events. We include
all the studied utility rates, and seek to understand how people respond to price. We find that price
sensitivity highly depends on time of the day and cluster, and we find two clusters with good price
sensitivity.

In the studied experiment, most energy products are price-based incentives: the electricity
price is higher during peak times, when utilities seek to lower the energy demand. Because this
dataset includes more than four different pricing products, the price of electricity takes between 2
and 5 different values at each hour of the day, across the customer database. This a unique char-
acteristics of the SGSC dataset, when most past trials have studied one unique DR program and
cannot cover a range of energy prices. As a result, we can use this dataset to capture price sen-
sitivity (kWh/$) and inversely define a ‘price of flexibility’, which measures the monetary value
of 1 kWh energy flexibility, from the customer perspective. We augment the dataset with tem-
perature data, in order to account for the impact of weather on energy consumption. Table 5.10
shows the notations used in this section. Similarly to Section 5.6.1, we run three regression mod-
els, which include different price dependence and cluster dependence. For each hour, we run the
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Table 5.10: Variables for Price impact assessment

Symbol Description
Variables
Wi,t ∈ R+ Hourly consumption of household i during hour t
Ti,t ∈ R Ambient temperature for household i at time t
Ri,t ∈ R+ Electricity rate for household i at time t
Ck

i ∈ {0,1} Binary variable for household i being part of cluster k
Parameters
ut Day level effects
btemp Impact of temperature on energy consumption
btemp,Ck Impact of temperature on energy consumption for Cluster k
bprice Impact of electricity rate on energy consumption
bprice,Ck Impact of electricity rate on energy consumption for Cluster k

three following models:

(Mp1) General regression:
Wi,t = ut +btempTi,t +bpriceRi,t + εi,t (5.15)

(Mp2) Regression with cluster level fixed effects:

Wi,t = ut +
C

∑
k=1

bCkCk
i +btempTi,t +bpriceRi,t + εi,t (5.16)

(Mp3) General regression with treatment parameters depending on cluster:

Wi,t =
C

∑
k=1

[ut,Ck +bCk +btemp,CkTi,t +bprice,CkRi,t + εi,t ]Ck
i (5.17)

Model (Mp1) includes day-level fixed effects, temperature and price, without cluster infor-
mation. Model (Mp2) includes cluster-level fixed effects and Model (Mp3) includes cluster-level
parameters for each parameter. Fig 5.11 represents energy consumption data as a function of tem-
perature, and confirms the relevance of the linear regression approach. Fig 5.12 shows the price
coefficient, temperature coefficient and adjusted R-squared of models (Mp1) and (Mp2). Price
coefficients and temperature coefficients are plotted with the 95% confidence interval. For most
hours of the day, the temperature coefficient is strictly positive with more than 95% confidence,
which confirms that households consume more energy when the temperature is higher, probably
by increasing the usage of HVAC systems. On the other hand, the impact of price highly varies
during the day. Model (MP1) and (Mp2) find that the price parameter is strictly negative with
statistical significance, at 6am and from 9pm to 12am. During these times, customers reduce their
energy consumption when the price is higher. The Adjusted R-squared of (Mp2) is higher than
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Figure 5.11: Energy consumption as a function of outdoor temperature at time 3pm. The green
line shows the linear estimate.

(Mp1), which shows that clustering information improves the quality of the model. This method
proves that price sensitivity highly depends on the time of the day, and cannot be defined as a
constant characteristic of customers. With model (MP3), we further seek to capture non-constant,
non-uniform price sensitivity by studying how it varies across the population.

Figure 5.13 shows (Mp3) results, where one independent regression model is estimated for
each cluster. We select the set of customers with no missing consumption data during the entire
two year period 03/03/2012 to 03/03/2014. This set does not contain Cluster 0 households, and Fig
5.13 shows the result for clusters 1 to 6. It shows that temperature and price dependence highly
varies across clusters. Cluster 3 is very temperature-sensitive, whereas Cluster 1 is temperature-
sensitive only during the afternoon, and Cluster 5 and 6 during mornings and evenings. Clusters 5
and 6 offer the best price-response, as higher prices result in lower electricity consumption during
several periods of the day. On the contrary, clusters 1, 2 and 4 often tend to increase consumption
when the price increases. To conclude, this study shows varied impacts of price on energy. It
isolates two groups, clusters 5 and 6, with favorable price dependence. These profiles should be
targeted with price-based offers, whereas other solutions should be preferred for other clusters,
including information and feedback technologies. For example Fig 5.13 shows that Clusters 1 and
3 are very temperature sensitive, therefore automated and energy-saving HVAC systems would be
an effective way to induce electricity consumption reduction among these groups.
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Figure 5.12: Price coefficient and temperature coefficient without cluster-level effect (top line
shows Model (Mp1)) and with cluster-level effect (bottom line shows Model (Mp2)). The red line
shows the x axis.

5.6.4 Summary
Figure 5.14 summarizes how energy clusters defined in Section 5.4 can inform energy policies and
help utilities better target customers with effective DR offers. Section 5.5 shows that low-entropy
households are more likely to accept DR offers. Section 5.6.1 shows that the DPP program has
positive effects only on clusters 1, 2, 3, 5 and 6. Section 5.6.3 shows that clusters 5 and 6 are
price sensitive, and can be targeted with time-of-use rates, whereas clusters 1 and 3, with low price
sensitivity and high temperature sensitivity, should be targeted with automated HVAC control.

5.7 Summary
In this chapter, we predict probabilities of reducing energy consumption during a DR event, and
quantify the reduction of power consumption in the case of DPP events and price-based programs.
More generally, we develop a methodology to study Demand Response behaviors, and apply the
method to the Smart Grid Smart City trial data in Australia. First, we use K-means algorithms
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Figure 5.13: Results of model (Mp3). For clusters 1 to 6: (i) consumption shape, (ii) estimated
price coefficient with 95% confidence interval, (iii) estimated temperature coefficient with 95%
confidence interval and (iv) adjusted R-squared. The red line shows the x axis.
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Figure 5.14: Summary of findings, and recommendation for utilities. Red ellipse shows energy
consumption characteristics and blue rectangle shows the most effective DR offer, based on the
findings of this work.

on smart meter data, and divide the population into seven clusters of energy consumption. Sec-
ond, this information is used to analyze DR program enrollment and DR energy response, and the
numerical results show that the type of energy consumption impacts both DR enrollment and DR
electricity response. The logit binary choice model demonstrates that customers with high energy
entropy tend to be more reluctant to commit to energy reduction programs, and utilities should tar-
get low entropy customers to increase their DR acceptance rate. Several difference-in-differences
and regression models are used to measure the impact of DPP events, and capture sensitivity to
temperature and electricity price. The results show that clusters have statistically significant dif-
ferences in how they respond to DR events, along with different price sensitivities and temperature
sensitivities.

This information can be very valuable for utilities, as it gives insights on how to segment
customers for electricity consumption, and how to target customers with tailored successful DR
offers. A tailored offer will be more likely to be accepted by the customer, and induce a beneficial
change in energy consumption. Figure 5.14 summarizes the findings and recommendations for
utilities in the specific case of Australia.
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Chapter 6

Conclusion

6.1 Summary of contributions
This dissertation presents three novel optimization techniques for energy management of large
fleets of electric cars. These methods are applicable in three different scenarios, namely (i) a
centrally located fleet that can be controlled solely by on/off signals, (ii) a spatially distributed
fleet that is controlled by an aggregator to provide load shaping, (iii) a spatially distributed fleet
in a stranded distribution grid that is controlled to provide voltage regulation and load shaping
services. We show that each problem has different constraints and mathematical properties, and
identify techniques to respond to each of them. We further extend this work by studying how
human behaviors may affect energy management programs, and study an example of Demand
Response trial in Australia.

With the first method, we propose a novel state space modeling framework for large fleets of
PEVs with discrete charging rate. First we aggregate PEVs in three different states, namely G2V,
idle and V2G. We derive the dynamics of the fleet as a system of three coupled PDEs, with uncon-
trollable flows coming from drivers. We use a Lax Wendroff discretization to transform the system
of PDEs into a state space representation, where the flows between the three different charging
categories are controlled. We propose a Linear Quadratic Regulator with the objective to track
a power signal, while respecting drivers’ mobility constraints. We use Model Predictive Control
techniques to solve this problem in real time. We perform various case studies and examine how
the performance of the aggregator depends on LQR parameters, drivers’ flexibility and capacity
bidding strategies. These examples show that the system is particularly adapted to load following,
with zero-mean reference signals.

With the second method, we propose distributed load shaping strategies to control PEV charg-
ing schedules via dual splitting. We define a global optimization problem, which aims at coordi-
nating PEVs to minimize the load variance. We show that this objective can be distributed and
solved in a decentralized framework. In the first step each PEV solves a local optimal program
based on a broadcast price signal, and communicates their response to the aggregator. In the sec-
ond step, the aggregator updates the price signal to reach minimal load variance. We propose three
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methods to compute this iterative process and prove their characteristics. First, the gradient ascent
method converges in a linear rate but needs an update from every agent at each iteration. Second,
the Stochastic Incremental Method with constant step-size converges in a linear rate, needs the up-
date from only one agent at each iteration but converges to an approximate solution. Third, the the
Stochastic Incremental Method with decreasing step-size converges to the optimal solution as 1

k
and needs the update from only one agent at each iteration. Finally, we compute several case stud-
ies based on real data, and demonstrate that PEVs provide a compelling opportunity to integrate
renewable energy sources in the electricity mix.

With the third method, we propose a predictive controller that is capable of handling Plug &
Play requests of flexible and deferrable loads. First, an MPC approach for minimizing the global
cost of the system is used to aggregate flexible loads and provide load shaping objectives under
distribution grid constraints. Second, we propose a MIP that safely connects loads and minimizes
waiting times. We prove that our algorithm achieves recursive feasibility, by appropriately defining
the connection conditions and the terminal constraint set. The performance of the proposed method
is demonstrated for the control of a radial distribution system with 55 buses.

6.2 Perspective on future extensions
There exists various opportunities to extend the work presented in this dissertation.

6.2.1 PDE modeling and control techniques for heterogeneous fleets of
PEVs

Chapter 2 of this dissertation presents a PDE modeling method, and discretization technique for
homogeneous fleets of PEVs. This can be extended to heterogeneous fleets (i.e. different battery
sizes and charging rates). This will present key challenges for developing adequate numerical
discretization schemes, with the right consistency and stability properties.

6.2.2 PEV scheduling through Distributed Plug & Play Model Predictive
Control techniques

Chapter 4 proposes a Plug & Play Model Predictive Controller to solve the PEV scheduling prob-
lem in an over-loaded power network. If P&P MPC techniques are particularly tractable for large
scale systems, each iteration requires solving a centralized optimization problem. As a result, in a
case of a very large distribution network, or if lots of loads connect at the same time, the compu-
tation time can become very high. In this case, distributed P&P MPC would be more appropriate.
Future research can look at distributed versions of the proposed algorithms, which will present a
few challenges for integrating fixed load-charging deadlines, as proposed in Chapter 4.
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6.2.3 Human-in-the-loop PEV smart charging
Chapters 2, 3 and 4 propose optimal scheduling algorithms by assuming that drivers will mainly
respond to a price signal when making decision of when to charge their cars. Chapters 2 and
3 look at extensions where drivers respond to price signals and look at reducing their battery
degradation at the same time. However, Chapter 5 shows that human behaviors are much more
complex when it comes to making energy choices. Future work can research how to include more
realistic behaviors in the optimal scheduling problem. In particular, driver choices should be more
realistically modeled by utility functions. This should account for the tradeoffs that one driver
makes when he/she chooses when to charge his/her PEV.

6.3 Concluding remark
The future of our electric car fleets will be diverse and heterogeneous, in terms of infrastructure,
vehicles and mobility patterns. Behaviors and human choices will play a key role in the success
of energy management strategies for fleets of electric cars. In Chapters 2 and 3, this dissertation
provides separate solutions for the problem with ON/OFF-type of infrastructure and the prob-
lem with continuous range of charging infrastructure. Chapter 4 attempts to combine these two
cases by modeling two types of loads and two types of scheduling objectives, i.e. load shaping
at the aggregate level and voltage regulation at the node level. In future, it is essential to de-
velop generic solutions that globally coordinate and aggregate electric vehicles, and efficiently
account for driver’s behaviors. We should research and develop unified frameworks that combines
techniques and models, and can adapt to grid constraints, computation requirements, and driver
behavioral changes.
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Appendix A

Proof of LQR recursive feasibility

This proof refers to Proposition 2. We assume that X(0) ≥ 0 and that Assumption 1 is verified.
Then, we show that the problem is feasible with the control sequence described in Section 2.5.3.2.
We consider k ∈ {0, ...,N}, and apply the control sequence Uidle(k) at time k:

X(k+1)
= AX(k)+BuUidle(k)+Bs(Dep(k)+Arr(k))

=

AV2G u(k)
Aidlev(k)

AG2V w(k)

+
 −AV2G u(k)

AV2G u(k)+AG2V w(k)
−AG2V w(k)

−
 0

Dep(k)+Arr(k)
0


=

 0
AV2G u(k)+AG2V w(k)+Aidlev(k)−Dep(k)−Arr(k)

0



1T X(k+1) = 1T [AV2G u(k)+AG2V w(k)+Aidlev(k)]

−1T (Dep(k)+Arr(k))

= 1T X(k)−d(k)+1T |Arr(k)| (A.1)

The last equality results from the system dynamics properties: the matrices AV 2G,AIdle and
AG2V are obtained from the discretization of convection PDEs, which ensure the conservation of
loads. Then:

1T X(k+1)−1T X(k) = 1T |Arr(k)|−D(k)
Then, by induction:

1T X(k+1)−1T X(0) =
k

∑
l=0

1T |Arr(l)|−D(l) (A.2)
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Assumption 1 and relations (A.1), (A.2) give:

1T X(k+1) > 0
1T X(k)−d(k)+1T |Arr(k)| > 0 (A.3)

We define:

Dep(k) = d(k)
AV2G u(k)+AG2V w(k)+Aidlev(k)+ |Arr(k)|

1T [AV2G u(k)+AG2V w(k)+Aidlev(k)+ |Arr(k)|

= d(k)
AV2G u(k)+AG2V w(k)+Aidlev(k)+ |Arr(k)|

1T [X(k)+ |Arr(k)|]

We conclude:

1T Dep(k) = d(k) (A.4)
Dep(k)≥ 0 (A.5)

X(k+1) =

 0
AV2G u(k)+AG2V w(k)+AIdlev(k)+ |Arr(k)|×G

0


≥ 0 (A.6)

where

G= 1− d(k)
1T [X(k)+1T |Arr(k)|]

(A.7)

where the last inequality comes from relation (A.3).
Equations (A.4), (A.5), (A.6) show that the problem is feasible at time k.
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Appendix B

Proof of necessary constraints for capacity
bidding

This proof refers to Section 2.6.0.2. We need to solve the following Nt Linear Programs (LP):

min
y∈RNt

−
Nt

∑
j=1

hi jy j (B.1a)

st − c j ≤ y j ≤ c j ∀ j ∈ {1, ...,Nt} (B.1b)

− ε ≤
Nt

∑
j=1

y j ≤ ε (B.1c)

We dualize the constraint B.1c in the above problem:

min
y∈RNt

max
λ≥0,µ≥0

−
Nt

∑
j=1

hi jy j +λ (
Nt

∑
j=1

y j− ε)+µ(−
Nt

∑
j=1

y j− ε)

st − c j ≤ y j ≤ c j ∀ j ∈ {1, ...,Nt} (B.2)

Problem (B.1) is feasible and is linear, therefore strong duality holds. Then, this is equivalent to
the following distributed problem:

max
λ≥0,µ≥0

− ε(λ +µ)+
Nt

∑
j=1

min
−c j≤y j≤c j

y j(−hi j +λ −µ)

= max
λ≥0,µ≥0

− ε(λ +µ)−
Nt

∑
j=1

c j|−hi j +λ −µ|

=− min
λ≥0,µ≥0

ε(λ +µ)+
Nt

∑
j=1

c j|−hi j +λ −µ| (B.3)
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We write the above equation B.3 with ordered hi j such that hi1 ≤ hi2 ≤ ...≤ hiNt . We compute
iteratively the minimization over λ and µ . To compute the minimization over λ , let define the
following function

φµ : R+→ R

λ → ελ +
Nt

∑
j=1

c j|λ − (µ +hi j)| (B.4)

φµ is convex and admits a minimum p∗(µ) on R+.

• Case 1: ∃ λ ∗µ s.t. 0 ∈ ∂φµ(λ
∗
µ). Then p∗(µ) = φµ(λ

∗
µ).

• Case 2: λ ∗µ = 0, and p∗(µ) = ∑
Nt
j=1 c j|(µ +hi j)|

We compute the subgradient as follows:

∂φµ(λ )

= ε +
Nt

∑
j=1

c jsgn[λ − (µ +hi j)] if λ 6= hi j +µ

= ε + ∑
j 6=k0

c jsgn[λ − (µ +hi j)]+ ck0[−1,1] if λ = hik0 +µ

If ε ≥ ∑
Nt
j=1 c j, φµ is always increasing and the minimum is attained at λ ∗µ = 0.In our case, we

suppose ε number and this condition is not true, then we note m the index such that:

ε +
m−1

∑
j=1

c j−
Nt

∑
j=m

c j < 0 AND ε +
m

∑
j=1

c j−
Nt

∑
j=m+1

c j ≥ 0

0 ∈ ∂φµ(µ +him)

We obtain de following cases:

• Case 1, µ ≥−him: Then, λ ∗µ = µ +him and p∗(µ) = ε(µ +him)+∑
Nt
j=1 c j|him−hi j|.

• Case 2, µ <−him: Then, λ ∗µ = 0, and p∗(µ) = ∑
Nt
j=1 c j|(µ +hi j)|

Now, we perform the minimization over µ ≥ 0:

ζ (µ) =p∗(µ)+ εµ

=

{
∑

Nt
j=1 c j|(µ +hi j)|+ εµ on [−∞,−him[

2εµ + εhim +∑
Nt
j=1 c j|him−hi j| on [−him,+∞]
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ζ is continuous and

∂ζ (µ) =
ε +∑

Nt
j=1 c jsgn[(µ +hi j)] on [−∞,−him[

ε +∑ j 6=hik0
c jsgn[(µ +hi j)]+ ck0[−1,1], µ =−hik0 <−him

2ε on [−him,+∞]

We note r, the index such that:

ε−
r−1

∑
j=1

c j +
Nt

∑
j=r

c j ≥ 0 AND ε−
r

∑
j=1

c j +
Nt

∑
j=r−1

c j < 0

0 ∈ ∂ζ (−hir) if hir ≥ him

We obtain the following values for the minimum v∗:

• Case 1: him ≥ 0:
µ∗ = 0, λ ∗ = him, v∗ = εhim +∑

Nt
j=1 c j|him−hi j|.

y∗j = sgn(hi j−him)c j if j 6= m,
y∗m = ε−∑

Nt
j=1 sgn(hi j−him)c j

• Case 2: him < 0,him ≤ hir < 0:
µ∗ =−hir, λ ∗ = 0, v∗ =−εhir +∑

Nt
j=1 c j|hir−hi j|.

y∗j = sgn(hi j−hir)c j if j 6= r,
y∗r =−ε−∑

Nt
j=1 sgn(hi j−hir)c j

• Case 3: otherwise:
µ∗ = 0, λ ∗ = 0, v∗ = ∑

Nt
j=1 c j|hi j|.

y∗j = sgn(hi j)c j

To summarize, y∗ can take 2Nt +1 values as follows:

y∗ =Γc+β where

∃m st


γ j j = sgn(hi j−him),β j = 0 for j 6= m,

γm j =−sgn(hi j−him),βm = ε for j 6= m,

γlk = 0 otherwise

or ∃r st


γ j j = sgn(hi j−hir),β j = 0 for j 6= r,
γr j =−sgn(hi j−hir),βr =−ε for j 6= r,
γlk = 0 otherwise

or γ j j = sgn(hi j), γl j = 0, β j = 0 ∀i, j st i 6= j
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The annex shows that the solution to the LP (2.65b) can take 2Nt + 1 different values y∗k =
Γkc+βk, k ∈ [1,2Nt +1] where Γk, βk (see the annex).

y∗ = Γc+β where

∃m st


γ j j = sgn(hi j−him),β j = 0 for j 6= m,

γm j =−sgn(hi j−him),βm = ε for j 6= m,

γlk = 0 otherwise
(B.5a)

OR

∃r st


γ j j = sgn(hi j−hir),β j = 0 for j 6= r,
γr j =−sgn(hi j−hir),βr =−ε for j 6= r,
γlk = 0 otherwise

(B.5b)

OR
γ j j = sgn(hi j), γl j = 0, β j = 0 ∀i, j st i 6= j (B.5c)

We can derive simplified feasibility conditions for solutions (B.5). We define v∗i , the maximum of
LP (2.65b). If y∗k , then v∗i is higher than ∑ j hi jy∗j . This can be summarized as follows:

(B.5a) is feasible ⇔

{
∑

Nt
j=1 sgn(him−hi j)c j− cm ≤−ε

∑
Nt
j=1 sgn(him−hi j)c j + cm ≥−ε

⇒ v∗i ≥ εhim +
Nt

∑
j=1

c j|him−hi j|

(B.5b) is feasible ⇔

{
∑

Nt
j=1 sgn(hir−hi j)c j− cr ≤ ε

∑
Nt
j=1 sgn(hir−hi j)c j + cr ≥ ε

⇒ v∗i ≥−εhir +
Nt

∑
j=1

c j|hir−hi j|

(B.5c) is feasible ⇔

{
∑

Nt
j=1 sgn(hi j)c j ≤ ε

∑
Nt
j=1 sgn(hi j)c j ≥−ε

⇒ v∗i ≥
Nt

∑
j=1

c j|hi j|

The above statements form a set of conditional constraints, which can be modeled by introducing
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integer variables [17]. δ is a small deviation and L is a large number.{
∑

Nt
j=1 sgn(hi j)c j ≤ ε

∑
Nt
j=1 sgn(hi j)c j ≥−ε

⇒ v∗i ≥
Nt

∑
j=1

c j|hi j|

⇔

{
∑

Nt
j=1 sgn(hi j)c j ≤ ε

∑
Nt
j=1 sgn(hi j)c j ≥−ε

false OR v∗i ≥
Nt

∑
j=1

c j|hi j|

⇔


∑

Nt
j=1 sgn(hi j)c j > ε +δ −Lx

∑
Nt
j=1 sgn(hi j)c j <−ε−δ +Lz

v∗i ≥ ∑
Nt
j=1 c j|hi j|−L(2− (x+ z))

x,z ∈ {0,1}; x+ z≥ 1

Finally, the problem can be written as a Mixed Integer Linear Program:

max
C,v∗,z,x

λ
TC (B.6a)

st ∀i ∈ {1, ...,Nt},k ∈ {1, ...,2Nt +1} (B.6b)
Nt

∑
j=1

αk
i jc j > θ k

i +δ −Lk
i xk

i (B.6c)

Nt

∑
j=1

α
k
i jc j < θ

k
i −δ +Lk

i zk
i (B.6d)

v∗i ≥ vk
i −L(2− (xk

i + zk
i )) (B.6e)

xk
i ,z

k
i ∈ {0,1}; xk

i + zk
i ≥ 1 (B.6f)

v∗i ≤ bi (B.6g)
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Appendix C

Proof of Plug & Play recursive feasibility

Assume that the problem is feasible at time k, with the optimal control sequence U∗(k)= {u∗(k),u∗(k+1), ...,u∗(k+N−1)}
and the predicted state trajectory X∗(k) = {x∗(k+1), ...,x∗(k+N−1),x∗(k+N)}. Then, at time
k+1, we show that the control sequence U∗(k+1)= {u∗(k+1),u∗(k+2), ...,u∗(k+N−1),v(k+N)}
is feasible where v(k+N) is defined by Equations (4.25), (4.26), (4.27). The state trajectory at time
k+ 1 is X∗(k+ 1) = {x∗(k+2), ...,x∗(k+N),x(k+N +1)}, where x(k+N +1) is derived in the
next sections. With the notations in Section 4.2.5:

x∗(k+N) =
[
x1(k+N),x2(k+N)

]T
=

[
(eshp

1 , . . . ,eshp
Mshp),(ebat

1 . . . ,ebat
n )
]T

(N)

x(k+N+1) =
[
x1(k+N+1),x2(k+N+1)

]T
v(k+N) =

[
qg(k+N) ushp(k+N) pbat(k+N)

]T
And v(k+N) is defined by the following control values:

cshp
j (k+N)=

eshp
des, j− eshp

j (k+N)

(kout
j − (k+N))η∆T

1(k+N)<kout
j

j ∈ {1, ...,Mshp}
qi(k+N)=q̂i(k+N) i ∈ {1, ...,n}

pbat
i (k+N)=[p̂i

bat(k+N)- pde f
i (k+N)- pshp

i (k+N)]

In the remainder of this section, we derive x(k+N +1) and prove that the solution is feasible.
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C.0.1 Shapeable loads state of charge
Let consider j ∈ {1, ...,Mshp}:

eshp
j (k+N +1) = eshp

j (k+N)+η∆T cshp
j (k+N)

= eshp
j (k+N)

+η∆T
eshp

des, j− eshp
j (k+N)

(kout
j − (k+N))η∆T

1(k+N)≤kout
j

At time k+N :

eshp
j (k+N)≥ eshp

des, j - max(0,η∆T (kout
j - (k+N)cshp

max, j)

eshp
j (k+N)≥ eshp

min, j

Thus, we obtain the following condition at time k+N + 1, which ensures recursive feasibility of
the terminal constraint for shapeable loads eshp

j :

eshp
j (k+N +1)≥ eshp

j (k+N)≥ eshp
min, j (C.1)

If N < kout
j

eshp
des, j− eshp

j (k+N +1)

= eshp
des, j− (eshp

j (k+N)+
eshp

des, j− eshp
j (k+N)

(kout
j − (k+N))

=
(

eshp
des, j− eshp

j (k+N)
)
(1− 1

kout
j − k−N

)

≤ η∆T (kout− k−N)cshp
max, j

kout
j − (k+N +1)

kout−N

≤ η∆T
(

kout− (k+N +1)
)

cshp
max, j (C.2)

Moreover:
eshp

des, j− eshp
j (k+N +1)≥ 0 since kout

j − (k+N)≥ 1

If N ≥ kout

eshp
j (k+N +1) = eshp

j (k+N)≥ eshp
des, j (C.3)

≤ eshp
des, j (C.4)
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C.0.2 Network constraints
Consider a node i ∈ {1, ...,n}. Equations (4.26), (4.27) give:{

qi(k+N) = q̂i(k+N)

pbat
i (k+N) = p̂i

bat(k+N)- pde f
i (k+N)- pshp

i (k+N)
Equation (4.7a) gives:

Pi j(k+N) = pl
j(k+N)+ p̂ j

bat(k+N)+ ri jli j(k+N)

+ ∑
m:( j,m)∈L

Pjm(k+N)

Equation (4.7b), (4.7c) and (4.8) give:

Qi j(k+N) = ql
j(k+N)− q̂g

j(k+N)+ xi jli j(k+N)

+ ∑
k:( j,m)∈L

Q jm(k+N)

ν j(k+N) = νi(k+N)+(r2
i j + x2

i j)li j

− 2(ri jPi j(k+N)+ xi jQi j)

li j(k+N) ≥
P2

i j(k+N)+Q2
i j(k+N)

νi(k+N)

This is the system of power flow equations for (p,q) = (p̂, q̂). Thus it is feasible and the
voltage bounds are satisfied:

νmin ≤ ν(k+N)≤ νmax

C.0.3 Battery banks
The power constraint and terminal constraint for the SOC of battery banks must be satisfied. By
induction, we show that ∀l ∈ [k+N,kout

max]:

ebat
i (l) = êbat

i (l)+
kout

max

∑
m=l

∆T [pde f
i + p̃shp

i ](m) (C.5)

By definition of the terminal set, this is true at time k+N. Now, suppose it is true at time
l ∈ [k+N,kout

max], then:

ebat
i (l +1) = ebat

i (l)+∆T pbat
i (l)

= ebat
i (l)+∆T [p̂i

bat(l)- pde f
i (l)- p̃shp

i (l)]

= êbat
i (l)+

kout
max

∑
m=l

∆T [pde f
i (m)+ p̃shp

i (m)]
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+∆T [p̂i
bat(l)- pde f (l)- p̃shp(l)]

= êbat
i (l +1)+

kout
max

∑
m=l+1

∆T [pde f
i (m)+ p̃shp

i (m)]

This is Eq. (C.5) at time l + 1, proving that (C.5) holds by induction. Now, Eq. (C.5) at time
k+N +1 gives:

ebat
i (k+N +1) = êbat

i (k+N +1)

+
kout

max

∑
l=k+N+1

∆T [pde f
i (l)+ p̃shp

i (l)]

Thus ebat
i (k+N+1)≥ êbat

i (k+N+1)≥ ebat
i,min and Assumption (4.23) gives ebat

i (k+N+1)≤
ebat

i,max. Moreover,

pbat
i (k+N) = [p̂i

bat(k+ N)- pde f
i (k+ N)- pshp

i (k+ N)]

≤ pbat
i (k+N)≤ pbat

i,max

and condition (4.24) gives pbat
i (k+N)≥ pbat

i,min.
This concludes the proof of recursive feasibility.
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