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Abstract

This paper presents a practical variation of extremum seeking (ES) that guar-
antees asymptotic convergence through a Lyapunov-based switching scheme
(Lyap-ES). Traditional ES methods enter a limit cycle around the optimum.
Lyap-ES converges to the optimum by exponentially decaying the perturba-
tion signal once the system enters a neighborhood around the extremum. As
a case study, we consider maximum power point tracking (MPPT) for pho-
tovoltaics. Simulation results demonstrate how Lyap-ES is self-optimizing in
the presence of varying environmental conditions and produces greater en-
ergy conversion efficiencies than traditional MPPT methods. Experimentally
measured environmental data is applied to investigate performance under re-
alistic operating scenarios.

Keywords: Adaptive control; nonlinear control; Lyapunov methods;
photovoltaic systems; renewable energy

1. Introduction

1.1. Problem Statement

Extremum seeking (ES) deals with regulating an unknown system to its
optimal set-point. To this end, a periodic perturbation signal is typically
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used to probe the space. Once the optimal set-point has been identified, most
methods enter a limit cycle around this point as opposed to converging to it
exactly. Hence, one of the main challenges with ES is eliminating the limit
cycle and converging to the optimal set-point asymptotically. This paper
investigates a novel Lyapunov-based switched extremum seeking (Lyap-ES)
approach that supplies asymptotic convergence to the optimal set-point. The
proposed concept is demonstrated on a well-studied yet important problem:
maximum power point tracking (MPPT) in photovoltaic (PV) systems.

1.2. Literature Review

Two bodies of literature form the foundation of this work: MPPT in PVs
and extremum seeking control.

1.2.1. MPPT in PVs

The MPPT literature is extremely broad, and contains techniques that
range in complexity, hardware, performance, and popularity, among other
characteristics. The survey paper by Esram and Chapman [1] provides a
comprehensive comparative analysis of over 90 publications on MPPT tech-
niques. The most popular technique, perturb & observe (P&O), perturbs
the input voltage to determine the direction of the maximum power point
(MPP), and moves the operating point accordingly. However, the controller
eventually enters a periodic orbit about the MPP. This approach does not
require a priori knowledge of the PV system and is simple to implement.
However, P&O can diverge from the MPP under certain variations in the
environmental conditions [2], [3]. Recently, an exponentially decaying adap-
tive version of P&O has been developed [4], which has conceptual similarities
to our proposed method. An alternative method, incremental conductance
(IncCond), seeks to correct this issue by leveraging the fact that the slope
of PV array power output is zero at the MPP. As a result, this algorithm
estimates the slope of the power curve by incrementing the terminal voltage
until the estimated slope oscillates about zero [5]. A drawback of P&O and
IncCond methods is that both stabilize to limit cycles. Ideally, one desires
a peak seeking scheme that is asymptotically convergent and self-optimizing
with respect to shifts in the MPP. This motivates a control-theoretic ap-
proach to MPPT. A recent paper examined an adaptive backstepping ap-
proach, for which convergence to the MPP is theoretically proven under a
persistency of excitation condition [6]. This paper examines an alternative
non-model-based approach, extremum seeking.

2



Extremum seeking control and its application to photovoltaic systems rep-
resents an important and relevant subset of MPPT literature. Specifically,
Leyva et al. [7] and Bratcu et al. [8] utilize extremum seeking for PVs by
injecting an exogenous periodic signal. A separate research group developed
ripple correlation control (RCC), which utilizes the signal ripple that inher-
ently exists in systems with switching power electronics as the perturbation
signal [9]. The stability and optimality of this approach has been established
in [10]. RCC has the critical advantage of utilizing existing signal ripples, in-
stead of injecting artificial perturbations. As such, RCC is only applicable to
systems which inherently contain ripple characteristics. Recently, Brunton et
al. [11] utilized the 120 Hz inverter ripple in a PV system within the context
of an extremum seeking control theoretic approach to MPPT. Consequently
this work established an important link between extremum seeking control
and ripple-based MPPT [12].

1.2.2. Extremum Seeking Control Theory

Prior to the nonlinear and adaptive control theory developments in the
1970’s and 1980’s, extremum seeking was proposed as a method for identi-
fying the optimum of an equilibrium map. Since then, researchers have ex-
tended extremum seeking to the general class of nonlinear dynamical plants
(see e.g. [13], [14]) and applied the algorithm to a wide variety of applica-
tions (e.g. air flow control in fuel cells [15], wind turbine energy capture [16],
ABS control, and bioreactors [17]). During this period there have been sev-
eral innovations that have improved the practicability of ES. For example,
convergence speed can be enhanced by adding dynamic compensators [18]
or applying alternative periodic perturbation signals [19]. A Newton-based
algorithm can also be developed by estimating the Hessian of the unknown
nonlinear map [20].

1.3. Contributions

This study focuses on a general problem - asymptotic convergence to
the extremum of a static nonlinear unknown function. As such, this paper
extends the aforementioned research and builds on the authors’ previous work
[21] to add the following two new contributions to the ES control and MPPT
bodies of literature. First, we introduce a switching method for ensuring
asymptotic convergence to the optimal operating point, based on Lyapunov
stability theory. Secondly, we demonstrate this algorithm in simulation for

3



MPPT problems in PV systems - a novel and control theoretic alternative to
traditional MPPT methods.

1.4. Paper Outline

This paper is organized as follows: Section 2 describes the extremum seek-
ing control design and our novel Lyapunov-based switching strategy. Section
3 discusses a case study of the proposed ES method on MPPT for PV sys-
tems. Finally, Section 4 presents the main conclusions.

2. Extremum Seeking Control

In this section we introduce and expand upon a simple yet widely studied
extremum seeking (ES) scheme [13], [17] for static nonlinear maps, shown in
Fig. 1. Since the case study on photovoltaic systems involves a static plant
model (albeit parameterized by time-varying disturbances), the scope of our
analysis is limited to static plants. One may also consider the more general
singular perturbation analysis for dynamic plant models presented in [13].

Before embarking on a detailed discussion of this method, we give an
intuitive explanation of how extremum seeking works, which can also be
found in [13] and [17], but is presented here for completeness. Next, we
design the Lyapunov-based switching extremum seeking control to eliminate
limit cycles.

2.1. An Intuitive Explanation

The control scheme applies a period perturbation a0 sin(ωt) to the control
signal û, whose value estimates the optimal control input u∗. This control
input passes through the unknown static nonlinearity f(û + a0sin(ωt)) to
produce a periodic output signal y. The high-pass filter s/(s + ωh) then
eliminates the DC components of y, and will be in or out of phase with the
perturbation signal a0 sin(ωt) if û is less than or greater than u∗, respectively.
This property is important because when the signal y − η is multiplied by
the perturbation signal sin(ωt), the resulting signal has a DC component
greater than or less than zero if û is less than or greater than u∗, respec-
tively. This DC component is extracted by the low-pass filter ωl/(s + ωl)

and represents the sensitivity (
a20
2

)∂f
∂u

(û). We may use a gradient update law
˙̂u = k(

a20
2

)∂f
∂u

(û) or a quasi-Newton method [22] to force û to converge to u∗.
Next we rigorously develop the ES algorithm.

4



s+ωh

ωl
s+ωl

k
s

x

Unknown Static Nonlinearity

f(u)

sin(ωt)

sin(ωt)

u y

y-ηξu^

y*

u*

Integrator Low Pass Filter

+ +

x

a0

-γ
s

V(xa)
Lyapunov
Function

Switch

a

Extremum Seeking

Lyapunov-Based Switching Scheme

Extremum SeekingExtremum Seeking

Averaging
Operator

ωl

-
+

η

High Pass Filter

Figure 1: Block diagram of switched extremum seeking control system

2.2. Averaging Stability Analysis

Extremum seeking systems generally enter a limit cycle around the op-
timum, as opposed to converging to it asymptotically. To eliminate this
drawback we propose a switching control scheme. This scheme decays the
periodic perturbation’s amplitude once the system has converged within the
interior of a ball around the optimum. The switch criterion is determined
using Lyapunov stability methods. Allowing the perturbation to decay ex-
ponentially is not new [4, 14], however it is the first application in a switched
scheme, to the authors’ knowledge.

In the following derivations, the Lyapunov function is ideally calculated
with respect to a coordinate system centered at the extremum. However,
the extremum is unknown a priori. In the case of MPPT for photovoltaics,
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we assume knowledge of a “nominal” MPP, provided by the manufacturer
under ideal conditions. The Lyapunov function will be evaluated with respect
to a coordinate system centered at this nominal extremum. An analysis in
Section 3.4 evaluates the impact of errors between the nominal and true
extrema.

We start with a proof modified from Krstić and Wang [13], which uses
averaging theory to approximate the ES system behavior, linearizes it about
the equilibrium, and then shows the resulting Jacobian is Hurwitz. From this
proof, our new contribution is to develop a Lyapunov function that senses
proximity to the equilibrium point.

The state equations for the closed-loop ES system are:

˙̂u = kξ (1)

ξ̇ = −ωlξ − ωlη sin(ωt) + ωlf(u)sin(ωt) (2)

η̇ = −ωhη + ωhf(u) (3)

u = û+ a0sin(ωt) (4)

where each equation respectively represents the integrator, low-pass filter,
high-pass filter, and perturbed control input. Now define a new coordinate
system that shifts the nominal optimal operating point, denoted u0, to the
origin

ũ = û− u0 (5)

η̃ = η − f(u0) (6)

resulting in the following translated system

˙̃u = kξ (7)

ξ̇ = −ωlξ − ωlη̃ sin(ωt)

+ ωl
[
f(ũ+ u0 + a0 sin(ωt)− f(u0)

]
(8)

˙̃η = −ωhη̃ − ωh
[
f(ũ+ u0 + a0 sin(ωt))− f(u0)

]
(9)

Now we scale time τ = ωt.

d

dτ

 ũ
ξ
η̃

 = δ

 K ′ξ
−ω′Lξ − ω′Lη̃ sin(τ) + ω′Lh(ũ+ a0 sin τ) sin τ

−ω′H η̃ − ω′Hh(ũ+ a0 sin(ωt))
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where the parameters are normalized as follows:

k = ωδK
′
= O(ωδ) (10)

ωl = ωδω′L = O(ωδ) (11)

ωh = ωδω′H = O(ωδ) (12)

and K ′, ω′L, ω
′
H are O(1) positive constants. The function h(θ) = f(u0 + θ)−

f(u0) satisfies the following properties in photovoltaic systems.

h(0) = 0 (13)

h′(0) = f ′(u0) (14)

h′′(0) = f ′′(u0) < 0 (15)

h′′′(0) = f ′′′(u0) < 0 (16)

These properties will be useful in our calculations later. Also note that (14)
is equal to zero when the u0 = u∗.

To investigate the stability properties of this system, we consider the
averaged system - the standard approach for analyzing periodic systems.
The averaged state variables are defined as follows [20].

xa =
1

2π

∫ τ

τ−2π
x(σ)dσ (17)

where the period of the signal is 2π. Hence, our immediate goal is to use
the notion of an averaged system to investigate the stability properties of the
closed loop system. Applying the definition of averaging yields the following
system

d

dτ

 ũa
ξa
η̃a

 = δ

 K ′ξa

−ω′Lξa +
ω′
L

2π

∫ 2π

0
h(ũa + a0 sinσ) sinσdσ

−ω′H η̃a +
ω′
H

2π

∫ 2π

0
h(ũa + a0 sinσ)dσ

 (18)

Now we must determine the equilibrium (ũea, ξ
e
a, η̃

e
a) of this nonlinear system

which satisfies:

0 =

 K ′ξea
−ω′Lξea +

ω′
L

2π

∫ 2π

0
h(ũea + a0 sinσ) sinσdσ

−ω′H η̃ea +
ω′
H

2π

∫ 2π

0
h(ũea + a0 sinσ)dσ

 (19)
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Let us postulate that ũea takes the form ũea = b1a0 + b2a
2
0 + O(a30) and use

a Maclaurin series expansion of h(ũea + a0 sinσ). Following several algebraic
calculations that use (13)-(16), one may show the equilibrium is given by:

ũea = b0 −
h′′′(0)

h′′(0) + b0h′′′(0)
a20 +O(a30) (20)

where b0 solves h′′′(0)b20 + 4h′′(0)b0 + 2h′(0) = 0.

ξea = 0 (21)

η̃ea = h′(0)b0 + h′′(0)b20 +
1

6
h′′′(0)b30 +

[
h′(0)b2 +

1

4
h′′(0)

+ 2b0b2h
′′(0) +

1

4
b0h
′′′(0) +

1

2
b20b2h

′′′(0)

]
a20 +O(a30) (22)

and b2 = −h′′′(0)/ (h′′(0) + b0h
′′′(0)).

The Jacobian of (18) evaluated at (ũea, ξ
e
a, η̃

e
a) is

Ja = δ

 0 K ′ 0
ω′
L

2π

∫ 2π

0
h′(ũea + a0 sinσ) sinσdσ −ω′L 0

ω′
H

2π

∫ 2π

0
h′(ũea + a0 sinσ)dσ 0 −ω′H

 (23)

Inspection reveals the Jacobian has a block-lower-triangular structure. As a
result, Ja is Hurwitz if and only if∫ 2π

0

h′(ũea + a0 sinσ) sinσdσ < 0 (24)

We apply (13)-(16) to show that∫ 2π

0

h′(ũea + a0 sinσ) sinσdσ = πh′′(0)a0 +O(a20) (25)

Using the property (15), we conclude the Jacobian is Hurwitz for sufficiently
small a0. Since the Jacobian is Hurwitz, the averaged system is locally expo-
nentially stable according to Theorem 4.7 of Khalil [23]. This also satisfies
the conditions of Theorem 10.4 of Khalil [23], which states that the original
system has a unique exponentially stable periodic orbit about (ũea, ξ

e
a, η̃

e
a).

Therefore the ES control system is stable in the sense that the averaged sys-
tem converges exponentially for sufficiently small a0. We leverage this fact
to design the Lyapunov-based switching criterion, described next.
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2.3. Lyapunov-Based Switching Scheme

The Jacobian (23) approximates the system dynamics near the equilib-
rium (ũea, ξ

e
a, η̃

e
a). We now use this Jacobian to develop a quadratic Lyapunov

function for the switching control. First, we use (25) and similar calculations

for
∫ 2π

0
h′(ũea + a0 sinσ)dσ to write the Jacobian as:

Ja = δ

 0 K ′ 0
ω′
L

2
h′′(0)a0 −ω′L 0

ω′Hh
′(0) 0 −ω′H

 (26)

where we use estimates for h′(0) & h′′(0) which satisfy (14)-(15). Next we
solve the following Lyapunov equation for P

PJa + JTa P = −Q (27)

which has a unique solution under the conditions Q = QT > 0. This results
in the following quadratic Lyapunov function

V (xa) =
1

2
xTaPxa where xa = [ũa ξa η̃a]

T (28)

which we use for the following switched control law:

u(t) =


û+ a0sin(ωt) if V (xa) > ε{
û+ asin(ωt)

da(t)
dt

= −ρa(t), a(0) = a0 otherwise

(29)

whose conditions are evaluated only when sin(ωt) equals zero to ensure the
control signal remains continuous in time.

Remark 1 (ES Re-engagement Property). The quadratic Lyapunov func-
tion in (28) estimates the averaged system’s proximity to the equilibrium.
That is, V (xa)→ 0 as xa → 0. Once Lyap-ES converges sufficiently close to
the optimum, the sinusoidal perturbation decays exponentially to zero and
the control input arrives at u∗. If external disturbances cause the Lyapunov
function value to increase above the threshold value ε, then the original am-
plitude a0 is used until the system converges to the new extremum. Hence,
the proposed switched control scheme is self-optimizing with respect to dis-
turbances. This situation is illustrated in the case study on PV systems in
Section 3.
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Remark 2 (Positive Invariance Property). Note that the sub-level set Ωc =
{xa ∈ R3 | V (xa) ≤ c} which V (xa) ≤ 0 is positively invariant, mean-
ing a solution starting in Ωc remains in Ωc for all t ≥ 0. In other words,
the Lyapunov function will be decreasing monotonically in time, therefore
eliminating chattering behavior.

Remark 3 (Convergence Speed). During the case of constant perturba-
tion amplitude, the convergence speed to the invariant set Ωε = {xa ∈
R3|V (xa) ≤ ε} is characterized by the eigenvalues of (26). Once the per-
turbation amplitude switches to an exponential decay, the convergence is
characterized by the decay parameter ρ in (29). In practice, one would use
the algorithm parameters to compute convergence speeds from these rela-
tions.

Although we refrain from stating theorems and proofs in this paper, sta-
bility can be established by considering three points. First, the dynamics of
a, which are in a cascade with the ES dynamics, are trivially stable. Second,
u(t) is continuous across the switching times since the conditions of (29) are
evaluated only when sin(ωt) = 0. Given these two points, stability of the
complete closed-loop system can be established by studying the ES dynam-
ics augmented with the decaying amplitude state in (29). Unfortunately, the
linearization test applied in [13] fails in this case because the Jacobian con-
tains a zero eigenvalue. However, it may be possible to use an appropriately
selected Lyapunov function or the Center Manifold Theorem (Section 8.1 of
[23]) to prove local asymptotic stability.

3. Case Study: MPPT In Photovoltaic Systems

Next we examine the proposed Lyapunov-based switched extremum seek-
ing scheme on the MPPT problem for PV systems. Solar energy represents
a key opportunity for increasing the role of renewable energy in the electric
grid. However, high manufacturing and installation costs have limited the
economic viability of PV-based energy production [24]. Therefore, it is vi-
tally important to maximize the energy conversion efficiency of PV arrays.
This problem is particularly difficult because maximizing energy capture in
PVs can depend on varying incident solar radiation, temperature, shading,
system degradation, etc. As such, we desire control theoretic techniques
that mathematically guarantee asymptotic convergence to the MPP, while
rejecting disturbances due to changing environments.
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Figure 2: Photovoltaic (PV) system comprised of a PV array, DC/DC converter, and the
proposed switched ES MPPT control algorithm

We consider a PV system comprised of a PV array, switching DC/DC
boost converter, and the proposed Lyap-ES control algorithm, as depicted
in Fig. 2. The DC/DC converter serves as the control actuator, which can
impose various voltages across the PV array terminals. At the output-end of
the converter, the voltage is fixed where it interfaces with the external system
(e.g. DC/AC inverter and AC grid). To study this system we first summarize
an established equivalent circuit model for PV arrays and a switching DC/DC
boost converter model.

Next we apply Lyap-ES to the PV system and analyze the following:
(i) The asymptotic convergence and self-optimizing behavior under external
disturbances due to varying environmental effects, (ii) the algorithms merits
and drawbacks versus traditional ES and MPPT algorithms, (iii) results from
the application of experimentally measured transient solar irradiance and
temperature data, and (iv) the impact of errors between the nominal and
optimal MPP.

3.1. PV System Model Development

For the purposes of MPPT we consider an equivalent circuit model [25],
[26] of a PV cell shown in Fig. 3. Within the PV control system literature,
this model has been established as a sufficiently accurate representation of the
physical system, for MPPT control design purposes [6, 25, 26, 27, 28, 29].
In particular, this model consists of an ideal current source Isc in parallel
with a diode and resistance Rp, all together in series with resistor Rs, which
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+
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Rp

Rs

Vcell

+

-

I

S

Figure 3: Equivalent circuit model of PV Cell [25], [26]

models contactor and semiconductor material resistance. The ideal current
source delivers current in proportion to solar flux S, and is also a function of
temperature T . The diode models the effects of the semiconductor material,
and also depends on temperature. In total, the PV cell model equations are
given by

Vd = Vcell + IRs (30)

I = Isc − I0
[
exp

(
qVd
AkT

)
− 1

]
− Vd
Rp

(31)

Isc = [Isc,r + kI(T − Tr)]
S

1000
(32)

I0 = I0,r

(
T

Tr

)3

exp

[
qESi
Ak

(
1

Tr
− 1

T

)]
(33)

Vpv = ncellVcell (34)

The cell model is scaled to an array by considering ncell cells in series
(34). Parameters are adopted from [25].

The PV model is parameterized by environmental conditions - incident
solar irradiation S and temperature T . Figure 4 demonstrates that current
and power increase linearly with solar irradiation. Temperature has a more
complex effect on current and power. The short circuit current increases
with temperature, however the power decreases as temperature increases.
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Consequently, PV cells operate best in full sunlight and cold temperatures.
Our goal is to design a control loop that automatically tracks the MPP under
changing environments.

A DC/DC boost converter steps up the PV array voltage and provides
a control actuator for MPPT, via PWM on the switches. At the boost con-
verter’s output, a capacitor maintains a roughly constant voltage and is typ-
ically interfaced with the electric grid using a three-phase DC/AC inverter
[2]. In this paper, we focus on the boost converter only for the purposes
of MPPT, and assume the capacitor maintains a constant 120V at the out-
put. In the following, we analyze the dynamics of a switching DC/DC boost
converter model. Namely, we find the equilibrium of this system and show
that it is locally exponentially stable. This analysis enables us to use the
equilibrium as a reduced DC/DC model for the purposes of MPPT.
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Figure 4: Characteristic I-V and P-V curves for varying T and S = 1000 W/m2 (left
subplots), and varying S and T = 25◦C (right subplots).

Figure 5 provides a schematic of a typical switching DC/DC boost con-
verter. The input side interfaces with the PV array, represented by the static
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Figure 5: Circuit diagram of switching DC/DC boost converter model.

relation Vpv(I;S, T ) which verifies (30)-(34). The output side interfaces with
a DC/AC inverter, which is modeled as a fixed voltage source Vinv and equiv-
alent series resistance. The dynamics of this switched system, after applying
the state-space averaging approach [30], are:

d

dt
iL =

1

L
Vpv(iL;S, T )− 1− d

L
vc (35)

d

dt
vc =

1− d
C

iL −
1

RC
(vc − Vinv) (36)

where d ∈ (0, 1) is the duty ratio. The equilibrium for this nonlinear system
(ieqL , v

eq
c ) satisfies:

veqc = (1− d)RieqL + Vinv (37)

0 = Vpv(i
eq
L ;S, T )− (1− d)2RieqL − (1− d)Vinv (38)

Now we analyze the stability of this equilibrium. First, we linearize (35)-
(36) around (ieqL , v

eq
c ), producing the Jacobian[

1
L

∂Vpv
∂iL

(ieqL ;S, T ) −(1− d) 1
L

(1− d) 1
C

− 1
RC

]
(39)

The eigenvalues λ of (39) satisfy the characteristic equation:

0 = λ2 +

[
1

RC
− 1

L

∂Vpv
∂iL

(ieqL ;S, T )

]
λ

− 1

RLC

∂Vpv
∂iL

(ieqL ;S, T ) + (1− d)2
1

LC
(40)
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Observe that ∂Vpv/∂iL(ieqL ;S, T ) < 0 over its entire domain, for all physically
meaningful values of S, T . Therefore, all the coefficients of λ in (40) are
positive. By the Routh-Hurwitz stability criterion, Re[λ] < 0. Consequently,
the equilibrium (ieqL , v

eq
c ) is locally exponentially stable.

For the proposed MPPT algorithm, we impose the condition that the
switching converter dynamics are notably faster than the Lyap-ES loop dy-
namics. This enables us to use the stable equilibrium to model the DC/DC
boost converter dynamics as:

0 = Vpv(I;S, T )− (1− d)2RI − (1− d)Vinv (41)

where Vpv is the PV array voltage, Vinv is the constant 120V DC/AC inverter
voltage, and d is the duty ratio control input.
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3.2. Concept Demonstration

In this section we demonstrate Lyap-ES by (i) analyzing the impact of
varying environmental conditions, and (ii) comparing it to P&O and tradi-
tional ES methods. In the first part we impose 1000 W/m2 of solar irradiation
and then provide a 500 W/m2 step change at 200 ms. This might model the
transient effect of a passing cloud blocking incident sunlight. The duty ratio
is initialized at 0.9. The control parameters for Lyap-ES are provided in
Table 1. Remarks on control parameter selection are included in Appendix
A.

3.2.1. Impact of Varying Environmental Conditions

Figure 6 demonstrates the current and power trajectories superimposed
on the PV array’s characteristic I-V and P-V curves (S = 1000 W/m2).
Lyap-ES indeed achieves the maximum power of 38W at voltage and current
values of 17V and 2.24A for S = 1000 W/m2, and maximum power of 17.3W
at voltage and current values of 18V and 1.09A for S = 500 W/m2. Moreover,
one can see how the operating point jumps from the 1000 W/m2 characteristic
curve to the 500 W/m2 curve during the step change. Immediately after the
step change, the operating point is no longer at the MPP. The algorithm
senses this change and reengages the perturbation to find the new MPP.

Time responses of power, duty ratio, and Lyapunov function value are
provided in Figure 7. This figure demonstrates how Lyap-ES injects sinu-
soidal perturbations into the duty ratio to determine the MPP u∗ = 0.859
for S = 1000 W/m2 and 0.868 for S = 500 W/m2. Note the perturbations
begin to decay exponentially at 7.5 ms and u(t) converges to u∗. Once the
irradiation changes at 200 ms, the perturbation re-engages to search for the
new MPP. Once it converges sufficiently close to the optimal duty ratio, the
perturbation amplitude decays exponentially once again.

The switch behavior can be understood by analyzing Figure 7. At 7.5
ms, V (xa) < ε and the perturbation decays. Once the solar flux step change
occurs at 200 ms, the averaged states become excited and V (xa) > ε. This
resets the amplitude of the perturbation to a0. Then, as V (xa) < ε, the
perturbation amplitude decays exponentially once again.

3.2.2. Comparative Analysis to Existing Methods

This section compares Lyap-ES to standard ES and a traditional MPPT
technique: perturb & observe [2], [3] (P&O). Although some traditional
MPPT methods are somewhat heuristic and may not appeal to the control
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Figure 7: Time responses of PV array power, duty ratio, and Lyapunov function value for
1000 W/m2 to 500 W/m2 step change in solar irradiation.

theorist, they often produce satisfactory results and are simple to implement.
However they lack guaranteed stability properties and have fundamental lim-
itations. First we review the workhorse MPPT method, P&O.

Perturb & observe algorithms are the most widely used MPPT control
systems, where the basic idea is as follows: Periodically perturb the PV
array terminal voltage and measure the resulting power output. If output
power increases, then perturb voltage in the same direction. If power out-
put decreases, then reverse the perturbation. Note that when the MPP is
reached, the P&O algorithm oscillates about this value, thus producing sub-
optimal energy conversion efficiency. One may reduce the perturbation size
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Table 1: Lyap-ES Controller Parameters.

Symbol Description Concept Demon-
stration Study

Experimental
Data Study

u0
Duty ratio for nominal MPP

0.859 0.859
@ 1000W/m2, 25◦C

ω Perturbation frequency 250 Hz 0.2 Hz
ωh High-pass filter cut-off freq. 50 Hz 0.04 Hz
ωl Low-pass filter cut-off freq. 50 Hz 0.04 Hz
a0 Perturbation amplitude 0.015 0.01
k Gradient update law gain 1 0.0008
ε Lyap. Fcn. Threshold 0.01 20

γ Perturbation amplitude 50 0.1
decay rate

σ2
P Variance of measured 0 W 0.2 W

power noise

to improve efficiency during steady-state, but this reduces convergence speed.
Moreover, P&O cannot differentiate if a power increase is due to the voltage
perturbation or a disturbance. An increase in solar irradiation or drop in
temperature will confuse the P&O algorithm.

Figure 8 compares Lyap-ES to two benchmarks: P&O and basic ES (si-
nusoidal perturbation with no switching). The simulated conditions are iden-
tical to the previous subsection, however we do not consider varying incident
solar irradiation. The perturbation amplitude and frequency of P&O are set
equal to the Lyap-ES parameter values of a0 and ω, respectively, to provide
comparable results.

Several key observations arise from this study. First, ES and Lyap-ES
are identical for the first 40ms. Afterwards, the switch condition is satisfied
and Lyap-ES converges to u∗. Consequently, the power output from Lyap-
ES upper-bounds the other algorithms. Secondly, although P&O converges
faster than Lyap-ES, for the parameters considered here, the average out-
put power is less than ES or Lyap-ES. Alternative parameter choices for ES
and Lyap-ES can increase convergence speed (using the relations described
in Remark 3), but may create bias induced from the high order harmonics
that are insufficiently attenuated by the low pass filter. Ultimately, differ-
ences in convergence on the order of 10s of milliseconds are trivial compared
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Figure 8: Comparison of Lyapunov-based switched extremum seeking (Lyap-ES) to basic
extremum seeking (ES) and perturb & observe (P&O).

to the aggregate energy conversion over the hourly and diurnal time scales
relevant to PV systems. Most importantly, ES and P&O oscillate about the
MPP whereas Lyap-ES converges to it exactly, thus producing greater energy
conversion rates. A comparison of power efficiencies is provided in Table 2.

3.3. Results with Experimental Data

In this section we test Lyap-ES with real-world solar irradiation and tem-
perature data. A measurement and data logging device was fabricated to
obtain real-world light and temperature data, shown in Figure 9. This au-
tonomous device records ambient light and temperature and continuously
logs the data onto a MicroSD storage card. Several data sets were recorded,
over multiple days, in various locations across Southern California. For this
study we cropped out a particularly transient data set with large swings
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Figure 9: Data logger for measuring solar irradiation and ambient temperature

in temperature and solar irradiance to challenge Lyap-ES, as shown in Fig-
ure 10. Note that temperature and irradiance sensors are not required for
Lyap-ES. The data logger in Fig. 9 is just used to obtain realistic disturbance
data to test in simulation.

The highly transient measured solar irradiance and temperature data set
was fed into the PV and DC/DC converter simulation models, controlled with
Lyap-ES. Zero-mean, Gaussian noise with a variance of 0.2 W was added to
the power measurement signal. Results are provided in Figure 10. The Lyap-
ES controller parameters are provided in Table 1. Figure 10 demonstrates
how the duty ratio input evolves as light and temperature change with time.
When the environmental conditions do not change rapidly, the perturbation
decays and the power output converges to the MPP. This point can be seen in
the zoomed-in results provided in Figure 11, where the perturbation decays in
the yellow shaded regions. Throughout the test, the Lyapunov function out-
put repeatedly falls below and above the threshold, causing the perturbation
to decay and re-enable, respectively. Under these environmental conditions,
Lyap-ES converts the available power at 98.7% efficiency compared to 97.9%
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Table 2: Power Efficiency Comparison

MPPT Method P&O ES Lyap-ES

Power Efficiency, η
0.952 0.946 0.970

η =
∫ T
0
P (t)dt/

∫ T
0
Pmax(t)dt

for basic ES. Although this increase appears relatively small, it is free in
the sense of only requiring changes to the MPPT controller firmware. More-
over, the algorithm has mathematically guaranteed stability and convergence
properties.

3.4. Error between Nominal and Optimal MPP

Next we examine the impact of large errors between the nominal u0 and
optimal u∗ MPPs. Recall that the Lyapunov function calculated in (28)
measures the system’s proximity to u0, measured in the coordinate system
defined by (5)-(6). If |u0−u∗| is sufficiently large, then the switching criterion
V (xa) ≤ ε may never be satisfied and the perturbation amplitude will not
decay. Figure 12 demonstrates the Lyapunov function and power trajectories
for various values of u0. In all cases except one (u0 = 0.85) the switching
criterion is not satisfied and the power oscillates around the true MPP. Under
this worst-case scenario Lyap-ES degenerates into basic ES.

Degeneration of Lyap-ES into ES can be mitigated by appropriately se-
lecting the threshold parameter ε and amplitude decay gain γ. That is, one
may select ε sufficiently large and γ sufficiently small such that the algo-
rithm enters the exponential decay mode quickly and the perturbation de-
cays slowly. Figure 13 provides an example, where the threshold was raised
to ε = 0.5 and the decay rate was lowered to γ = 10. Observe that the
switching criterion is satisfied in all cases. Consequently, Lyap-ES converges
and decays to the true MPP.

4. Conclusion

In this paper we propose a novel Lyapunov-based switched extremum
seeking control method (Lyap-ES) that provides a practical extension to
existing research on ES by eliminating limit cycles. Lyap-ES guarantees
asymptotic convergence to the extremum of a static map by exponentially
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decaying the perturbation once the algorithm reaches a neighborhood of the
extremum. This neighborhood is approximated via Lyapunov stability anal-
ysis concepts that extend the stability proof originally presented in [13]. We
apply Lyap-ES to the MPPT problem in a PV system as a case study to
analyze performance. The advantage of Lyap-ES over traditional MPPT
methods, e.g. P&O, is that the algorithm converges to the MPP asymptoti-
cally without entering a limit cycle. Moreover, the method is self-optimizing
with respect to disturbances, such as varying solar irradiation and temper-
ature shifts. We study Lyap-ES for MPPT in two steps. First, the concept
is demonstrated by applying step changes in environmental conditions. Sec-
ond, experimentally measured light and temperature data is applied to study
Lyap-ES under realistic operating conditions. Future work will involve im-
plementation into experimental photovoltaic systems. In summary, Lyap-ES
offers a control-theoretic alternative for MPPT problems.

Appendix A. ES Control Parameter Selection

The synthesis process for an extremum seeking controller requires proper
selection of the perturbation frequency ω, amplitude a0, gradient update law
gain k, and filter cut-off frequencies ωh and ωl. The perturbation frequency
must be slower than the slowest plant dynamics to ensure the plant appears
as a static nonlinearity from the viewpoint of the ES feedback loop. Math-
ematically, this can be enforced by ensuring ω � min{eig(A)} , where A
is the state matrix from linearizing the plant. Large values for a0 and k
allow faster convergence rates, but respectively increase oscillation ampli-
tude and sensitivity to disturbances. More importantly, they can destroy
stability. Therefore, one typically increases these parameter values to ob-
tain maximum convergence speed for a permissible amount of oscillation and
sensitivity. The filter cut-off frequencies must be designed in coordination
with the perturbation frequency ω. Specifically, the high-pass filter must not
attenuate the perturbation frequency, but the low-pass filter should - thus
bounding the cut-off frequencies from above. Mathematically ωh < ω and
ωl < ω. Moreover, the filters should have sufficiently fast dynamics to re-
spond quickly to perturbations in the control input, thereby bounding the
cut-off frequencies from below. Generally, proper selection of the ES param-
eters is a tuning process [15]. However, the above guidelines are valuable for
effective calibration.
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Figure 10: Evolution of solar irradiation, temperature, PV output power, DC/DC con-
verter duty ratio, and the Lyapunov function value under the Lyap-ES control scheme. A
zoom-in of the power and duty ratio outputs circumscribed by the rectangles are provided
in Figure 11.
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Figure 11: Zoom-in of PV output power, DC/DC converter duty ratio and Lyapunov
function value from Fig. 10. The yellow and white shaded time-zones denote when the
perturbation is decaying and re-enabled, respectively, as determined by the Lyapunov
function/threshold crossing.
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Figure 12: (a) Lyapunov function and (b) power trajectories for various nominal MPPs u0.
The true MPP corresponds to u∗ = 0.859. The switch criterion is satisfied for u0 = 0.85
only.
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Figure 13: (a) Lyapunov function and (b) power trajectories for various nominal MPPs
u0 and adjusted parameters ε = 0.5, γ = 10. The adjusted parameters compensate for
errors between the nominal u0 and true MPP u∗ = 0.859.
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