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Abstract—This paper examines reference governor (RG) meth-
ods for satisfying state constraints in Li-ion batteries. Mathemat-
ically, these constraints are formulated from a first principles
electrochemical model. Consequently, the constraints explicitly
model specific degradation mechanisms, such as lithium plating,
lithium depletion, and overheating. This contrasts with the
present paradigm of limiting measured voltage, current, and/or
temperature. The critical challenges, however, are that (i) the
electrochemical states evolve according to a system of nonlinear
partial differential equations, and (ii) the states are not physically
measurable. Assuming available state and parameter estimates,
this paper develops RGs for electrochemical battery models. The
results demonstrate how electrochemical model state information
can be utilized to ensure safe operation, while simultaneously
enhancing energy capacity, power, and charge speeds in Li-ion
batteries.

Index Terms—Batteries, Electrochemical Modeling, Reference
Governor, Constrained Control, Performance Benefits Compari-
son.

I. INTRODUCTION

THIS paper develops a reference governor-based approach
to operating lithium-ion batteries at their safe operating

limits.
Battery energy storage is a key enabling technology for

portable electronics, electrified transportation, renewable en-
ergy integration, and smart grids. A crucial obstacle to the
proliferation of battery energy storage is cost. Specifically,
battery packs are typically oversized and underutilized to
ensure longevity and robust operation. Indeed, oversizing
mitigates several degradation mechanisms, such as lithium-
plating, lithium depletion/over-saturation, overheating, and
stress fractures by reducing C-rates1. However, oversizing
can be overly conservative. This paper seeks to eliminate
this conservatism by developing reference governor-based
algorithms that enable smaller-sized batteries whose states
satisfy operating constraints that explicitly model degradation
mechanisms. This is in contrast to the traditional approach,
which utilizes voltage and current limits that do not directly
correspond to the internal degradation mechanisms.

A reference governor (RG) is an effective tool for controlling
a system within pointwise-in-time constraints. This add-on
control scheme attenuates the command signal (electric current,
in our case) to a system such that state constraints are
satisfied while maintaining tracking performance [1]–[3]. This
method has been applied to a variety of systems, including
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1C-rate is a normalized measure of electric current that enables comparison
between different sized batteries. It is defined as the ratio of current in Amperes
(A) to a cell’s nominal capacity in Ampere-hours (Ah).

electrochemical energy conversation devices. For example, Sun
and Kolmanovsky developed a robust nonlinear RG to protect
against oxygen starvation in fuel cell systems [4]. In [5], Vahidi
et al. adopted a so-called “Fast” RG approach for fuel cells to
protect against compressor surge/chock and oxygen starvation.
In battery systems, Plett designed an algorithm to determine
power limits in real-time [6]. This approach considers an
equivalent circuit model and terminal voltage constraints. Smith
et al. utilized a reduced-order, linearized electrochemical model
for state estimation and prediction of maximum, safe current
draw [7]. Klein et al. use a detailed electrochemical model
with nonlinear model predictive control to determine optimal
charging trajectories subject to state constraints [8]. Hu et al.
use equivalent circuit battery models to optimize charge time
and power loss subject to state of charge, current, voltage, and
charge time constraints [9].

In this paper we design schemes that govern commanded
electrical current, in the presence of constraints on the elec-
trochemical states. As such, this article’s main contribution is
the design of modified RGs for battery constraint management
via electrochemical models. We present nonlinear and linear
designs that trade-off guaranteed constraint satisfaction with
computational efficiency. This article extends our previous work
[10] with a comprehensive numerical study that quantifies the
potential performance benefits of a modified RG over traditional
voltage-based control, with respect to power, energy, and safety.

The remainder of this paper is structured as follows. Section
II summarizes the electrochemical model and presents two
motivating examples. Section III develops the nonlinear and
linearized modified RGs. Section IV presents results using
multiple drive cycles. Section V summarizes the main results.

II. ELECTROCHEMICAL MODEL & MOTIVATION

A. Doyle-Fuller-Newman Model

We consider the Doyle-Fuller-Newman (DFN) model in Fig.
1 to predict the evolution of lithium concentration in the solid
c±s (x, r, t), lithium concentration in the electrolyte ce(x, t),
solid electric potential φ±s (x, t), electrolyte electric potential
φe(x, t), ionic current i±e (x, t), molar ion fluxes j±n (x, t), and
bulk cell temperature T (t) [11]. The governing equations are
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Fig. 1. Schematic of the Doyle-Fuller-Newman model [11]. The model
considers two phases: the solid and electrolyte. In the solid, states evolve in
the x and r dimensions. In the electrolyte, states evolve in the x dimension
only. The cell is divided into three regions: anode, separator, and cathode.
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where De, κ, fc/a are functions of ce(x, t) and
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η±(x, t) = φ±s (x, t)− φe(x, t)

− U±(c±ss(x, t))− FR±f j
±
n (x, t), (9)

c±ss(x, t) = c±s (x,R±s , t), (10)

∆T (x, t) = U±(c±s (x, t))− T (t)
∂U±

∂T
(c±s (x, t)), (11)

c±s (x, t) =
3

(R±s )3

∫ R±
s

0

r2c±s (x, r, t)dr. (12)

Along with these equations are corresponding boundary and
initial conditions. For brevity, we only summarize the dif-
ferential equations here. Further details, including notation
definitions, can be found in [11], [12]. The parameters are taken
from the publicly available DUALFOIL model, developed by
Newman and his collaborators [13]. The simulations provided
here correspond to a LiCoO2-C cell. The cell capacity is
67Ah/m2, calculated from the maximum concentration of the
anode. However, the techniques are broadly applicable to any
Li-ion chemistry.

B. Constraints

It is critical to maintain the battery within a safe operating
regime. This protects against failure and maintains longevity.
Towards this end, we consider several constraints,

θ±min ≤ c±s (x, r, t)

c±s,max
≤ θ±max, (13)

ce,min ≤ ce(x, t) ≤ ce,max, (14)
Tmin ≤ T (t) ≤ Tmax, (15)

ηs(x, t) = φs(x, t)− φe(x, t)− Us ≥ 0. (16)

Equations (13) and (14) protect the solid active material
and electrolyte, respectively, from lithium depletion/over-
saturation. Equation (15) protects against excessively cold or
hot temperatures, which accelerates cell aging. Finally, (16)
is a side reaction overpotential constraint. It models when
unwanted side reactions occur, such as lithium plating [14],
[15] when Us = 0V [12], and can also model accelerated
growth of the solid/electrolyte interphase film formation [16],
[17] when Us = 0.4V [17], [18].

C. Numerical Implementation

Numerical solution of the coupled nonlinear PDAE (1)-(12)
is by itself a nontrivial task. A rich body of literature exists on
this singular topic (cf. Ch. 4 of [19] and references therein). In
our work the PDEs governing diffusion in the solid phase, (1),
are discretized in the r-dimension via Padé approximates [20].
All the remaining PDEs are discretized in the x dimension via
the central difference method, such that the moles of lithium
are conserved. This ultimately produces a finite-dimensional
continuous-time differential-algebraic equation (DAE) system

ẋ(t) = f(x(t), z(t), I(t)), (17)
0 = g(x(t), z(t), I(t)), (18)

where x = [c±s , ce, T ]
T
, z = [φ±s , i

±
e , φe, j

±
n ]
T
. This DAE

model is then propagated forward in time via an implicit
numerical scheme. In particular, the nonlinear discretized
equations are solved via Newton’s method, at each time step. A
crucial step is to provide the scheme with analytic expressions
for the Jacobian, which ensures fast convergence and accurate
simulations. These Jacobians are also used for the linearized
modified reference governor design in Section III-B.

D. Motivating Examples

Next, we consider two motivating examples: Li plating and
Li depletion in the electrolyte. In Fig. 2 we consider a 10 sec,
3C pulse charging cycle at 80% SOC as an example scenario
when Li plating may occur. The solid lines in Fig. 2 display
the side reaction overpotential response at the anode/separator
interface, ηs(L−, t). Note that ηs(L−, t) < 0 over several time
periods. This induces Li plating, leading to dendrite formation
that may potentially short-circuit the electrodes.

Figure 3 displays responses for 10 sec, 7C pulse discharging
cycle at 60% SOC. Under this scenario, Li is eventually
depleted at the cathode/current collector interface, denoted
by solid lines ce(0+, t). The model stops and becomes invalid
after 66 sec when ce(0+, t) < 0.
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Fig. 2. Motivating example of Li plating. Evolution of current I(t), reference
current Ir(t), and side reaction overpotential ηs(L−, t) for a 10sec 3C pulse
charging scenario, with and without a modified reference governor.
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Fig. 3. Motivating example of lithium depletion in the electrolyte. The model
is invalid after ce(0+, t) < 0. Evolution of current I(t), reference current
Ir(t), and electrolyte concentration ce(0+, t) for a 10sec 7C pulse discharging
scenario, with and without a modified reference governor.

In the following sections, we design an algorithm to protect
the battery from entering these unsafe regions.

III. MODIFIED REFERENCE GOVERNOR (MRG) DESIGNS

A. Nonlinear MRG Design

We utilize the RG concept to handle constraint satisfaction in
batteries. A RG is an add-on system that guarantees constraint
satisfaction and maintains a desired level of reference tracking.
It operates in a discrete-time domain, since the computations
may not be feasibly performed in real-time. In our “modified”
RG approach, the applied current I(t) and reference current
Ir(t) are related according to

I[k + 1] = β[k]Ir[k], β ∈ [0, 1], (19)

where I(t) = I[k] for t ∈ [k∆t, (k + 1)∆t), k ∈ Z, and
similarly for Ir[k]. We define the admissible set

O = {(x(t), z(t)) : y(τ) ∈ Y,∀τ ∈ [t, t+ Ts]} , (20)

Battery 

Cell

I r I V

y

Modi!ed 

Reference 

Governor

Fig. 4. Block diagram of modified reference governor with direct measurements
of the constrained variables y.

where

ẋ(t) = f(x(t), z(t), βIr), (21)
0 = g(x(t), z(t), βIr), (22)

y(t) = C1x(t) + C2z(t) +D · βIr + E. (23)

The output variables y = [c±s , ce, T, ηs]
T must exist in set Y ,

characterized by inequalities (13)-(16). The goal is to find the
maximum value of β which maintains the state in O

β∗[k] = max {β ∈ [0, 1] : (x(t), z(t)) ∈ O} , (24)

where (x(t), z(t)) depends on β via (20)-(23).
To determine parameter β∗ at each time instant, the elec-

trochemical model is simulated forward over the time interval
[t, t+Ts], where Ts is the simulation horizon. If the constraints
are violated for a given value of β, then β is reduced and the
model is re-simulated to ascertain constraint satisfaction of
the new value of β. If the constraints are satisfied, then β is
increased to reduce tracking error between I(t) and Ir(t). This
process is iterated according to the bisection algorithm.

Remark 1: We refer to (19) as a “modified” RG to
distinguish it from the conventional RG concept that assumes
an asymptotically stable system and applies input

I[k + 1] = I[k] + β[k] (Ir[k]− I[k]) , β ∈ [0, 1], (25)

which inserts a low-pass filter between the reference and
applied inputs [1], [2]. A battery is not asymptotically stable,
but marginally stable. That is, an eigenvalue at the origin
ensures conservation of lithium, which is the key energy storage
property of batteries. Hence, we modify the conventional RG
such that a zero current input is always feasible and returns
the battery equilibrium. A similar concept is used in [7].

B. Linear MRG Design

The nonlinear MRG developed in the previous section
achieves guaranteed constraint satisfaction at the expense of
computational effort. Computational complexity, however, is
often the deciding factor on which design ultimately reaches
implementation. Next we design and evaluate a computationally
efficient MRG based upon a linearized model. The critical
benefit of the linear MRG is that the parameter β can be
determined by an explicit expression. In contrast, the nonlinear
MRG requires simulations and optimization.

At each time step we linearize the model (21)-(22) around
the state and input values from the previous time step:
(x0, z0, u0) = (x[k− 1], z[k− 1], I[k− 1]) to obtain evolution
equations

˙̃x = A11x̃+A12z̃ +B1Ĩ , (26)



0 = A21x̃+A22z̃ +B2Ĩ , (27)

where x̃ = x − x0, z̃ = z − z0, Ĩ = βIr − I0 and
A11, A12, A21, A22, B1, B2 are the Jacobian terms of the
nonlinear state equations (21)-(22), evaluated at (x0, z0, u0).
Since this DAE system is linear and semi-explicit of index 1,
we can explicitly solve for z̃ and write the system as

˙̃x = Ax̃+BĨ (28)

where A = A11 − A12A
−1
22 A21 and B = B1 − A12A

−1
22 B2.

Under this representation, the states after a simulation horizon
horizon of Ts, can be computed analytically. That is,

x̃(t+ Ts) = eATs x̃(t) +

∫ t+Ts

t

eA(t+Ts−τ)BĨdτ, (29)

z̃(t+ Ts) = −A−122

[
A21x̃(t+ Ts) +B2Ĩ

]
. (30)

The constrained output variables after Ts time units are

y(t+ Ts) = C1

[
x0 + x̃(t+ Ts)

]
+ C2

[
z0 + z̃(t+ Ts)

]
+D · βIr + E ≤ 0 (31)

where C1, C2, D,E are matrices which incorporate inequalities
(13)-(16). We also assume the reference current Ir is constant
over the simulation horizon - a typical assumption in RG design
[1], [2], [4], [5], [7]. We are now positioned to formulate the
linearized MRG problem. Given the current states and reference
current (x(t), z(t), Ir(t)), solve

max
β∈[0,1]

β, subject to βF ≤ G (32)

where F,G are vectors that incorporate the constraints (13)-(16)
and depend on x(t) and Ir(t) as follows

F =
[
C1L− C2A

−1
22 (A21L+B2) +D

]
Ir, (33)

G = −E − C1

[
x0 + Φ(x(t)− x0)− LI0

]
− C2

[
z0 −A−122

[
A21(Φ(x(t)− x0)−B2I

0
]]
, (34)

where

Φ = eATs , L =

∫ t+Ts

t

eA(t+Ts−τ)Bdτ. (35)

The optimization problem (32) is a one-dimensional linear pro-
gram. Consequently, it can be solved explicitly by determining
the dominating constraint

Hi =

{
Gi/Fi if Fi > 0

−Gi/Fi else
i = 1, 2, ..., Nc, (36)

β∗ = min {1, Hi | i = 1, 2, ..., Nc} , (37)

where Gi and Fi denote the ith element of G and F ,
respectively, and Nc is the total number of elements.

IV. NUMERICAL RESULTS

1) MRG Simulations: We consider the case when the
constrained output variables, y, are measurable, as shown in
Fig. 4. In practice, one needs to estimate these variables from
measurements of current and voltage, as done in [21]. This
section analyzes performance under the hypothetical situation

of output variable feedback. Prediction horizon Ts = 5 sec is
used in all simulations.

In the following, we apply the MRG to the scenarios
described in Section II-D. Figure 2 displays the current
I(t), reference current Ir(t), and side reaction overpotential
ηs(L

−, t) for a 10sec 3C pulse charging scenario. Note how the
MRG attenuates the current to satisfy ηs > 0. Similarly, Fig. 3
displays the system responses for a 10sec 7C pulse discharging
scenario. Again, I(t) is attenuated such that lithium is not
depleted in the electrolyte.

Next we demonstrate the benefits of utilizing a MRG for
charging. Figure 5 compares the standard charging protocol,
constant charging-constant voltage (CCCV), to a reference
governor-based charging. In both cases, we consider a constant
1C charging current. The CCCV protocol applies 1C charging
until the terminal voltage reaches a “maximum safe voltage
level,” 4.2V in this case. This occurs near the 7.5 min. mark.
Then CCCV regulates terminal voltage at the maximum value,
4.2V, while the current diminishes toward zero. The 4.2V limit
is selected such that lithium plating does not occur due to
overcharging. Indeed, the side reaction overpotential remains
positive. However, this approach is conservative. Specifically,
the side reaction overpotential can be regulated closer to its
limit. The MRG applies 1C charging subject to the constraint
ηs(L

−, t) ≥ 0. In Fig. 5 the MRG maintains ηs ≥ 0 despite
voltage exceeding 4.2V. Moreover, the cell attains 95% SOC
in 14.9min using the MRG vs 35.5min for CCCV. Also note
that CCCV reaches an equilibrium SOC of 96%, whereas the
MRG achieves 100% SOC. Consequently, 60%-95% charging
time is decreased by 58% and charge capacity is increased by
4%.

2) Linear-MRG Simulations: Next we evaluate simulations
of the linear MRG (LMRG) to ascertain the trade off between
computational efficiency and constraint satisfaction. Figure 6
compares the LMRG to the nonlinear MRG, for the 10sec
3C pulse charging scenario. In the LMRG, ηs(L−, t) does
not reach the constraint, due to linearization modeling errors.
This produces a conservative response that is within the
constraint. The opposite is portrayed in Fig. 7, for the 10sec
7C pulse discharging scenario, where ce(0+, t) violates the
constraint over several time periods. One might interpret the
constraint over/undershoot as follows. All the constraints can
be categorized into “soft constraints” (small violations are
allowable but undesirable, e.g. SEI film growth) and “hard
constraints” (small violations are not allowable, e.g. electrolyte
depletion). For hard constraints, the limits can be selected more
conservatively to avoid overshoots. Nonetheless, the constraint
violation magnitude is relatively small and the LMRG would
be effective at mitigating degradation and prolonging battery
life.

The critical advantage of the LMRG, however, is the in-

TABLE I
CPU TIME PER SIMULATED TIME FOR NONLINEAR AND LINEAR MRGS.

Scenario MRG Linear MRG

10sec 3C charging 1.48 sec/sec (100%) 0.34 sec/sec (23%)
10sec 7C discharging 2.16 sec/sec (100%) 0.39 sec/sec (18%)



−1

−0.5

0
C

ur
re

nt
 [C

−
ra

te
]

 

 

CCCV
MRG

3.6

3.8

4

4.2

4.4

V
ol

ta
ge

 [V
]

0.6

0.7

0.8

0.9

1

S
O

C

0 5 10 15 20 25 30 35 40 45
−0.05

0

0.05

0.1

0.15

S
id

e 
R

xn
 O

ve
rp

ot
en

tia
l [

V
]

Time [min]

Eliminate conservatism,
Operate near limit

          4% more
charge capacity

Exceed 4.2V "limit"

58% reduction in 60−95%
SOC charge time

Fig. 5. Comparison of CCCV and modified reference governor (MRG)
charging. The MRG regulates ηs near its limit, thereby achieving 95% SOC
in 14.9min vs. 35.5min for CCCV by allowing voltage to safely exceed 4.2V.

creased computational efficiency. That is, the LMRG computes
β via the explicit expressions (33)-(37), whereas the nonlinear
MRG requires nonlinear simulations and optimization. We
consider the CPU time for each MRG as one measure of
computational efficiency. The data provided in Table I indicates
that the linear MRG reduces CPU time by over four-fold on
a 2.9 GHz dual-core laptop with 16GB of RAM. Further
improvements are possible via code optimization.

Remark 2 (Current Limits & Power Capacity): The LMRG
also provides real-time estimates of the max/min safe current
and power capacity. The limiting current is given by

Ilim(t) = Ir(t) ·min {Hi | i = 1, 2, ..., Nc} , (38)

and the corresponding instantaneous power capacity is

Pcap(t) = Ilim(t)V (t). (39)

These variables are useful for feedback to higher-level super-
visory control systems [6], [7], [21].

A. Comparative Analysis

We evaluate the operational, power and energy capacity
benefits of the MRG versus an industry standard Voltage-Only
(VO) controller on electric vehicle-like charge/discharge cycles.
For comparison purposes, we choose operational voltage limits
of 2.8V and 3.9V for the VO controller. Various automotive-
relevant charge/discharge cycles cases were tested. To explore
state constraint management, reference current was scaled
by factors of ×1.0,×1.2,×1.4 (1.0I, 1.2I, 1.4I). The MRG
constraints from (13) - (16) chosen for this analysis are the:
Surface Concentrations θ(0−, t), θ(L−, t), θ(0+, t), θ(L+, t),
Electrolyte Concentration ce(0

+, t), ce(0
−, t), Temperature
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T (t), and Side Reaction Overpotential ηs(L−, t). The con-
straint regions represent critical locations where the variable is
most likely to be largest/smallest, respectively, for upper/lower
bounds. It is assumed that that Us = 0 for the Side Reaction
Overpotential ηs(L−, t), and hence are constraining Li plating
from occurring. Due to space constraints, we only provide
detailed examples with three concatenated US06 drive cycles
(US06x3).

Figure 8 shows simulation results for the US06x3 profile
whose current is scaled up by 40% (1.4I), applied to the VO
controller. The upper voltage limit is first regulated before the
1 min mark, while the electrochemical variables are still away
from their limits. One could operate the battery safely beyond
this maximum voltage. Additionally, electrolyte concentration
at the cathode/current collector interface ce(0+, t) falls below
its lower limit near 10 min, which induces Li plating.
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Figure 9 shows the simulation results for the US06x3 profile
whose current is scaled up by 40% (1.4I), applied to the MRG
controller. Note that the maximum Li concentration at the
cathode/separator interface θ(L+, t) limit is first regulated
around the 9 min mark, yet the voltage exceeds the VO
upper voltage limit before 9 min. All other constrained
electrochemical states are maintained within safe limits. This
expands the operating regime, safely.

1) Expanded Operating Regime: Figure 10 depicts the
Temperature vs. Voltage operational points for the MRG vs.
VO controllers for the US06x3 1.0I, 1.2I, and 1.4I current
profiles. The upper voltage limit on the VO controller becomes
more constrictive as the current magnitude is scaled up. The
MRG safely exceeds the VO voltage limits under all conditions,
as previously noted. In automotive applications, this ultimately
means the MRG is able to recuperate more energy (i.e. from
regenerate braking) than the VO controller.

2) Increased Power Capacity: Figure 11 exemplifies how
the MRG allows increased power capacity. It provides power
responses for the MRG vs. VO controller for US06x3 1.0I,
1.2I, and 1.4I current profiles. As current is increased, the
VO attenuates power to respect the voltage limits, whereas
the MRG allows for increased power. Figure 12 displays the
distribution of cell power for the MRG vs. VO controller. This
distribution elucidates how the MRG allows for greater charge
power (negative power) than the VO controller.

Table II presents the mean power (discharge and charge)
benefit percentage results from using the MRG over the VO
controller for the US06x3 drive cycle as well as five other
automotive drive cycles (UDDSx2, SC04x4, LA92x2, DC1,

TABLE II
MEAN POWER BENEFITS OF USING MRG VS. VO.

Drive Cycle Mode 1.0I 1.2I 1.4I

DC1 Discharge 0.09% 0.24% 4.02%
Charge 6.17% 13.23% 21.21%

DC2 Discharge 0.02% -0.21% -0.75%
Charge 6.50% 22.57% 40.38%

LA92x2 Discharge 0.09% 1.79% 8.91%
Charge 16.66% 36.11% 58.07%

SC04x4 Discharge 0.08% 0.18% 2.97%
Charge 15.71% 26.17% 39.11%

UDDSx2 Discharge 0.04% 0.18% 3.07%
Charge 6.02% 20.09% 33.49%

US06x3 Discharge 0.23% 5.60% 11.33%
Charge 44.56% 100.38% 150.61%

Average Discharge 0.09% 1.29% 4.92%
Charge 15.94% 36.43% 57.15%

Std. Dev. Discharge 0.07% 2.03% 4.02%
Charge 13.56% 29.42% 43.19%

TABLE III
ENERGY BENEFITS OF USING MRG VS. VO.

Drive Cycle 1.0I 1.2I 1.4I

DC1 2.77% 5.59% 4.68%
DC2 1.06% 3.56% 7.64%

LA92x2 7.25% 11.95% 10.65%
SC04x4 4.29% 6.69% 7.34%
UDDSx2 1.95% 5.71% 6.94%
US06x3 15.34% 20.64% 22.99%

Average 5.45% 9.02% 10.04%
Std. Dev. 4.84% 5.79% 6.05%

DC2) from [16]. In the most aggressive drive cycle (US06x3)
the MRG achieves 11.03% and 150.61% more discharge and
charge power, respectively, over the VO controller in the 1.4I
case. Across all six simulated drive cycles, the MRG achieves
average increases in discharge and charge power of 4.92%
and 57.15%, with a standard deviation of 4.02% and 43.19%,
respectively, in the 1.4I case.

3) Increased Energy Capacity: Table III presents the net
energy benefits for six drive cycles (US06x3, UDDSx2, SC04x4,
LA92x2, DC1, DC2). In the most aggressive drive cycle
(US06x3) the MRG achieves a 22.99% net energy increase over
the VO controller for the 1.4I case. Across all six simulated
drive cycles, the MRG achieves an average net energy increase
of 10.04% with a standard deviation of 6.05% in the 1.4I case.

V. CONCLUSIONS

This paper develops reference governor-based approaches to
satisfying electrochemical state constraints in batteries. As a
consequence, it enables one to enhance power capacity, energy
capacity, and charging speed by eliminating the conservatism
imposed by traditional operating constraints (e.g. voltage limits).
The key ingredients to this approach are the following. First, we
utilize a first principles electrochemical model to predict and
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Fig. 11. US06x3 power responses for (a) 1.0I, (b) 1.2I, and (c) 1.4I.

constrain the evolution of physical degradation mechanisms.
Second, a nonlinear modified reference governor (MRG) algo-
rithm is developed assuming measurements of the constrained
variables. Third, a linearized MRG is developed, which replaces
simulations with an explicit function evaluation at the expense
of possible constraint dissatisfaction or conservatism. A suite of
simulations were executed to quantify the potential performance
gains of MRGs over voltage-only regulators. We found 60%-
95% charge times can be reduced by 58%, charge power can be
increased by 57.15% on average, and energy can be increased
by 10.04% on average, for the considered case studies.

In this paper we assume full state measurements and known
parameters to ascertain the maximum possible performance
benefits of MRG-based control. Future work combines the
MRGs developed here with state and parameter estimates
generated by adaptive PDE observers [21]. This output-
feedback system (i) guards against harmful operating regimes,
(ii) increases energy capacity, power capacity, and charging
speed, and (iii) monitors state-of-charge and state-of-health,
all from measurements of voltage, current, and temperature.
Finally, we plan to experimentally quantify the aforementioned
benefits on a battery-in-the-loop test facility.

APPENDIX

REFERENCES

[1] E. Gilbert, I. Kolmanovsky, and K. Tan, “Discrete-time reference
governors and the nonlinear control of systems with state and control
constraints,” International Journal of Robust and Nonlinear Control,
vol. 5, no. 5, pp. 487–504, 1995.

[2] A. Bemporad, “Reference governor for constrained nonlinear systems,”
IEEE Trans. on Automatic Control, vol. 43, no. 3, pp. 415–419, 1998.

0

100

200

300

400

F
re

qu
en

cy

 

 
MRG
VO

0

100

200

300

400

F
re

qu
en

cy

 

 
MRG
VO

−1000 −500 0 500 1000 1500
0

100

200

300

400

F
re

qu
en

cy
Power [W]

 

 
MRG
VO

Expanded
operating
range

Expanded
operating
range

Expanded
operating
range

(a)

(b)

(c)

Fig. 12. US06x3 Power Histogram for (a) 1.0I, (b) 1.2I, and (c) 1.4I.

[3] I. Kolmanovsky, E. Garone, and S. Di Cairano, “Reference and command
governors: A tutorial on their theory and automotive applications,” in
American Control Conference (ACC), 2014, June 2014, pp. 226–241.

[4] J. Sun and I. V. Kolmanovsky, “Load governor for fuel cell oxygen
starvation protection: A robust nonlinear reference governor approach,”
IEEE Trans. on Control Systems Technology, vol. 13, no. 6, pp. 911 –
920, 2005.

[5] A. Vahidi, I. Kolmanovsky, and A. Stefanopoulou, “Constraint handling
in a fuel cell system: A fast reference governor approach,” IEEE Trans.
on Control Systems Technology, vol. 15, no. 1, pp. 86–98, 2007.

[6] G. Plett, “High-performance battery-pack power estimation using a
dynamic cell model,” IEEE Trans. on Vehicular Technology, vol. 53,
no. 5, pp. 1586 – 1593, Sept. 2004.

[7] K. A. Smith, C. D. Rahn, and C.-Y. Wang, “Model-based electrochemical
estimation and constraint management for pulse operation of lithium ion
batteries,” IEEE Trans. on Control Systems Technology, vol. 18, no. 3,
pp. 654 – 663, 2010.

[8] R. Klein, N. A. Chaturvedi, J. Christensen, J. Ahmed, R. Findeisen,
and A. Kojic, “Optimal charging strategies in lithium-ion battery,” in
American Control Conference, San Francisco, CA, United states, 2011,
pp. 382 – 387.

[9] X. Hu, S. Li, H. Peng, and F. Sun, “Charging time and loss optimization
for linmc and lifepo4 batteries based on equivalent circuit models,”
Journal of Power Sources, vol. 239, no. 0, pp. 449 – 457, 2013.

[10] S. Moura, N. Chaturvedi, and M. Krstic, “Constraint management in
Li-ion batteries: A modified reference governor approach,” in American
Control Conference (ACC), 2013. IEEE, 2013, pp. 5332–5337.

[11] K. Thomas, J. Newman, and R. Darling, Advances in Lithium-Ion
Batteries. New York, NY USA: Kluwer Academic/Plenum Publishers,
2002, ch. 12: Mathematical modeling of lithium batteries, pp. 345–392.

[12] N. A. Chaturvedi, R. Klein, J. Christensen, J. Ahmed, and A. Kojic,
“Algorithms for advanced battery-management systems,” IEEE Control
Systems Magazine, vol. 30, no. 3, pp. 49 – 68, 2010.

[13] J. Newman. (2008) Fortran programs for the sim-
ulation of electrochemical systems. [Online]. Available:
http://www.cchem.berkeley.edu/jsngrp/fortran.html

[14] S. Zhang, K. Xu, and T. Jow, “Study of the charging process of a
LiCoO2-based Li-ion battery,” Journal of Power Sources, vol. 160, no. 2,
pp. 1349–1354, 2006.

[15] S. S. Zhang, “The effect of the charging protocol on the cycle life of a
li-ion battery,” Journal of power sources, vol. 161, no. 2, pp. 1385–1391,
2006.



[16] S. Moura, J. Stein, and H. Fathy, “Battery-Health Conscious Power
Management in Plug-In Hybrid Electric Vehicles via Electrochemical
Modeling and Stochastic Control,” IEEE Trans. on Control Systems
Technology, vol. 21, no. 3, pp. 679–694, 2013.

[17] P. Ramadass, B. Haran, P. Gomadam, R. White, and B. Popov, “Devel-
opment of first principles capacity fade model for Li-ion cells,” Journal
of the Electrochemical Society, vol. 151, no. 2, pp. 196 – 203, 2004.

[18] A. Randall, R. Perkins, X. Zhang, and G. Plett, “Controls oriented
reduced order modeling of solid-electrolyte interphase layer growth,”
Journal of Power Sources, vol. 209, p. 282 288, 2012.

[19] C. D. Rahn and C.-Y. Wang, Battery Systems Engineering. John Wiley
& Sons, 2012.

[20] J. C. Forman, S. Bashash, J. L. Stein, and H. K. Fathy, “Reduction of an
electrochemistry-based li-ion battery model via quasi-linearization and
pade approximation,” Journal of the Electrochemical Society, vol. 158,
no. 2, pp. A93 – A101, 2011.

[21] S. J. Moura, N. Chaturvedi, and M. Krstic, “Adaptive PDE Observer
for Battery SOC/SOH Estimation via an Electrochemical Model,” ASME
Journal of Dynamic Systems, Measurement, and Control, vol. 136, no. 1,
pp. 011 015–011 026, Oct 2014.

TABLE IV
NOMENCLATURE.

Description [unit]

L± Thickness of Anode/Cathode [m]
Lsep Thickness of Separator [m]
R±
s Radius of Solid Particles in Anode/Cathode [m]
εe Volume Fraction in Electrolyte
as Specific Interfacial Surface Area [m2/m3]
D±
s Diffusion Coefficient for Solid in Anode/Cathode [m2/s]

De Diffusion Coefficient for Electrolyte [m2/s]
σ± Conductivity of Solid in Anode/Cathode [1/Ω-m]
t0c Transference Number
F Faraday’s Constant [C/mol]
R Gas Constant [J/mol-K]
αa Charge Transfer Coefficient for Anode
αc Charge Transfer Coefficient for Cathode
R±
f Film Resistance [Ωm2]

k± Reaction Rate in Anode/Cathode [(A/m2)(mol3/mol)(1+α)]
c±s,max Max Concentration in Anode/Cathode [mol/m3]
fc/a Mean Molar Activity Coefficient in Electrolyte

cp Heat Capacity [J/kg-K]
hcell Heat Transfer Coefficient [W/K-m2]
Tamb Ambient Temperature [K]
ρavg Lumped Cell Density [kg/m3]
θ±min Minimum Normalized Concentration in Anode/Cathode
θ±max Maximum Normalized Concentration in Anode/Cathode
cemin Minimum Electrolyte Concentration [mol/m3]
cemax Maximum Electrolyte Concentration [mol/m3]
Tmin Minimum Bulk Cell Temperature [K]
Tmax Maximum Bulk Cell Temperature [K]
Us Side Reaction Equilibrium Potential [V]
c±s Lithium Concentration in the Solid [mol/m3]
ce Lithium Concentration in the Electrolyte [mol/m3]
c±ss Concentration at Particle Surf. in Anode/Cathode [mol/m3]
U± Equilibrium Potential in Anode/Cathode [V]
η± Overpotential [V]
ηs Side Reaction Overpotential [V]
φ±s Solid Electric Potential [V]
φe Electrolyte Electric Potential [V]
i±e Ionic Current [A/m2]
j±n Molar Ion Fluxes [mol/m2-s]
T Bulk Cell Temperature [K]
I Applied Current [A/m2]
Ir Reference Current [A/m2]
β MRG Reference Current Scaling Factor
i±0 Exchange Current Density [A/m2]
c̄±s Particle Vol. Avg. Concentration in Anode/Cathode [mol/m3]
θ± Normalized Concentration in Anode/Cathode


