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BATTERY FUNDAMENTALS
Jumping Frog Legs: A Brief History of the First Battery

I talian physicist Alessandro Volta invented the fi rst battery 
cell in 1800. The so-called voltaic pile consisted of two metals 
in series, zinc and copper, coupled by a sulphuric acid electro-

lyte. Volta's inspiration came from experiments performed by 
his colleague Luigi Galvani who was interested in the interac-
tion between electricity and biological nervous systems. During 
his experiments, Galvani discovered that a dead frog's legs 
would kick to life when in contact with two dissimilar metals. 
Volta reasoned that the diff erent metals caused this behavior, 
and demonstrated this to be true with his voltaic pile.

Principles of Operation

A battery, put simply, converts between chemical and 
electrical energy through oxidation-reduction reactions. 
As shown by the zinc-copper Galvanic cell in Figure 1, it 

consists of two dissimilar metals (electrodes) immersed in an 
electrolyte. The cathode and anode materials are selected to 
have a large electrochemical potential between each other. This 
provides the desired electrochemical energy storage property. 
The electrodes are electrically isolated from each other via a 
separator. Hence, electrons are forced through an external cir-
cuit, powering a connected device, while cations fl ow between 
the electrodes within the electrolyte.

Electrode and electrolyte materials are selected for their 
voltage, charge capacity, weight, cost, manufacturability, etc. 
For example, lithium-ion cells are attractive in mobile appli-
cations because lithium is the lightest (6.94 g/mol) and most 
electropositive (-3.01V vs. standard hydrogen electrode) metal 
in the periodic table. Lead acid cells feature heavier electrodes 
(Pb and PbO2), yet provide high surge currents at cost eff ec-

B
atteries are everywhere: in our smart 
phones, laptops, electric vehicles 
(EVs), and electric grids. Energy stor-
age is a critical enabling technology 
for enhancing energy sustainability. 
Although battery materials science 

has seen rapid advances, the systems are 
underutilized and conservatively designed. 
Consumers purchase batteries with 20-50% 
excess energy capacity, leading to added 
weight, volume, and upfront cost. Intelligent 
battery control can lead to faster charge 
times, increased energy and power capac-
ity, as well as a longer life. The key to real-
izing such advanced battery management 
systems is electrochemistry and controls—a 
fusion of modern control theory and elec-
trochemical models that allows batteries to 
operate safely at their physical limits.

This article introduces key concepts in 
ElectroChemical-based Control (ECC) sys-
tems for batteries, and highlights the funda-
mentals of battery electrochemistry, state-
of-charge/state-of-health estimation, and 
constrained control. 
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cates how power capacity has decreased relative to its nameplate value 
(e.g., a fresh cell may provide 360W of power for 10 seconds, but only 
300W after two years of use). Gradual changes in SOH metrics can be 
related to changes in a mathematical model’s parameters. A rich body 
of literature on parameter identification is readily available to address 
SOH estimation. Several interesting challenges arise within the context 
of electrochemical models, including derivations of parametric models, 
nonlinear parameter identifiability, and persistency of excitation.

Controlled Charging/Discharging

In current applications, additional capacity is added to mitigate cell 
imbalance, capacity/power fade, thermal effects, and estimation 
errors. This leads to larger, heavier, and more costly batteries than 

required. ECC alleviates oversizing by safely operating batteries near 
their physical limits. Today, operation is defined by voltage, current, 
and temperature limits—all measurable variables. Battery degradation, 
however, is more closely related to limits on the immeasurable elec-
trochemical states, such as overpotentials and surface concentrations. 
Consequently, we seek a paradigm-shifting architecture that expands 
the operating envelope by constraining internal electrochemical states 
instead of voltage, current, and temperature, as seen in Figure 3. This 
combines SOC/SOH estimation with control algorithms to form a com-
prehensive ECC battery management system. 

MATHEMATICAL MODELING
Equivalent Circuit vs. Electrochemical Models

Mathematical battery models generally fall into two categories: 
equivalent circuit models (ECM) and electrochemical models 
(EChem); see Figure 4. ECMs predict the input-output behavior 

of cells via electric circuits. The simplest ECM, shown in Fig. 4(a), con-
siders a battery as a nonlinear voltage source in series with an internal 
resistor. This is written in state-space form as

tive prices. Lithium-air batteries feature cathodes that 
couple electrochemically with atmospheric oxygen, thus 
producing energy densities that rival gasoline fuel.

In battery energy management, we are interested in 
maximizing performance and longevity. This requires a 
detailed understanding of the underlying electrochem-
istry. However, the electrochemical variables are not 
directly measurable. At best, one can measure voltage, 
current, and temperature only. Consequently, modeling 
and control are necessary to extract the full potential 
from batteries.

State-of-Charge (SOC) Estimation

SOC indicates the remaining charge, analogous to 
a fuel tank level indicator. Unlike fuel tanks, SOC 
is not measurable—it is estimated by combining 

models and measurements. 
To motivate the particular challenges of SOC estima-

tion consider Figure 2, which provides the relationship 
between voltage and SOC at different C-rates (see sidebar 
below “What is C-rate?” ) for a LiFePO4 cell. In principle, 
one may measure voltage and invert the nonlinear rela-
tionship shown in Fig. 2. Two challenges are immediately 
visible. First, voltage shifts with C-rate, thus complicating 
inversion. Second, function inversion is highly sensitive 
to measured voltage errors, since the slope is nearly zero 
in the 5% – 95% SOC range. In addition, this relationship 
varies with temperature, age, and cell chemistry. Accu-
rate models and estimation theory are needed to address 
this problem, especially in highly dynamic and safety 
critical environments such as electric vehicles.

State-of-Health (SOH) Estimation

Battery SOH metrics indicate a battery’s relative age. 
The two most common SOH metrics are charge 
capacity fade and power capacity fade. Charge ca-

pacity fade indicates how charge capacity has decreased 
relative to its nameplate value (e.g., a 2 Ah cell may hold 
1.6 Ah after two years of use). Power capacity fade indi-

C-rate is a normalized measure of electric  
current that enables comparisons between  
different sized batteries. Mathematically, the 
C-rate is defined as the ratio of current, I , in 
Amperes (A) to a cell’s nominal capacity, Q, in 
Ampere-hours (Ah). For example, if a battery  
has a nominal capacity of 2.5 Ah, then C-rates  
of 2C, 1C, and C/2 correspond to 5A, 2.5 A,  
and 1.25 A, respectively. Note that C-rate  
has dimensions of [A] / [Ah] = [1/h]. 

WHAT IS C-RATE?

FIGURE 1  Zinc-copper Galvanic cell demonstrating the principles 
of operation for an electrochemical cell.
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S OC  (t)  = – 1  I (t)
                                       Q   �

1

V(t)  = OCV (S OC (t))  – R I (t)� 2

where I (t)  is current, Q  is charge capacity, OCV (.) is 
the open circuit voltage function, R is internal resis-
tance, and V(t) is voltage. These models become more 
complex and accurate by considering additional circuit 
components (e.g. RC pairs) and more parameteriza-
tions 1. Although ECMs are intuitive to formulate, they 
are insufficient for controlling the electrochemical 
states. Many researchers have recently focused solely on 
EChem models.

EChem models capture the spatiotemporal dynamics 
of lithium-ion concentration, electric potential, and in-
tercalation kinetics. Most models in the battery controls 
literature are derived from the Doyle-Fuller-Newman 
(DFN) model 2, which is based upon porous electrode 
and concentrated solutions theory. Fig. 4b shows a cross 
section of the layers described in Fig. 1. At full charge 
most of the lithium exists within the anode solid phase 
particles, typically lithiated carbon LixC6, that are ideal-
ized as spherically symmetric. During discharge, lithium 
diffuses from the interior to the surface of these spherical 
particles. At the surface an electrochemical reaction sepa-
rates lithium into a positive lithium ion and electron. 

LixC6
    C6 + xLi+ + xe–

� 3

Next, the lithium ion migrates from the anode, through 
the separator, and into the cathode. Since the separa-
tor is an electrical insulator, the corresponding electron 
travels through an external circuit, powering the con-
nected device. The lithium ion and electron meet at 
the cathode particles’ surface, typically a lithium metal 
oxide LiMO2, and undergo the reverse electrochemical 
reaction. 

Li1–xMO2 + xLi+ + xe–      LiMO2� 4

The produced lithium atom then diffuses into the 
interior of the cathode‘s spherical particles. This entire 
process is reversible by applying sufficient potential 
across the current collectors – rendering an electro-
chemical storage device. In addition to lithium migra-
tion, this model captures the spatial-temporal dynamics 
of internal potentials, electrolyte current, and current 
density between the solid and electrolyte phases.

Although EChem models predict battery opera-
tion over broad conditions, they are mathematically 
complex. Table 1 summarizes the main equations, 
including partial differential equations (PDEs), ordinary 
differential equations (ODEs) in space, ODEs in time, 
and nonlinear algebraic constraints. This complexity 
prohibits estimator and control design. As a result, there 
is a focus on reduced-order models that facilitate control 
design while predicting the dynamics of interest.

Reduced-Order Models

A rapidly growing body of literature is establishing a spectrum of 
EChem models that achieve varying balances of mathematical 
simplicity and accuracy. The most fundamental reduced EChem 

model is the single particle model (SPM). The SPM idealizes each 
electrode as a single aggregate spherical particle. This model results if 
one assumes the electrolyte Li concentration ce(x, t) from11 is constant 
in space and time. This assumption works well for small currents, yet 
produces errors at large C-rates. Mathematically, the model consists of 
two diffusion PDEs governing each electrode’s concentration dynamics, 

                � 5	
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where input current enters as Neumann boundary conditions 
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�
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FIGURE 2  
Relationship between terminal voltage, storage 

charge, and C-rate for a LiFePO4 cell.
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FIGURE 3  Current battery management systems regulate operation 
by limiting measurable quantities (e.g. voltage and current). An ECC  
approach expands the operating regime by regulating the immeasur-
able electrochemical states within safe limits.
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 The boundary conditions at r = R+
s  and r = R–

s signify that flux is pro-
portional to input current I(t). Output voltage is given by a nonlinear 
function of the state values at the boundary c+

ss(t), c –
ss(t)  and the input 

current I(t) as follows

� 9 

where the  i0
j (.) is the exchange current density and cs

j
s (t) = cs

j
s(Rs

j ,t)  
is the surface concentration for electrode  j ϵ {+,–} . The functions  
 U j (.) are the equilibrium potentials of each electrode material,  
given the surface concentration.

The SPM reduces the DFN model to two linear state equa-
tions and a nonlinear output mapping. This model is amenable to 
control/observer design, however its predictive capability is limited 
to low C-rates. Other researchers have developed higher-fidelity 
reduced EChem models via a swath of numerical methods4–8. 
Nonetheless, these models are not always oriented towards control-
ler/observer synthesis, thus motivating further research.

A critical property for state estimation is observability. The DFN 
model is not completely observable (in the linear sense) from volt-
age, current, and temperature measurements. Several heuristics 
have been successfully applied to render complete observability, 
which are associated with reduced-order modeling 3,4,7. However, 
exploitation of nonlinear observability or PDE observability  
remains an open opportunity.

STATE-OF-CHARGE/STATE-OF HEALTH ESTIMATION

R esearch on battery SOC/SOH estimation has experi-
enced considerable growth, and can be categorized 
under ECM or EChem model-based algorithms. 

The first category considers estimators based upon ECMs. 
For example, the seminal work by Plett 9. applies an ex-
tended Kalman filter to simultaneously identify the states 
and parameters of an ECM. The key advantage of ECMs is 
their simplicity. However, they are unable to predict relevant 
electrochemical states and parameters. The second category 
considers electrochemical models. Although these models  
can predict internal states, their complex mathematical struc-
ture prohibits controller/observer design. These approaches 
employ model reduction with estimation. Some of the first 
studies within this category used the SPM in combination 
with an extended Kalman filter 10. Another approach uses 
residue grouping for model reduction and Kalman filters  
for observers 11. The authors of reference 6 apply approxima-
tions to the electrolyte and solid concentration dynamics 
to perform SOC estimation. More recently, simultaneous 
SOC and SOH estimation was performed on a SPM using 
PDE-theoretic techniques 3. Simultaneous SOC and SOH 
estimation using electrochemical models is in infancy, and 
represents a rich problem for dynamic systems and control 
researchers.

Adaptive PDE Observer for Single Particle Models

W e present a simultaneous SOC/SOH estimation  
algorithm using adaptive PDE observer designs 
based upon a SPM. The SOC and SOH estimation 

problems can be cast mathematically as state and para- 
meter estimation problems, respectively. That is, SOC  
can be defined in terms of the anode solid concentration 
 cs

– (r,t) and SOH can be defined in terms of electrochem- 
ical parameters, such as moles of cyclable lithium nLi and 
electrolyte resistance Rf . 

Figure 5 summarizes the complete algorithm. Although 
the SPM is a relatively simple electrochemical model, it 

FIGURE 4
Example equivalent
circuit model  A and  
a schematic of the 
electrochemical 
battery model B.

FIGURE 5  Block diagram of the adaptive observer composed of the 
backstepping state observer (blue), PDE parameter identifier (green), 
output function parameter identifier (red), and adaptive output function 
inversion (orange). The observer furnishes estimates of SOC (i.e. c – (r, t ))  
and SOH (i.e.   ̂ε,  ^q,  

^

θh)  given measurements of I(t) and V(t), only.
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contains several notable challenges. These include (1) the PDE dynamics, 
(2) the nonlinearity imposed by estimating states and parameters together, 
and (3) the output function’s nonlinear relationship with respect to both 
states and parameters. We take a cascaded design approach to address 
these issues. That is, we synthesize identification algorithms for uncertain 
parameters in the PDE state equation and output function. These estimates 
are then applied to a backstepping PDE state observer algorithm, using the 
certainty equivalence principle3.

To demonstrate, we consider a vehicle-like charge/discharge cycle 
generated from two concatenated urban dynamometer driving schedule 
(UDDS) drive cycles. This signal is highly transient with large C-rate 
magnitudes, producing a sufficiently rich signal for parameter estimation. 
Figure 6 portrays the state and parameter estimates using data gener-
ated from the DFN model summarized in Table 1. The state estimates are 
represented by bulk SOC and surface concentration, which converge to 
their true values. The PDE parameter estimates ε̂, q̂ and output function 
parameter estimates n̂Li R

^
f  (normalized to one in Fig. 6) also converge 

near their true values. Similar results are achievable for various other 
initial conditions and charge/discharge cycles. The relative complexity of 
combined SOC/SOH estimation for the simplest of electrochemical mod-
els highlights the problem richness. Open research opportunities include 
algorithms based on higher-fidelity models, nonlinear estimation, novel 
sensing, and experimental verification.

TABLE 1  Main equations for the electrochemical model.

TABLE 2  Electrochemical states to be constrained within upper/lower limits.
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CONTROLLED CHARGING/DISCHARGING

B attery packs are typically oversized and underutilized 
to ensure longevity and robust operation. Indeed,  
oversizing mitigates degradation mechanisms, such  

as lithium plating, lithium depletion/over-saturation, over-
heating, and stress fractures by reducing C-rates. However, 
oversizing can be overly conservative. In this section we 
discuss concepts for eliminating this conservatism. Name-
ly, constrained optimal control methods, such as reference 
governors (RG), enable smaller-sized batteries whose  
electrochemical states satisfy safe operating constraints.

Constrained Control

Ensuring safe operating constraints is a basic require-
ment for batteries. Mathematically, this can be ab-
stracted as a constrained control problem for which 

RGs provide one promising solution. We seek to maintain 
operation subject to electrochemical state constraints. This 
protects the battery against catastrophic failure and main-
tains longevity, an issue underscored by the recent Boeing 
787 Dreamliner battery failures12. A list of relevant state 
constraints is provided in Table 2. These limits are associ-
ated with material saturation/depletion, mechanical stress, 
extreme temperatures, and harmful side reactions, such as 
lithium plating and solid/electrolyte interphase film growth.

A reference governor is an add-on device that guarantees 
state constraint satisfaction pointwise-in-time while track-
ing a desired reference input13. In our “modified” reference 
governor (MRG) implementation, the applied current Ir [k]  
and reference current  are related according to

� 17

where I [k] = I(t) for  ϵ [ kΔt, (k +1)Δt], k ϵ Z.  The goal is to maxi-
mize  β such that the state stays within an admissible region over 
some future time horizon,   
� 18

     Variable  x(t) represents the electrochemical model state at  
time t and O is the set of initial conditions that maintain the  
state within the constraints listed in Table 2, over a future time 
horizon τ ϵ [t, t + Ts]. See reference 14.

Figure 7 compares the standard constant current-constant 
voltage (CCCV) protocol, to an MRG that utilizes perfect estimates 
of the constrained states. CCCV applies 1C charging until voltage 
reaches a manufacturer-specified “maximum,” 4.2V in this case. 
Next, CCCV regulates terminal voltage at the maximum voltage, 
4.2V, while current diminishes toward zero. The value of 4.2V is 
selected to avoid lithium plating caused by overcharging. Math-
ematically, this corresponds to ηs ≥ 0 in Fig. 7. Indeed, the side 
reaction overpotential remains positive, however it is conservative. 
Specifically, the side reaction overpotential can be regulated closer 
to zero. The MRG applies 1C charging subject to the constraint ηs 

≥ 0.  In Fig. 7 the MRG maintains ηs ≥ 0 despite voltage exceeding 
4.2V. Moreover, the cell attains 95% SOC in 24min vs. 38min for 
CCCV. Note that CCCV reaches a final SOC of 96%, whereas the 
MRG achieves 100% SOC. Consequently, charging time is de-
creased by 37% and energy capacity is increased by 4%. Note that 
initial C-rates above 1C in the constant current region can further 
enhance performance beyond what is shown here.

One combines this MRG design with a state observer to form a 
complete output feedback ECC system (Figure 8). Several ques-
tions remain, such as robustness to estimation errors, forecasting 
reference current, optimal charge/discharge current trajectories, 
and experimental validation.

FIGURE 6  Evolution of state and 
parameter estimates for two concat-
enated UDDS charge/discharge cycles. 
The DFN model summarized by Table 
1 provides the “measured” plant data. 
State and parameter estimates were 
initialized with incorrect values.
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FUTURE OUTLOOK

Batteries play a prominent role in developing technologies to ensure energy 
security, enhance sustainability, and lower greenhouse gases. However, 
today’s reality is that batteries are expensive and conservatively designed. 

Advanced control systems that optimize battery performance and longevity 
are a key enabler for reducing costs and catalyzing deeper penetration into 
transportation fleets and electric power grids. Namely, promising solutions 
exist at the nexus of electrochemical modeling and advanced control theory. 
The dynamic systems and control community is uniquely positioned to play 
a significant role, as batteries provide a rich opportunity for advancements in 
fundamental control science and emerging energy application areas. n

FIGURE 7  Comparison of CCCV and modified reference governor 
(MRG) charging. The MRG regulates  near its limit, thereby achieving 95% 
SOC in 24min vs. 38min for CCCV, despite voltage exceeding 4.2V.

FIGURE 8  Block diagram of the ECC system comprised of a SOC/SOH  
estimator to determine the electrochemical states/parameters, and a  
reference governor to apply controlled charging/discharging.
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