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Abstract

This thesis examines plug-in hybrid electric vehicles (PHEVs), i.e. automobiles that can extract power from

either chemical fuels or stored electricity, in which the latter is typically regenerated by plugging into the

electric grid. This research contains two goals. First, it develops power management algorithms that optimize

the way a PHEV splits power demand among its various, and often redundant, actuators. Optimal power

management enables PHEVs to attain improved fuel economy and operating cost levels while maintaining

battery pack health. Furthermore, the optimal “blending” of fuel and electricity usage in a PHEV provides

significant economic benefits to vehicle owners, especially for certain fuel-to-electricity price ratios. Secondly,

the thesis evaluates the impact of varying battery size on the performance and efficiency of our previously

developed power management algorithms. Specifically, our aim is to determine the extent to which power

management algorithm choice can enable the use of smaller batteries, while retaining certain cost and

performance characteristics, over distributions of trip duration and drive cycle trajectories.

The first part examines the problem of optimally splitting driver power demand among the different

actuators (i.e., the engine and electric machines) in a plug-in hybrid electric vehicle (PHEV). The current

state of art optimizes PHEV power management for fuel economy, subject to charge sustenance constraints,

over individual drive cycles. This paper adds three original contributions to this literature. First, it uses

stochastic dynamic programming to optimize PHEV power management over a distribution of drive cycles,

rather than a single cycle. Second, it explicitly trades off fuel and electricity usage in a PHEV, thereby

systematically exploring the potential benefits of controlled charge depletion over aggressive charge depletion

followed by charge sustenance. Finally, it examines the impact of variations in relative fuel-to-electricity

pricing on optimal PHEV power management. The results provided herein focus on a single-mode power-

split PHEV configuration for mid-size sedans, but the approach is general to other configurations and sizes

as well.

The second part builds on the first by establishing a framework for assessing and quantifying the per-

formance tradeoffs between battery size and control algorithm choice. In particular, it rigorously analyzes

operating costs and efficiency using two different control strategies explicitly optimized for certain battery

sizes within a finite set. Existing studies examine this effect for power management algorithms derived using

either rule-based or deterministic dynamic programming methods. The approach presented here extends

research on PHEV battery energy capacity to PHEVs that use power management algorithms identified

with stochastic dynamic programming. Futhermore, it treats both PHEV trip duration and PHEV power

demand as stochastic functions informed by drive cycle data and travel surveys. The results indicate that a

blending strategy enables the use of smaller battery sizes for a broad range of energy price ratios. However,

the benefits diminish with increasing battery size and rising fuel-to-electricity price ratios. As a result, our

analysis demonstrates how optimal control algorithms can reduce battery cost and potentially catalyze the
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market penetration of PHEVs.
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Chapter 1

A Stochastic Optimal Control

Approach for Power Management

1.1 Introduction

This section examines plug-in hybrid electric vehicles (PHEVs), i.e., automobiles that can extract propulsive

power from chemical fuels or stored electricity, and can obtain the latter by plugging into the electric grid.

The section’s goal is to develop power management algorithms that optimize the way a PHEV splits its

overall power demand among its various, and often redundant, actuators. Such optimal power management

may help PHEVs attain desirable fuel economy and emission levels with minimal performance and drivability

penalties [1], [2]. Furthermore, the optimal ”blending” of fuel and electricity usage in a PHEV may also

provide significant economic benefits to vehicle owners, especially for certain fuel-to-electricity price ratios [3].

The literature provides a number of approaches to hybrid vehicle power management, many equally

applicable to both plug-in and conventional (i.e., non plug-in) hybrids. These approaches all share a com-

mon goal, namely, to meet overall vehicle power demand while optimizing a metric such as fuel/electricity

consumption, emissions, or some careful combination thereof. For example, the equivalent fuel consump-

tion minimization approach [4–6] uses models of electric powertrain performance to mathematically convert

electricity consumption to an equivalent amount of fuel, and then makes real-time power split decisions

to minimize net fuel consumption. The manner in which most approaches optimize vehicle performance is

either by identifying a power management trajectory, or by establishing a power management rule base. Tra-

jectory power management algorithms require knowledge of future power demand and use this information

to specify the future power output of each actuator. Such optimization can be performed offline for drive

cycles known a priori using deterministic dynamic programming (DDP) [7–10], and can also be performed
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online using optimal model predictive control [11], [12]. Rule-based approaches, in comparison, constrain the

power split within a hybrid vehicle to depend only on the vehicle’s current state and input variables (e.g.,

vehicle/engine speed, battery charge, power demand, etc.) through some map, or rule base [13–19]. One

then tailors this rule base to ensure that each actuator in the powertrain operates as close to optimally as

possible. These maps can be constructed from engineering expertise and insight, or using more formal meth-

ods such as optimization [17] or fuzzy logic [18], [19]. Stochastic dynamic programming (SDP) methods are

particularly appealing in this context, despite their well-recognized computational complexity [20], because

of their ability to optimize a power split map for a probabilistic distribution of drive cycles, rather than a

single cycle [21–25].

The above survey briefly examines the hybrid power management literature for both plug-in and con-

ventional hybrid electric vehicles. Within the specific context of PHEVs, power management research has

generally focused on fuel economy improvement, subject to constraints on battery state of charge, using

either the rule-based [16], [17] or DDP approach [9], [10]. This section extends this research by adding three

important original contributions to the PHEV power management literature. First, it uses SDP to optimize

PHEV power management over a probability distribution of drive cycles. Second, it explicitly accounts for

the interplay between fuel and electricity costs in PHEV power management. This makes it possible, for

the first time, to fully explore the potential benefits of controlled charge depletion over aggressive charge

depletion followed by charge sustenance. Finally, this chapter presents what the authors believe to be the

first study on the impact of variable electricity and petroleum purchase prices on optimal PHEV power man-

agement. The above contributions are made specifically for a single-mode power-split PHEV configuration,

although the approach is extendible to other configurations as well.

The remainder of this section is organized as follows: Section 1.2 introduces the vehicle configuration,

problem definition, and vehicle model. Section 1.3 then describes the numerical optimization method adopted

in this work. Section 1.4 discusses the results of this optimization, and Section 1.5 highlights the chapter’s

key conclusions.

1.2 Problem Formulation

Figure 2.1 portrays the main components and configuration of the powertrain architecture considered in this

thesis, often called the single-mode power split, “series/parallel”, or “combined”. This architecture combines

internal combustion engine power with power from two electric motor/generators (identified as M/G1 and

M/G2) through a planetary gear set. The planetary gear set creates both series and parallel paths for power

flow to the wheels. The parallel flow paths (dashed blue arrows) include a path from the engine to the wheels

and a path from the battery, through the motors, to the wheels. The series flow path, on the other hand,

takes power from the engine to the battery first, then back through the electrical system to the wheels (solid
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red arrows). This redundancy of power flow paths, together with battery storage capacity, increases the

degree to which one can optimize powertrain control for performance and efficiency while meeting overall

vehicle power demand.

Figure 1.1: The single mode power-split hybrid architecture uses a planetary gear set to split power amongst

the engine, M/G1, and M/G2. Diagram adapted from [26].

The above power split hybrid vehicle architecture can be used for a variety of vehicle sizes and needs. This

thesis focuses on a midsize sedan power split PHEV whose key component sizes are listed in Table I. This

PHEV is quite similar in configuration, dynamics, and design to the 2002 Toyota Prius, but with roughly

twice the battery capacity. Specifically, we assume that the PHEV has 80 modules of Ni-MH batteries instead

of 38 in the 2002 Prius. This choice of battery size and type is partly motivated by the relative ease with

which one can convert the above conventional hybrid vehicle into an experimental PHEV - by simply adding

Ni-MH battery energy capacity. Chapter 2 builds on this chapters’s results by examining the influence of

battery sizing on the optimal control laws studied herein [27]. Furthermore, the impact of battery type (e.g.,

Lithium-ion vs. Ni-MH, etc.) on PHEV performance and efficiency is the subject of Chapter 2.

Given the above vehicle, powertrain, and battery choices, this thesis examines the following power man-

agement problem:

Minimize : J = lim
N→∞

EPdem

[

N−1
∑

k=0

γkg(x(k), u(k))

]

(1.1)
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Subject to :

x(k + 1) = f(x(k), u(k))

x ∈ X

u ∈ U

(1.2)

In this discrete-time stochastic optimal control problem, k represents an arbitrary discrete time instant, and

the sampling time is 1 second. This sampling time is consistent with the project’s focus on supervisory,

rather than servo, control. The optimization objective in this control problem consists of the instantaneous

combined cost of PHEV fuel and electricity consumption, g(x(k), u(k)), accumulated over time, discounted

by a constant factor γ, and averaged over the stochastic distribution of instantaneous power demand, Pdem.

In optimizing this objective, we impose three important constraints, namely, (i) the PHEV powertrain’s

dynamics, represented by f(x(k), u(k)), (ii) the set of admissible PHEV states, X, and (iii) the set of

admissible control inputs, U . The remainder of this section presents these optimization objectives and

constraints in more detail. Specifically, Sections II-A through II-D present, respectively, the PHEV model

f(x(k), u(k)), the optimization functional g(x(k), u(k)), the state and control constraint sets X and U , and

the Markov chain-based drive cycle model used for computing the expected PHEV optimization cost.

1.2.1 PHEV Model

To model the dynamics of a PHEV, we first identify the PHEV’s inputs, outputs, and state variables. Towards

this goal, Figure 2.2 presents a conceptual map of the key interactions between the PHEV examined in this

thesis, its human driver, and its supervisory power management algorithm. This conceptual map adopts

the fairly common tradition in hybrid power management research of interpreting the driver’s accelerator

and brake pedal positions as a power signal, Pdem, demanded at the wheels (e.g., [22–24]). The supervisory

power management algorithm attempts to meet this power demand by adjusting three control input signals:

engine torque Te, M/G1 torque TM/G1, and M/G2 torque TM/G2. Engine startup and shutdown can also be

treated as a control input, but this thesis assumes, for simplicity, that the PHEV engine idles when power

is not demanded. This leaves the important issue of engine startup/shutdown, and its complex impact on

PHEV warm-up and emissions, as open topics for ongoing research. In summary, therefore, the PHEV plant

has three control inputs, namely, the three engine/motor/generator torques.

The above control inputs affect the PHEV plant by affecting its state variables. In this thesis, we closely

follow some of the existing hybrid vehicle power management research by choosing engine crankshaft speed

ωe, longitudinal vehicle velocity v, and battery state of charge SOC, as the three PHEV state variables [23].

We use a Markov memory variable to represent the stochastic distribution of driver power demand, as

explained in Section II-D.

To model the dynamics governing the PHEV state variables, we begin by expressing the total road load,
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Figure 1.2: PHEV model components and signal flow. Note that the signal flow forms a state feedback

control architecture.

Froad, acting on the PHEV as follows:

Froad = Froll + Fdrag + Fdamp (1.3)

In this equation, Froll is a rolling resistance term given by:

Froll = µmg (1.4)

where g, m, and µ represent the acceleration of gravity, mass of the PHEV, and a rolling resistance coefficient

(assumed constant), respectively. Furthermore, Fdrag is an aerodynamic drag force given by:

Fdrag = 0.5ρAfrCdv
2 (1.5)

where ρ , Afr and Cd represent the density of air, the PHEV’s effective frontal area, and the PHEV’s effective

aerodynamic drag coefficient, respectively. Finally, Fdamp is a wheel/axle bearing friction term given by:

Fdamp =
bwv

rtire
(1.6)

where bw is the bearing’s damping coefficient and rtire is an effective PHEV tire radius. Note that this

expression for wheel damping, as well as other derivations below, assumes a direct proportionality between

wheel angular velocity and vehicle speed, where the proportionality constant is related to the tire radius and

final drive ratio. This assumption effectively neglects tire slip for simplicity, thereby eliminating the need

for using two separate state variables to represent wheel and vehicle speeds.
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Road loads from (1.3) act on the PHEV powertrain through the planetary gear set sketched in Fig. 1.3.

This planetary gear set can be conceptually and mathematically treated as an ideal “lever” connecting the

engine, two motor/generators, and vehicle wheels (through the final drive), as shown in Fig. 1.3. Using

this lever diagram in conjunction with Euler’s equations of motion, one can relate the road load in (1.3) to

angular velocities in the PHEV powertrain as follows [23]:

















Ie 0 0 R + S

0 IM/G1 0 −S

0 0 I ′M/G2 −R

−(R + S) S R 0

































ω̇e

ω̇M/G1

ω̇M/G2

F

















=

















Te

TM/G1

T ′M/G2

0

















(1.7)

In this equation, R and S denote the numbers of teeth on the planetary gear set’s ring and sun, respectively.

The angular velocities of the engine and two motor/generators are denoted by ωe, ωM/G1, and ωM/G2,

respectively. Furthermore, Te and Ie denote the engine’s brake torque and inertia, and TM/G1 and IM/G1

denote the torque and inertia of the first motor/generator, respectively. The force F represents an internal

reaction force between the planetary gear set’s sun and planet gears. Finally, the terms I ′M/G2 and T ′M/G2

are effective inertia and torque terms given by:

I ′M/G2 = IM/G2 + (Iw + mr2
tire)/K2

T ′M/G2 = TM/G2 − Froadrtire/K
(1.8)

where IM/G2 and Iw are the rotational inertias of the second motor/generator and wheel, K is the final drive

gear ratio, and TM/G2 is the torque produced by the second motor/generator.

The point-mass model in (1.7) and (1.8) provides a complete description of how the state variables

ωe and v (which is directly proportional to ωM/G2) evolve with time for given control input trajectories.

This description is provided in differential algebraic equation (DAE) form, with the force F and velocity

ωM/G1 acting as dependent state variables. Simple algebraic manipulations, omitted herein, can be used in

conjunction with time discretization to convert this DAE description to the explicit form in (1.2).

To complete the derivation of the PHEV plant model, we assume for simplicity that the PHEV’s battery

can be idealized as an open-circuit voltage Voc, in series with some internal resistance Rbatt. We allow both

Voc and Rbatt to depend on battery state-of-charge, SOC, through a predefined map (adapted from [28], [29]).

Furthermore, we define SOC as the ratio of charge stored in the battery to some known maximum charge

capacity, Qbatt. This furnishes the following relationship between the rate of change of SOC and the current

Ibatt, generated by the battery:

˙SOC = −Ibatt/Qbatt (1.9)

To obtain an expression for the current, Ibatt, we note that the instantaneous power delivered by the
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Figure 1.3: Planetary gear set and lever diagram. The engine, M/G1, and M/G2 are attached to the planet

carrier, sun, and ring gears, respectively.

battery to the two motor/generators, Pbatt, is related to Ibatt through the following power balance:

Pbatt = VocIbatt −RbattI
2
batt (1.10)

Solving (1.9) and (1.10) for the rate of change of SOC gives:

˙SOC = −
Voc −

√

V 2
oc − 4PbattRbatt

2QbattRbatt
(1.11)

Finally, relating the power Pbatt to the torques, speeds, and efficiencies of the two motor/generators gives:

Pbatt = TM/G1ωM/G1η
kM/G1

M/G1 + TM/G2ωM/G2η
kM/G2

M/G2 (1.12)

where

ki =











−1 Tiωi > 0

1 Tiωi ≤ 0

for i = {M/G1, M/G2} (1.13)

Combining (1.11)-(1.13) with maps from [28], which relate the efficiencies of the electric motor/generators

to their torques and speeds, provides a complete description of the battery SOC dynamics as a function of

PHEV states and inputs. Discretizing this description and combining it with an explicit discretized form of

(1.7) and (1.8) furnishes a complete model of the PHEV plant dynamics, i.e., f(x(k), u(k)) in (1.2). This

model mostly replicates existing hybrid powertrain models in the literature (e.g., [23]), but we use it in

conjunction with the novel objective function in Section II-B to examine PHEV power management.
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1.2.2 Objective Function

The optimization objective, J , in (1.1) aggregates the expected combined cost of PHEV fuel and electricity

consumption over a stochastic distribution of trips, and discounts this cost exponentially through the factor

γ. This discount factor, if restricted to the interval [0, 1), ensures that the cumulative optimization objective

remains finite over infinite time horizons. This research follows Lin [22] in setting γ to 0.95, leaving the

question of how different values of γ affect optimal PHEV power management open for future research.

To explicitly trade off fuel and electricity consumption in PHEVs, we define the instantaneous cost

functional, namely, g(x(k), u(k)) in (1.1), as follows:

g(x, u) = βαfuelWfuel + αelec
1

ηgrid
Pelec (1.14)

The first term in this cost functional quantifies PHEV fuel consumption, while the second term quantifies

electricity consumption, and the coefficient β makes it possible to carefully study tradeoffs between the two.

Specifically, Wfuel represents the fuel consumption rate in grams per time step, where we use the engine map

in [28] to convert engine torque and speed to fuel consumption. The constant parameter αfuel then converts

this rate to an energy consumption rate, in megajoules (MJ) per time step. Similarly, Pelec represents the

instantaneous rate of change of the battery’s internal energy, i.e.,

Pelec = −VocQbatt
˙SOC (1.15)

The constant parameter αelec converts Pelec to MJ per time step. Dividing this change in stored battery

energy by a constant charging efficiency ηgrid = 0.98 (which corresponds to a full recharge in six hours)

furnishes an estimate of the amount of energy needed from the grid to replenish the battery charge consumed

during the trip. Note that Pelec is positive when the PHEV uses stored battery energy and negative during

regeneration. Hence, there exists a reward for regeneration that offsets the need to consume grid electricity.

The magnitude of this reward depends on the parameter β, which represents the relative price of gasoline per

MJ to the price of grid electricity per MJ. We refer to this parameter as the “energy price ratio,” and use it

to examine the tradeoffs between fuel consumption and electricity consumption in PHEVs. Specifically, we

begin this chapter’s power management optimization studies by setting a price ratio of β = 0.8, consistent

with the average energy prices in 2006, namely $2.64 USD per gallon of gasoline and $0.089 USD per kWh

of electricity [30]. We then vary this ratio to examine the influence of different relative fuel-to-electricity

prices on optimal power management, as shown in Section IV-C.

1.2.3 Constraints

In optimizing PHEV power management, we seek controllers capable of keeping the state vector x within

simple bounds expressed as a constraint set X in (1.16). These bounds ensure that the engine neither
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exceeds its maximum allowable speed nor falls to speeds where noise, vibrations, and harshness (NVH)

become excessive [26]. They also constrain battery state of charge to remain between two limits denoted

as SOCmin = 0.25 and SOCmax = 0.9. Constraining SOC in such a way helps to protect against capacity

and power fade due to over-charging or excessive discharging [10], [16], [17]. However, the precise impact of

the depths and rates of PHEV battery charging/discharging on battery health is still under investigation.

Finally, we also impose limits on the speeds of the motor/generators to protect them from damage. As

explained in Section III-B, when solving the optimal PHEV power management problem numerically, we use

exterior point penalty functions to implement all of these state constraints as “soft” constraints [31].

X =































x :

ωe,min ≤ ωe ≤ ωe,max

ωM/G1,min ≤ ωM/G1 ≤ ωM/G1,max

ωM/G2,min ≤ ωM/G2 ≤ ωM/G2,max

SOCmin ≤ SOC ≤ SOCmax































(1.16)

In addition to constraining the PHEV state variables, we also implement two types of control input

constraints as part of power management optimization: a drivability constraint and control input bounds.

The drivability constraint, given by (1.17), ensures that driver power demand is met by equating it to the

sum of the three engine/motor/generator power outputs:

Pdem = Pe + PM/G1 + PM/G2 (1.17)

Since the power output of each PHEV actuator equals its torque multiplied by its angular velocity, which

depends directly on the PHEV’s states, this constraint reduces the number of independent control inputs

from three to two. The choice of which two torque commands to make independent is arbitrary, but we

select engine torque and M/G1 torque to match existing work [23]. Hence, the vector of independent control

inputs becomes:

u =
[

Te TM/G1

]T

(1.18)

As with the state variables, we constrain the two elements of this vector to take values within an admissible

control set denoted by U(x) in (1.19). This control set limits the rate of battery charging and discharging

to minimize battery damage, and also limits the engine and motor/generator torque to safe and attainable

values. We refer to control policies that map states to control inputs within this set as “admissible” policies

[20].

U(x) =































u :

ωe,min ≤ Te ≤ Te,max

TM/G1,min ≤ TM/G1 ≤ TM/G1,max

TM/G2,min ≤ TM/G2 ≤ TM/G2,max

Pchg,lim ≤ Pbatt ≤ Pdis,lim































(1.19)
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1.2.4 Drive Cycle Modeling

The drive cycle model is a stochastic component to the plant model which predicts the distribution of future

power demands using a discrete-time Markov chain [32]. Specifically, the model defines a probability of

reaching a certain power demand in the next time step, given the power demand and vehicle speed in the

current time step [22]. To acquire a numerical realization of this model, we define a state space for the

Markov chain by selecting a finite number of power demand and vehicle speed samples. Then we form an

array of conditional transition probabilities according to:

pi,j,m = Pr (Pdem(k + 1) = i|Pdem(k) = j, v(k) = m) (1.20)

where i,j index power demand and m indexes vehicle speed. To estimate these transition probabilities, one

needs observation data for both power demand and vehicle speed. We obtain these observations from a

number of drive cycle profiles. The profiles provide histories of vehicle speed versus time, and we invert the

PHEV dynamics to extract corresponding power demand histories. This results in the following equation

for power demand, solely in terms of vehicle velocity and vehicle parameters:

Pdem = m
dv

dt
v +

1

2
ρAfrCdv

3 + µmgv + bwv2/rtire (1.21)

In this work, we used federal drive cycles (FTP-72, US06, HWFET) and real-world micro trips (WVUCITY,

WVUSUB, WVUINTER) in the ADVISOR database [28] to compute the observation data. We then derived

the transition probabilities in (1.20) from this data using maximum likelihood estimation [33].

1.3 Stochastic Dynamic Programming

This section presents the stochastic dynamic programming approach used for solving the optimal power

management problem posed in Section II. The approach begins with a uniform discretization of the admissible

state and control input sets, X and U(x). This discretization makes the optimal power management problem

amenable to computer calculations, but generally produces suboptimal results. We use the symbols X and

U(x) to refer to both the continuous and discrete-valued state and control input sets for ease of reading.

Given the discrete-valued sets, we apply a modified policy iteration algorithm [20] to compute the optimal

power management cost function and policy. This algorithm consists of two successive steps, namely, policy

evaluation and policy improvement, repeated iteratively until convergence. For each possible PHEV state,

the policy iteration step approximates the corresponding “cost-to-go” J , which may be intuitively interpreted

as the expected cost function value averaged over a stochastic distribution of drive cycles starting at that

state. The policy improvement step then approximates the optimal control policy u∗, corresponding to each
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possible PHEV state. This process iterates, as shown in Fig. 1.4, until convergence. Sections III-A and III-B

present the policy iteration and policy improvement steps in further detail.

Figure 1.4: Modified policy iteration flowchart. The process consists of two successive steps, policy evaluation

and policy improvement, repeated iteratively until a convergence criterion is satisfied.

1.3.1 Policy Evaluation

The policy evaluation step computes the cost-to-go for each state vector value, x, given a control policy,

u(x). This computation is performed recursively as shown in (1.22):

Jn+1(x) = g(x, u) + EPdem
[γJn(f(x, u))] (1.22)

The index n in the above recurrence relation represents an iteration number, and the recurrence relation

is evaluated iteratively for all state vector values in the discretized set of admissible states, X. In general,

the cost-to-go values within the expectation operator must be interpolated because f(x, u) will not always

generate values in the discrete-valued state set X. Although the true cost-to-go for a given control policy must

satisfy Jn = Jn+1, we iterate (1.22) a finite number of times before executing the policy improvement step

(next section). This truncated policy evaluation approach, used in combination with the policy improvement

step below, converges to the optimal control policy regardless of the maximum number of iterations [20].

1.3.2 Policy Improvement

Bellman’s principle of optimality indicates that the optimal control policy for the stochastic dynamic pro-

gramming problem in (1.1) and (1.2) is also the control policy that minimizes the cost-to-go function J(x)

in (1.22). Thus, to find this control policy u∗, we minimize cost-to-go with respect to this policy for each

state vector value x, given the cost-to-go function J(x). Mathematically, this minimization is represented

by:

u∗(x) = arg min
u∈U(x)

{

g(x, u) + EPdem
[γJ(x)] + gcons(x)

}

(1.23)

Equation (1.23) imposes the state and control input set constraints from (1.2) in the form of an exterior

point quadratic penalty term [31], gcons(x). This penalty term consists of sixteen penalty functions summed

together, each corresponding to one of the inequalities given in (1.16) and (1.19). Each penalty function
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equals the excursion from the corresponding constraint boundary, normalized with respect to the feasible

range of operation, squared, and multiplied by a coefficient five orders of magnitude greater than the energy

consumption weights. For example, the penalty function for minimum engine speed takes the form:

gcons,ωe,min = αcons,ωe,min

[

min

{

0,
ωe,min − ωe

ωe,max − ωe,min

} ]2

(1.24)

After both policy evaluation and policy improvement are completed, the optimal control policy is passed

back into the policy evaluation step and the entire procedure is repeated iteratively. The process terminates

when the infinity norm of the difference between two consecutive steps is less than 1%, for both the cost and

control functions.

1.4 Results and Discussion

This section analyzes the properties of the proposed PHEV power management approach by comparing

its performance against a baseline control policy, inspired by previous research [1], [16], [17]. Specifically,

it is fairly common in PHEV power management research to examine algorithms that initially operate

in a charge depletion mode, then switch to charge sustenance once some minimal battery state of charge

is reached [1], [16], [17]. The charge depletion mode typically utilizes stored battery energy to meet as

much of the driver power demand as possible (engine power may be needed when demand exceeds the power

capabilities of the motor/generators), thereby depleting battery charge rapidly. The charge sustenance mode

then uses engine power to regulate battery state of charge once it reaches some predefined minimum. This

charge depletion, charge sustenance (CDCS) approach implicitly assumes that fuel consumption dominates

operating costs relative to electricity consumption from the battery. We implement CDCS in this work by

setting αelec in (1.14) to zero and rely on the minimum SOC constraint in (1.16) to enforce charge sustenance

behavior once battery charge is depleted. We refer to power management strategies that are the result of

setting all coefficients in (1.14) to nonzero values as blended, since a weighted sum of both electricity and

fuel is utilized to construct the power split map.

In the remainder of this section, we first analyze the performance of the blended and CDCS strategies

by focusing on two FTP-72 drive cycles simulated back-to-back. Second, we examine the difference between

these two control strategies in more depth by exploring how they manage engine speed and torque. Finally,

we investigate the impact of varying fuel and electricity purchase prices on the optimal blended and CDCS

control laws.
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1.4.1 Performance

To illustrate the potential performance improvements of a blending strategy over a CDCS strategy, consider

their responses for two FTP-72 drive cycles simulated back-to-back, as shown in Fig. 1.5 and 1.6. The total

cost of energy for this trip is 6.4% less for the blended strategy relative to CDCS, and fuel consumption is

reduced by 8.2%. Blending accomplishes this by utilizing the engine more during the charge depletion phase,

thereby assisting the battery to meet total power demand more often than CDCS. Although in the blended

case the engine operates at higher loads, therefore consuming more fuel, the engine efficiency is greater and,

as demonstrated in Fig. 1.6, battery charge depletes more slowly. As a result, blending and CDCS incur

nearly the same total energy costs through the depletion phase (Fig. 1.5), and the advantage of blending in

terms of overall cost arises from its delayed entry into charge sustenance.

The benefit of delayed entry into charge sustenance is evident from previous research in the literature in

which the PHEV drive cycle and total trip length were assumed to be known a priori (e.g., [9], [16]). For

example, in [9] deterministic dynamic programming furnished blending strategies that reached minimum SOC

exactly when the PHEV trip terminated, thereby never allowing the PHEV to enter the charge sustenance

mode. This result agrees with our current findings, namely, that the primary benefit of blending strategies

results from their ability to delay or eliminate the need for charge sustenance. However, the approach in [9]

requires knowledge of trip length a priori. Since SDP explicitly takes into account a probability distribution

of drive cycle behavior, our identified strategy is optimal in the average sense.

Figure 1.5: Running energy consumption costs for blended and CDCS control strategies on two FTP-72

cycles simulated back-to-back. The total cost (solid line) is the sum of fuel (dashed line) and electricity

(dotted line) costs.
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Figure 1.6: State-of-charge response for blended and CDCS control strategies on two FTP-72 cycles simulated

back-to-back.

Performance improvements of blending over CDCS are uniform across all the drive cycles shown in Table

II, where the drive cycle lengths are selected to ensure that the vehicle reaches charge sustenance before the

trip terminates. If the vehicle reaches its destination before entering charge sustenance phase, however, the

total energy consumption costs are nearly identical for blending and CDCS (as demonstrated in Fig. 1.5).

Therefore the blending strategy proposed herein has no significant energy consumption cost penalty for early

trip termination. Note that some of the largest improvements are observed for drive cycles that were not

used to estimate the Markov state transition probability matrix.

1.4.2 Engine Control

A significant benefit of the power-split architecture is the fact that it decouples the engine crankshaft from

the road, and allows the electric machines to move engine speed where fuel efficiency is maximized [?]. This

optimal operating line is identified by the black dashed line in Fig. 1.7 and 1.8. As shown in Fig. 1.7, the

blending strategy initially operates the engine at fairly low speeds and high torques, close to the optimal

fuel efficiency operating line. This occurs even when power demand can be met by the electric motors alone.

The excess engine power goes towards regenerating battery charge, which the blended cost function in (1.14)

rewards. Moreover, the electric machines are not generally saturated and are thus free to maintain low engine

speeds and high efficiencies. In contrast, the CDCS strategy causes the engine to remain at very low brake

torque levels during depletion, where fuel consumption is low but so is engine efficiency (Fig. 1.8). Moreover,

significant power is requested from the engine only when the electric machines saturate and cannot meet

driver power demand by themselves. This limits the control authority of the electric machines when driver

power demand is large, thereby reducing their ability to move engine speed to the optimal operating line.
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These observations explain how the blending strategy utilizes the engine and electric motors more efficiently,

thereby delaying the charge sustenance phase and improving overall PHEV operating costs.

Figure 1.7: Engine operating points for the blended

strategy on a brake specific fuel consumption map,

for two FTP-72 cycles simulated back-to-back.

Figure 1.8: Engine operating points for the CDCS

strategy on a brake specific fuel consumption map,

for two FTP-72 cycles simulated back-to-back.

1.4.3 Energy Price Ratio

An important feature of the proposed power management algorithm is its dependence on the energy price

ratio, β , which varies temporally (e.g., by year) and spatially (e.g., by geographic region). To investigate

the nature of this dependence, we obtained the history of energy price ratios since 1973 [30], shown in Fig.

1.9. The value of β has clearly changed significantly over the past 35 years due to shifts in both oil and

electricity prices. This motivates the need to understand how this parameter impacts optimal PHEV power

management.

Consider the SOC depletion responses shown in Fig. 10 for controllers synthesized with energy price

ratios in the set β ∈ 0.4, 0.6, 0.8, 1.0, 1.2 and for a CDCS strategy, which by definition does not depend on

β. Several conclusions can be drawn from this parametric study. First, as β approaches infinity (i.e. fuel

becomes infinitely more expensive than grid electric energy), the optimal blending strategy converges to

a CDCS strategy. This is consistent with the fact that the CDCS strategy implicitly assumes the cost of

fuel is infinitely more than the cost of electricity. Secondly, for sufficiently low β (i.e. electricity becomes

more expensive than fuel), the optimal blending strategy generates electric energy. The implicit assumption

leading to this result is that the driver is able to sell energy back to the grid when the vehicle is plugged

in. Although electricity prices are unlikely to be this high in general, real-time pricing could motivate using
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the vehicle as a distributed power generator during periods of peak demand when conventional generation is

scarce [34]. This suggests that, with the appropriate exchange of information, a vehicle could be configured to

modify its control policy in real time to reflect grid conditions. Hence, our proposed controller is extendible

toward vehicle-to-grid infrastructures.

Figure 1.9: Historic values for the energy price ratio β from 1973 to 2007 [30]. Note how the variation

corresponds with shifts in oil and electricity prices.

Figure 1.10: State-of-charge response for varying β (blended) and CDCS control strategies on two FTP-72

cycles simulated back-to-back. Blending approaches CDCS as β approaches infinity.

16



1.5 Conclusions

This chapter demonstrates the use of stochastic dynamic programming for optimal PHEV power manage-

ment. It derives an optimal power management strategy that rations battery charge by blending engine

and battery power in a manner that improves engine efficiency and reduces total charge sustenance time.

This strategy explicitly takes into account a probability distribution of drive cycles and variable energy price

ratios. This formulation guarantees a solution that is optimal in the average sense, without requiring drive

cycle knowledge a priori. Moreover, we have shown that energy price ratios can significantly influence the

characteristics of the optimal control policy. Indeed, it may be useful to equip production PHEVs with a

range of control laws corresponding to the range of price ratios that could be experienced over the life of the

vehicle.
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Chapter 2

Interplay of Battery Sizing and

Optimal Power Management

2.1 Introduction

This chapter examines plug-in hybrid electric vehicles (PHEVs), which typically utilize onboard battery

storage to at least partially displace liquid fuels with less expensive grid electricity. Battery sizing and

design plays a key role in the cost, reliability, and ability of such PHEVs to effectively manage different

power demand levels over the course of a diverse set of trip durations [3]. The goal of this chapter is examine

the interplay between battery storage capacity and PHEV power management, specifically by quantifying

the extent to which different PHEV power management algorithms enable the use of smaller batteries

without compromising performance and efficiency. This quantification focuses on two power management

algorithms: one that minimizes fuel consumption, and one that optimally blends fuel and electricity usage.

The performance and efficiency characteristics of these algorithms are compared for different battery sizes

over stochastic distributions of drive cycle trajectories and trip durations.

Previous work has investigated PHEV battery sizing from several different perspectives, including drive

cycle requirements [35–37] and control design [9, 16, 37]. The results of this research show that existing

battery technologies possess the power-to-energy characteristics necessary to achieve all-electric ranges of

up to 60km, at least for U.S. federally mandated drive cycle trajectories (e.g., FTP-72, HWFET, US06)

[35], [36]. However, the literature also shows that operating PHEVs in an all-electric battery depletion

mode often requires batteries with both high energy and high power characteristics, thus resulting in more

expensive components [16,35–37]. This motivates the use of smaller batteries in combination with “blending”

control strategies that utilize engine power throughout the depletion process to ration battery energy and
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reduce electric power requirements by shifting load to the combustion engine. In O’Keefe and Markel [9],

PHEV power management was explicitly optimized for fuel consumption over some known drive cycle using

deterministic dynamic programming (DDP), for two different PHEVs (one with sufficient electric power

capacity to meet all power demand, and one with half as much power capacity). This optimization furnished

a control trajectory that blends battery and fuel usage such that the minimum battery energy level is achieved

exactly when the trip terminates, and the “half sized” PHEV had nearly the same fuel economy as the full

size PHEV for trips over a certain length.

This chapter provides two new contributions to this body of literature. First, it builds on previous work

by the authors [38] to study PHEV battery performance using stochastic drive cycle models developed by

combining the Markov chain modeling framework with real-world data distributions of daily travel duration.

Secondly, it analyzes the monetary cost, efficiency, and battery discharge depth of PHEVs over a distribution

of daily drive cycles, thereby establishing the machinery for a rigorous study on the tradeoffs between battery

size and PHEV performance. Finally, in contrast to the work referenced in the previous paragraph, which

generally focuses on blending as a means to reduce power capacity requirements for the electric drive train,

here we study the impact that blending can have on the energy storage requirements of the vehicle. The

chapter’s results indicate that a blending strategy enables the use of batteries with less storage capacity,

thus complementing previous research that demonstrates the benefits of blending for reducing PHEV power

requirements.

The remainder of the chapter is organized as follows: Section 2.2 introduces the vehicle configuration and

models for the PHEV, daily travel time distributions, and drive cycles. Section 2.3 describes the simulation

approach, and Section 2.4 presents the main results and discusses the impact of battery size and control

strategy on expected trip cost, expected efficiency, and state-of-charge range. The chapter’s conclusions are

provided in Section 2.4.

2.2 PHEV Model and Power Management Algorithm

This chapter analyzes a hybrid vehicle model based upon the single mode power-split (a.k.a. parallel/series

or combined) hybrid architecture in Fig. 2.1. The key benefit of the power-split design is that it possesses

energy flow characteristics of both parallel and series configurations. The parallel flow paths include engine-

to-wheels and battery-to-wheels (blue arrows), while the series flow path is from the engine-to-battery-to-

wheels (red arrows). The role of the planetary gear set is to manage energy flow between these paths by

transferring mechanical power between the engine, two motor/generators (identified as M/G1 and M/G2),

and the wheels [26]. An interesting result of this arrangement is that, with the appropriate control strategy,

power can be split amongst the three paths to optimize energy consumption.
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Figure 2.1: The single mode power-split hybrid architecture uses a planetary gear set to split power amongst

the engine, M/G1, and M/G2. Diagram adapted from [26].

2.2.1 PHEV Model

The vehicle model used in this thesis, summarized below and described in detail in [38], is based upon

existing research on conventional hybrid electric vehicles (HEVs) [23], [22], [24]. The planetary gear set

model utilizes Euler’s Law to describe the inertial dynamics of the engine and motor/generators [23]. The

engine and motor/generator models are steady-state maps, which relate speed and torque to fuel consumption

and power efficiency [28].

Although lithium-ion (Li-ion) batteries are being strongly considered for PHEV applications, in this

chapter we choose to model nickel-metal hydride (NiMH) batteries for several reasons. First, they are widely

used in current HEVs and therefore their performance characteristics are better understood that Li-ion.

Second, some early production PHEVs may utilize NiMH batteries [39]. Finally, the general objective of

blending in this chapter is to make more efficient use of the battery and engine, and since this principle

carries over to Li-ion technology, we expect our results to be generalizable.

Each NiMH cell within the battery pack is modeled by an equivalent circuit comprising an ideal voltage

source Voc,cell in series with an Ohmic resistor Rcell [23], [29], where each cell has a charge capacity of

Qcell. Both the open circuit voltage and internal resistance are functions of battery state of charge (SOC)

taken from steady-state maps available in [22]. These equivalent circuits are assembled in a series-parallel
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combination to model the entire battery pack, where ns denotes the number of cells in series per parallel

string, np denotes the number of parallel strings, and the total number of cells in the pack is nsnp. The open

circuit voltage Voc, internal resistance R, and charge capacity Q for the entire battery pack are given by:

Voc = nsVoc,cell R =
ns

np
Rcell Q = npQcell (2.1)

The battery pack dynamics are associated with SOC, which intuitively describe a battery “fuel gauge”. Here,

we define SOC as the ratio of charge to maximum charge. As a result, the derivative of SOC is the ratio of

current through the circuit I to an estimated maximum charge capacity Q.

˙SOC = −I/Q (2.2)

Through applying power conservation on the equivalent circuit, we obtain an expression for battery power

at the terminals in (2.3), which is simply open circuit power less resistive losses. This expression may be

written in terms of SOC using (2.2) and solved using the quadratic formula to obtain an ordinary differential

equation for SOC in (2.4).

Pbatt = VocI −RI2 (2.3)

˙SOC = −
Voc −

√

V 2
oc − 4PbattR

2QR
(2.4)

Note that the battery model is scalable with respect to the number of cells. Although this formulation

explicitly accounts for series-parallel cell architectures, it can be mathematically shown that, holding nsnp

constant, the SOC dynamics are invariant to ns and np individually. We will use this fact to avoid the

need to specify the cell architecture. In practice, of course, pack voltage, inverter efficiency, heat generation,

charge equalization, and state of health must all be considered in the battery design process [40], [41].

The states for the assembled PHEV plant model include engine crankshaft speed ωe, longitudinal vehicle

velocity v, battery state of charge SOC, and driver power demand Pdem. The controlled inputs to the plant

include engine torque Te, M/G1 torque TM/G1, and M/G2 torque TM/G2. Figure 2.2 shows that the state

and control signals form a state feedback control loop around the PHEV model components.

2.2.2 Power Management Algorithm

In previous work we developed optimal power management algorithms that minimize the combined con-

sumption cost of fuel and electricity [38]. As in other work [22–24], [21], [25], these control strategies can

be implemented without prior knowledge of the trip characteristics, other than a stochastic power demand

model. Mathematically, the optimal control problem is summarized in the following infinite horizon formu-

lation:
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Figure 2.2: PHEV model components and signal flow. Note that the signal flow forms a state feedback

control architecture.

Minimize : J = lim
N→∞

EPdem

[

N−1
∑

k=0

γkg(x(k), u(k))

]

(2.5)

Subject to :

x(k + 1) = f(x(k), u(k))

x ∈ X

u ∈ U

(2.6)

pi,j,m = Pr (Pdem(k + 1) = i|Pdem(k) = j, v(k) = m) (2.7)

Pdem = Pe + PM/G1 + PM/G2 (2.8)

x ∈ X =


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




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















x :

ωe,min ≤ ωe ≤ ωe,max

ωM/G1,min ≤ ωM/G1 ≤ ωM/G1,max

ωM/G2,min ≤ ωM/G2 ≤ ωM/G2,max

SOCmin ≤ SOC ≤ SOCmax































(2.9)
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u ∈ U(x) =


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u :

ωe,min ≤ Te ≤ Te,max

TM/G1,min ≤ TM/G1 ≤ TM/G1,max

TM/G2,min ≤ TM/G2 ≤ TM/G2,max

Pchg,lim ≤ Pbatt ≤ Pdis,lim































(2.10)

where g(x(k), u(k)) is the energy consumption cost per time step k and γ is the discount factor. The

optimization is subject to both deterministic (2.6) and stochastic (2.7) model dynamics. The stochastic

dynamics (2.7) take the form of a first order Markov chain in which Pdem is the Markov state variable [22].

The constraint (2.8) ensures power demand is always met by the power sources. In (2.9) and (2.10), X is

the set of admissible state values x, and U is the set of admissible control values u. The time step is one

second. We use this framework to develop two separate control strategies, “blended” and “charge-depletion,

charge sustenance” (CDCS), defined as follows:

Blended: The blended approach minimizes a weighted sum of fuel consumption and electric energy

consumption

g(x, u) = βαfuelWfuel + αelec
1

ηgrid
Pelec (2.11)

The parameter β, which we refer to as the “energy price ratio,” represents the price of gasoline per megajoule

(MJ) relative to the price of electricity per MJ. The conversion factors αfuel and αelec are selected to convert

energy consumption from each source to common units of MJ per time step. Wfuel is the fuel consumption

rate in terms of grams per time step, and Pelec is power flow through the battery, which can be calculated

from the battery pack open-circuit voltage, charge capacity and ˙SOC.

Pelec = −VocQbatt
˙SOC (2.12)

Note that Pelec is positive for discharge events and negative for regeneration events. We estimate the

electric energy consumed from the grid during the recharge process by dividing Pelec by a constant charging

efficiency ηgrid = 0.98, which corresponds to a full recharge in six hours. For the main set of results in

this chapter we assume a fuel price ratio of β = 0.8, which roughly corresponds to 2006 gas and electricity

prices in the U.S. [30]. However, we will also briefly report on results for other price ratios, and leave a more

detailed analysis for a future publication.

CDCS: It is common in PHEV power management research to use control laws that first deplete the

battery as quickly as possible to a low SOC and then enter a charge sustenance mode like those used by

conventional HEVs [37], [16], [1], [17]. This method, which we shall refer to as charge depletion-charge

sustenance (CDCS), is implemented in the SDP framework here by setting αelec in (2.11) equal to zero, thus

degenerating into formulations suggested by [22–24], [25].
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2.2.3 Trip Duration Model

We model trip duration as a random variable T , whose distribution gives the total travel time for a vehicle

during a single day, which we treat as the travel time between PHEV charging events. This model is

based on data from the 2001 National Household Travel Survey (NHTS) conducted by the Department of

Transportation Federal Highway Administration [30]. Figure 2.3 shows the distribution of surveyed daily

vehicle travel times, for which the mean is approximately 35 minutes and 75 percent of daily travel occurs

in 32 minutes or less. The likely cause of the data’s multi-modality is a tendency among survey participants

to report trip duration in 5 minute increments. Since our intent is to randomly generate trip durations by

inverting the trip duration cumulative distribution function (cdf), we compute the cdf and attenuate the

modes with a five minute, uniformly weighted moving average in Fig. 2.4.

Figure 2.3: Distribution of daily vehicle travel times from 2001 NHTS.

2.2.4 Drive Cycle Model

Drive cycle trajectories are modeled via a first order Markov chain, where power demand Pdem is the Markov

state variable. This approach to modeling drive cycle trajectories is used widely in the hybrid vehicle power

management literature [38], [22–24], [21], [21]. The transition probabilities for the Markov chain given by

(2.7) are determined using a maximum-likelihood estimator [33] from observation data collected from federal

drive cycles (FTP-72, HWFET, US06) and real-world micro-trips (WVUCITY, WVUSUB, WVUINTER)

in the ADVISOR database [28]. An example randomly generated drive cycle is shown in Fig. 2.5. The

Markov model assumes that the current state is conditioned only on the state immediately preceding it.

We validated this assumption by computing the model residuals and confirming that their autocorrelation
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Figure 2.4: Cumulative distribution of daily vehicle travel times. The smoothed model is generated by a five

minute uniformly weighted moving average of the original data.

exceeds the 95 percent confidence interval for no more than 5 percent of all lag values that are 25% of the

length of the data set or less - as is the case for a white noise process [42].

In the simulation method described below, we will assume that trip duration and the Markov model are

independent. Although this is clearly an important assumption, there is limited data to test its validity, and

we will leave it to future work to address the sensitivity of our results to the presence of drive cycle / trip

duration dependence (e.g. longer trips tend to take place on the highway).

Figure 2.5: A sample randomly generated drive cycle from the Markov chain model.
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2.3 Simulation Method

Distributions for the PHEV performance characteristics are calculated by simulating each control strategy

(Blended and CDCS) and battery size (Table II) configuration over the entire distributions of trip duration

and drive cycles. For each battery size option, we identify both a blended and CDCS control law (as explained

in Section II-B and [38]). We then evaluate the performance of the control law / battery size combination

by the following approach:

1. Sample a trip duration from the cdf in Figure 2.4.

2. Generate a power demand time series from the Markov chain model (2.7) with duration found in step

1.

3. Simulate the PHEV model on this randomly generated drive cycle and record the performance char-

acteristics.

4. Check the stopping criterion (Appendix). If satisfied, stop simulations. If not satisfied, return to step

1.

2.4 Results and Discussion

2.4.1 Operating Costs & Efficiency

Figures 2.6 and 2.7 show the distribution of operating costs (in USD per km) and energy efficiency (in MJ

per km) for each battery size and control strategy configuration we examined. For each battery size we see

that the distribution of operating costs and energy efficiency is consistently better for the blended strategy

than for CDCS. The figure suggests that the blended strategy can achieve a given level of performance

with fewer battery modules than a CDCS control policy. This is especially true for smaller batteries. For

batteries with more than 160 modules, the difference between the two control strategies diminishes. This

can be explained by the fact that trips rarely end after a 160-plus module battery is fully depleted, for

either strategy, and the two strategies are roughly cost-equivalent during the charge depletion phase [38].

These results are in agreement with prior claims that a blended strategy should enable the use of smaller

batteries [35], [37], [16], although in this case the result applies to battery energy capacity, whereas the prior

claims are predominantly in reference to battery power capacity.

It is important to note that the results shown here are for an energy price ratio of β = 0.8. As demon-

strated in our previous work [38], the blended strategy converges to CDCS for very high price ratios. We

re-ran the simulations shown in Fig. 2.6 and 2.7 for β = 2.0 and found that, while we observe no penalty for

using the blended strategy, the CDCS and blended distributions begin to converge for small battery sizes as
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Figure 2.6: Box and whisker plots of operating cost (USD per km) for each battery size and control strategy

configuration. Whisker lengths are limited to 1.5 times the interquartile range.

Figure 2.7: Box and whisker plots of energy efficiency (MJ per km) for each battery size and control strategy

configuration. Whisker lengths are limited to 1.5 times the interquartile range.

well. These results suggest that although the blended strategy provides diminishing benefits as β increases,

it remains appropriate for all β.
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The asymptotic nature of the cost and efficiency of both control strategies implies that there are dimin-

ishing returns to increasing battery size. This result is directly related to the trip duration distribution: for

very large battery sizes (greater than 200 modules), it is unlikely that the battery will fully deplete its charge

because the bulk (75%) of daily trip durations are less than 35 minutes. Instead, the power management

algorithm remains in charge depletion mode, where blending and CDCS achieve nearly equal operating costs,

as demonstrated in our previous research [38]. For extremely long travel durations, however, CDCS enters

charge sustenance mode before the blending strategy and quickly accumulates elevated operating costs. This

is the reason why the largest observations (upper whiskers in Fig. 2.6 and 2.7) for CDCS are consistently

larger than the largest observations for blending.

We expect that this phenomenon will move manufacturers in the direction of smaller batteries unless

battery storage capacity one day becomes negligible relative to energy costs. Of course, batteries generally

need to be oversized to ensure adequate performance over the lifetime of the vehicle. Although a smaller

battery might reduce the purchase price of a PHEV, it may incur higher maintenance costs because it

undergoes deeper discharge cycles that can accelerate power and capacity fade [41].

2.4.2 SOC Range

To investigate the relationship between battery size and discharge depth, consider the distribution of SOC

ranges shown in Fig. 2.8 for the two most extreme battery sizes (40 and 320 modules). Here we define SOC

range as the difference between the maximum and minimum SOC values achieved during the drive cycle.

The asymptote at 0.65 occurs because the control strategy limits SOC between 0.25 and 0.9 using exterior

point penalty functions (see [38]). The 40-module battery reaches full discharge depth in between 10 and 20

minutes, whereas the 320-module battery reaches full discharge depth in between 55 and 80 minutes. Within

10 to 20 minutes, only 35-60% of trips in one day have terminated. Therefore, in 40-65% of daily trips, a

40-module battery will reach full depletion. On the other hand, within 55 to 80 minutes, 84-90% of trips have

terminated, meaning only 10-16% of PHEV daily trips will result in full depletion of a 320-module battery.

Since this percentage is relatively small in comparison to the remainder of the population, the benefits of

large battery sizes diminish as the number of modules increases.

Figure 2.8 can also be used as an analysis tool to size batteries. For example, suppose we wish to specify

a battery size that uses no more than half of the SOC range in 75 percent of daily trips. Reading off the

cumulative probability curve, 75 percent of daily travel times are 32 minutes or less. Then we could populate

Fig. 2.8 with the SOC range distribution for several battery sizes and determine which size achieves 0.5 SOC

range or less for the first 32 minutes. Hence, Fig. 2.8 allows the design engineer to leverage simulation results

to make battery sizing decisions based on rigorous arguments about SOC range and daily travel duration.

Eventually, it may make the most sense to treat PHEV battery size as an option on a vehicle, with
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smaller batteries standard (for those in the majority of the population with relatively low daily travel needs)

and larger batteries available at a premium to those with greater travel requirements.

Figure 2.8: Distribution of SOC range for 40 and 320 modules, blended strategy. The solid line is the

cumulative distribution of daily travel time (Fig. 2.4). CDCS has a similar distribution and is therefore

omitted for brevity.

2.5 Conclusions

In this chapter we have introduced a method for evaluating power management strategies and battery energy

capacity in PHEVs over a distribution of drive cycles and travel times. Through this framework, we have

demonstrated that a blended control strategy facilitates the use of smaller batteries for a given operating

cost or energy efficiency. We have also shown that expected operating cost and energy efficiency approach

asymptotic values as battery size increases, since a very small population of drivers will fully deplete large

batteries in one day. Because the effect that PHEV power management strategies will have on performance

degradation and replacement time is not understood, this chapter has focused exclusively on optimizing

energy cost. However, as scientific knowledge of PHEV battery performance and durability improve, it will

be important to include these other factors into the power management objective function.
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Chapter 3

Conclusions and Future Work

This thesis examines the supervisory power management control problem of optimally blending fuel and

electricity in a plug-in hybrid electric vehicle (PHEV), and how these control laws, relate to battery size

and overall performance. Through this effort, we have provided the following key contributions to the

PHEV power management and battery sizing literature: First, this thesis formally derives optimal power

management algorithms over a probability distribution of drive cycle behavior for PHEVs, rather than for

a single cycle, using stochastic dynamic programming. Secondly, this work applies an economics inspired

cost function to optimally balance the consumption cost of fuel vis-a-vis electricity. Thirdly, we use this

formulation to analyze how varying energy purchase prices might impact optimal power management, in

light of the historically volatile fluctuation of these values. This enables us to understand how to develop

power management algorithms that are robust to these varying prices. Fourth, we use the Markov chain drive

cycle modeling framework in conjunction with real-world daily trip length data to build stochastic models

of daily drive cycles. This allows to simulate the closed-loop PHEV model across stochastic distributions of

drive cycles, to obtain probability distributions of performance results. Finally, we apply the aforementioned

PHEV model, stochastic daily drive cycle/trip length models, and power management algorithms to a range

of battery sizes to understand how they all interact. The results indicate that optimal blending enables the

use of smaller battery sizes, particularly for battery packs with less energy storage capacity.

This work has made significant contributions towards optimal control and design of PHEV powertrain

systems, particularly with regard to the coupled problems of optimal blending and battery sizing. However,

several important issues remain. Battery health dynamics are currently not understood very well, and can

have a significant impact on PHEV performance, cost, safety, and durability. As a result, future work

shall investigate first-principle models of battery health degradation currently being developed within our

research group. These models will be validated on a simple experimental test bench, which will have the

capability of loading the batteries in real-time along with our PHEV powertrain simulation models, in a
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hardware-in-the-loop setup. Through this effort, we will obtain models that map battery cell operating

characteristics to health degradation. The models will then inform an optimal control problem that seeks

to management battery cell loads within a battery pack in a manner that minimizes degradation, rather

than simply achieve charge equalization. With this algorithm in place, we can then return to the overall

PHEV power management problem and include battery degradation in the form of maintenance cost as an

additional term to energy consumption cost. As a result, the final set of results will represent a comprehensive

modeling and control study on optimal PHEV power management with respect to energy consumption costs

and battery health degradation.
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