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Abstract

The forecasting of building electricity demand is certain to play a vital role in the future power grid.
Given the deployment of intermittent renewable energy sources and the ever increasing consumption of
electricity, the generation of accurate building-level electricity demand forecasts will be valuable to both
grid operators and building energy management systems. The literature is rich with forecasting models for
individual buildings. However, an ongoing challenge is the development of a broadly applicable method for
demand forecasting across geographic locations, seasons, and use-types. This paper addresses the need for
a generalizable approach to electricity demand forecasting through the formulation of an ensemble learning
method that performs model validation and selection in real time using a gating function. By learning from
electricity demand data streams, the method requires little knowledge of energy end-use, making it well
suited for real deployments. While the ensemble method is capable of incorporating complex forecasters,
such as Artificial Neural Networks or Seasonal Autoregressive Integrated Moving Average models, this work
will focus on employing simpler models, such as Ordinary Least Squares and k-Nearest Neighbors. By
applying our method to 32 building electricity demand data sets (8 commercial and 24 residential), we
generate electricity demand forecasts with a mean absolute percent error of 7.5% and 55.8% for commercial
and residential buildings, respectively.
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1. INTRODUCTION operations. Trends, such as vehicle electrification
and distributed renewable generation, are expected
to pose new challenges for grid operators and may

undermine the accuracy of load forecasts.

Commercial and residential buildings account for
74.1% of U.S. electricity consumption, more than
either the transportation sector or the industrial
sector (0.2% and 25.7%, respectively) [1]. Main-
taining a continuous and instantaneous balance be-
tween generation and load is a fundamental require-
ment of the electric power system [2]. To reliably
match supply with demand, the forecasting of grid-
level electricity loads has long been a central part of
the planning and management of electrical utilities
[3]. The accuracy of these forecasts has a strong
impact on the reliability and cost of power system

To improve the accuracy of electricity demand
forecasts and aid in the management of power sys-
tems, recent attention has been placed on short-
term building-level electricity demand forecasting
using a wide range of models [4][5]. The ability
to accurately and adaptively forecast demand-side
loads will play a critical role in maintaining grid sta-
bility and enabling renewables integration. Addi-
tionally, many novel optimal control schemes, under
research umbrellas such as demand response and
microgrid management, require short-term build-
ing electricity demand forecasts to aid in decision
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making [6].

The supply-side and load-side time series fore-
casting of electricity demand has been a topic of
research for many decades. The literature is filled
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with a variety of well-cited modelling approaches,
each differing in algorithmic complexity, estimation
procedure, and computational cost. Of particu-
lar note are the variants of Artificial Neural Net-
works (ANN) [3][4][5][7][8][9][10], Support Vector
Regression (SVR) [11][12][13][14] and Autoregres-
sive Integrated Moving Average (ARIMA) mod-
els [3][12][13][15][16][17][18]. Lesser but nonetheless
noteworthy attention has been given to approaches
such as Multiple Linear Regression [3][11][19],
Fuzzy Logic [3][20], Decision Trees [4], and k-
Nearest Neighbors (k-NN).

These studies provide a broad catalog of use-cases
and demonstrate the performance of certain fore-
casting algorithms when applied to specific building
types. In particular, [3][4][10][17] provide a survey
of electricity forecasting methods and a high-level
comparison of techniques. [8] provides a detailed
description of ANNs and their application to load
forecasting, including data pre-processing and ANN
architectures. [5] details the development of a sea-
sonal ANN approach and the advantage over a Sea-
sonal ARIMA (SARIMA) model when applied to 6
building datasets. [18] focuses on the introduction
of motion sensor data to improve the accuracy of an
ARIMA model. In [9][11][15][18][20], the authors
perform an in-depth analysis of the power demand
patterns of a particular building in order to cus-
tomize a forecasting model.

In papers with experimental results, the au-
thors have generally applied their electricity de-
mand forecasting technique to only a small num-
ber of datasets. Consequently, the literature is rich
with forecasting algorithms customized for individ-
ual buildings. This leads us to the following ques-
tion: Is it possible to design a single minimally-
customized forecasting algorithm that is widely ap-
plicable across a diversity of building types, en-
abling scalability? We pursue this question by
proposing a novel ensemble learning method for
electricity demand forecasting.

Specifically, due to unique building characteris-
tics, occupancy patterns, and individual energy use
behaviors, we argue that no single model structure
is capable of accurately forecasting electricity de-
mand across all commercial and residential build-
ings.

For example, some forecasting models may pro-
duce accurate predictions under certain observ-
able or unobservable conditions, such as a seasonal
trend, a morning routine, or an extended absence.
Other models may be ideal for buildings with en-

ergy use behaviors that are stable over long periods
of time. For buildings with frequent changes in oc-
cupancy patterns, models that are trained over a
moving horizon may yield the highest accuracy. In
short, this work will develop an ensemble learning
method that trains and validates multiple forecast-
ing models before applying a gating method to se-
lect a single model to perform electricity demand
forecasting.

In this way, the ensemble method is able to learn
from real-time data and to produce short-term elec-
tricity demand forecasts that are automatically tai-
lored to a particular building and instance in time.
In addition to forecast accuracy, this paper will
place an emphasis on method adaptability and ease
of use. While we have implemented certain fore-
casting models, the method is intended to allow the
models to be interchangeable.

To demonstrate the use of our ensemble method
to produce short-term forecasts, this paper includes
3 experimental studies: Single Model Studies, Mul-
tiple Model Study, and Residential Study. For each
of these studies, we will make the following assump-
tions with respect to the availability of building
electricity demand data:

A1l. We have access to hourly historical building
electricity demand at the meter.

A2. We have access to hourly historical weather
data near the building location.

A3. We do not have access to submetered elec-
tricity demand data or building operations
data, such a occupancy measurements or me-
chanical system schedules.

The limited access to input data with which to
produce forecasts is representative of the challenge
faced by grid operators. Accordingly, this pa-
per will demonstrate the potential of our ensemble
method to non-invasively forecast total electricity
demand using data-driven methods. Additionally,
unlike in [9][11][15][18][20], where the authors per-
form an in-depth analysis of the power demand pat-
terns in order to customize a model to a particular
building, this paper will focus on developing a fore-
casting approach that is generally applicable to all
buildings without customization.

This paper is organized into five sections: Re-
gression Models, Single Model Studies, Ensem-
ble Method, Multiple Model Study, and Residen-
tial Study. Section II. Regression Models briefly



presents background theory for 5 regression mod-
els that will be employed in this paper. In Sec-
tion III. Single Model Studies, we apply the fore-
casting models to 8 commercial /university building
electricity demand datasets using batch and moving
horizon training approaches. Section IV. Ensemble
Method presents our method for training and val-
idating multiple models and for selecting the opti-
mal model using a gating method. Section V. Mul-
tiple Model Study applies our ensemble learning
method to 8 commercial/university building elec-
tricity demand datasets and quantifies and qualifies
the advantage over a single model approach. Fi-
nally, in Section VI. Residential Study, we apply our
ensemble learning method to 24 residential build-
ing electricity demand datasets and summarize the
results. Key conclusions and future research direc-
tions are summarized in Section VII.

2. Regression Models

In this paper, we will consider one parametric
regression model, Ordinary (Linear) Least Squares
with ¢ Regularization (Ridge), and four nonpara-
metric models, Support Vector Regression with Ra-
dial Basis Function (SVR), Decision Tree Regres-
sion (DTree), k-Nearest Neighbors with uniform
weights and binary tree data structure (k-NN), and
Multilayer Perceptron (MLP), a popular type of
feedforward Artificial Neural Network (ANN). In
this section, we will briefly describe the structure
of each regression model.

2.1. Ordinary Least Squares with {5 Regularization

Ordinary Least Squares with ¢ Regularization
(Ridge) fits a linear model with coefficients w € R"
to minimize the residual sum of squared errors be-
tween the observed and predicted responses while
imposing a penalty on the size of coefficients ac-
cording to their fo-norm. The linear model of a
system with univariate output is given by

Y = Woxo + WiT1 + ... + Wpky

=Y wpzp = wlz (1)
k

with variables z € R", the model input, y € R,
the predicted response, n, the number of inputs or
features in z, and k =1,...,n.

The linear model is trained on a set of inputs and
observed responses by optimizing the function

minimize Y[jw”z; — yill3 + Allwl3 2)
7

with variables z; € R™, the model input for
the i-th data point, y; € R, the i-th observed re-
sponse, w € R", the weighting coefficients, and
i=1,...,N, where N is the number of data sam-
ples and n is the number of features in x;. Lastly, A
is a weighting term for the regularization penalty.

For a system with a multivariate output §y € R™,
we will treat the outputs as uncorrelated and de-
fine a set of coefficients w; € R™ for each predicted
response §; € R for j = 1,...,m. Thus, the multi-
variate linear model is given by

gjj:ijx, Vi=1,...,m (3)

The weights of the multivariate model are deter-
mined by optimizing the function:

minimize Y3 wi wi —yijl3 + ZAwslll (4
w g J

with variables z; € R”, the model input, y; €
R™, the observed multivariate response, w; € R",
the weighting coeflicients of the j-th response, i =
1,...,N,and j =1,...,m, where N is the number
of data samples, n is the number of features in x;,
and m is the number of observations in ;.

2.2. Support Vector Regression

In non-linear Support Vector Regression (SVR),
the model input x is transformed into a higher di-
mensional feature space using a mapping function
¢. Then, a linear model is constructed in this fea-
ture space, as given by

= f(z)=w"¢(z) +b ()

where variable b € R is a bias term, w € R"
the linear coefficients, and ¢ a non-linear mapping
function. Using an e-intensive loss function, the
support vector regression model can be trained by
optimizing

| 2 X
minimize 2 [[w|[z + C3 (¢ + ()
w,b,(.Cx 2 7
subject to y; — wl ¢(x;) — b < e+ ¢ (6)
wl(zi) +b—y e+



where constant € € R denotes the radius of the
e-intensive region (i.e. region in which the value of
the loss function is 0) and constant C' > 0 denotes
the trade-off between the empirical risk (i.e. devi-
ations beyond €) and the regularization term (i.e.
the flatness of the model). The positive slack vari-
ables (; € R and ¢/ € R denote the magnitude of
the deviation from the e-intensive region.

By applying Lagrangian multipliers and Karush-
Kuhn-Tucker conditions, the primal problem can
be reformulated into a dual form that is easier to
solve.

1
minimize 55 S (i — @) K (2, 25) (a; — o)
g

o, 0k J
+ e (i +a7) = Xyl — of)

subject to > (a; —af) =0

0<a;,af <C

(7)
with variables «;,af € [0,C], the Lagrangian
multipliers, and K, the kernel function given
by the inner product of the mapping functions,
K(z;,xj) = ¢(z;)p(x;). In this paper, we will em-
ploy the (Gaussian) Radial Basis Function kernel,

given by

K(z;,x) =exp (—%) (8)

where variable o € R is a free parameter.

Using the Lagrangian multipliers, the support
vector regression model with univariate output can
be rewritten as

§=f(x) =2 (i — i) K(zi,x) +b (g)
K3

For a system with a multivariate output § € R™,
we will treat the outputs as uncorrelated and define
m support vector regression models (i.e. one for
each output). Using m models to independently
predict each of the m outputs is simple to imple-
ment, but may be less accurate than a single model
capable of simultaneously predicting all m outputs.
We refer the reader to [21][22] for a more detailed
description of the support vector regression algo-

rithm.

2.8. Decision Tree Regression

In Decision Tree Regression (DTree), the feature
space is recursively sub-divided or partitioned into

smaller regions or leaves (i.e. terminal node). Once
this splitting is complete, a simple regression model
is fit to the data samples that have been grouped
into each leaf. The objective is to form a tree data
structure with which a new observation can be as-
signed to a leaf using nested boolean logic (i.e. mov-
ing right or left down each branch according to a
threshold value). Once the correct leaf has been
identified, the observation can be mapped to a con-
tinuous target value using a simple model.
Expressed mathematically, we can represent the
data at node a by B. For each potential division
0 = (k,t,) composed of feature k and threshold
value t, € R, we may partition the data into two
subsets or branches, Br,(0) and Bg(6), given by

Br(0) = (z,y) if o, <,

Br(0) = (z,y) if 2, > t, (10)

The accuracy of a decision tree regression model
can be represented by the impurity of each branch.
In this paper, we will define the impurity function
H as the mean squared error between each response
and the mean response in a branch. Thus, for node
a, H is given by

2
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(ya7i - ga)2
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with variable N, € [Npin, N], the number of
data points in branch a, Ny, the minimum num-
ber of data points in a branch, X,, the set of all
data points z € R™ in branch a, and y,, the set of
all observed responses y € R in branch a.

The decision tree is trained or grown by recur-
sively selecting the parameters that minimize the
impurity of the tree and of each branch. In other
words, we begin with a node a containing all data
points. Then, we partition the data according to
the optimization function

H(Xa) =

S

<.

0" = argénin%H(BL(G)) + ]ZY]—SH(BR(H)) (12)

with variable Np, Ngr € [Npin, N, the number
of data points in the left and right branches, re-
spectively. The optimization function is recursively
applied to each new branch until the maximum
tree depth is reached, one of the resulting branches



would contain less than NV,,;, data points, or there
is no split that will decrease the impurity of the
branch by more than some threshold § € R.

For each leaf a, we will define the regression
model as the mean of the contained univariate ob-
servations.

1 Qe
g= E ;yaz (13)

For a system with multivariate output § € R™,
each leaf in the tree will store observations of length
m rather than 1. Therefore, the impurity function
H can be redefined as the mean of the mean squared
error between each j-th response and the mean j-th
response in a branch for j =1,...,m.

1 Qe

Ya,j = Fa;ya,i,j Vi=1,...,m

. (14)
— 2

(Yarij — Yarj)

And the multivariate regression model can be de-
fined as

N
N 1 .
yjzﬁzya,i,j Vi=1,...,m (15)
@ i=1

We refer the reader to [23][4] for a more de-
tailed description of the decision tree regression al-
gorithm.

2.4. k-Nearest Neighbors Regression

In k-Nearest Neighbors Regression (k-NN), an in-
put z € R™ is mapped to a continuous output value
according to the weighted mean of the k nearest
data points or neighbors, as defined by the Eu-
clidean distance. In this paper, we will use uni-
form weights. In other words, each point in a neigh-
borhood a contributes uniformly and thus the pre-
dicted univariate response g € R is the mean of the
k-nearest neighbors.

k
1
¥ k;:ly, (16)

with variable y,, the set of k observed responses
y € R in neighborhood a. For a system with mul-
tivariate output § € R™, the model is defined as

the mean of each observation j over the k-nearest
neighbors.

k

. 1 .

yj = EZyaﬂ;Jv V] = 1, R 1) (17)
i=1

Given a new input z, it is possible to determine
the neighborhood by computing the Euclidean dis-
tance (i.e. fo-norm of the difference) between the
new input z and every data point in the training
data set x; for ¢ = 1,..., N and then ordering the
distances to identify the nearest neighbors. How-
ever, this brute-force search is computationally in-
efficient for large datasets.

To improve the efficiency of the neighborhood
identification, the training data points are parti-
tioned into a tree data structure. A commonly
used approach for organizing points in a multi-
dimensional space is the ball tree data structure,
a binary tree in which every node defines a D-
dimensional hypersphere or ball. At each node,
data points are assigned to the left or right balls
according to their distance from the ball’s center.
At each terminal node or leaf, the data points are
enumerated inside the ball.

We refer the reader to [24] for a description of
ball tree construction algorithms.

2.5. Multilayer Perceptron
Artificial Neural Network

Artificial Neural Networks (ANN) are a class of
statistical learning algorithms inspired by the neu-
rophysiology of the human brain. These numerical
models are composed of interconnected “neurons”
which use stimulation thresholds to predict how a
system will respond to inputs.

The most popular feedforward (i.e no feedback)
neural network is the multilayer perceptron (MLP).
Figure 1 illustrates an example of a 3 layer percep-
tron network consisting of a 3 neuron input layer,
4 neuron hidden layer, and 2 neuron output layer.
The structure of a neuron in the hidden layer is pre-
sented in Figure 2 where variables z1,22,23 € R
are inputs to the neuron and wi,ws, w3 € R are
synaptic weights. Variable y € {0,1} is the output
and z1, 29 € R are the synaptic weights of the next
neurons in the network. The weighted sum of the
inputs is the excitation level of the neuron

v = szxl —h (18)
i=1
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Figure 1: Artificial Neural Network

Figure 2: Structure of a Neuron

where variable v € R is the excitation, h € R
is a threshold, and n is the number of inputs to
the neuron. Next, we want to define the output
or activation function f of the neuron such that if
v > 0 then y = 1 otherwise y = 0. The simplest
activation function is the hard limiter,

1 ifv>0

19
0 ifvo<O (19)

However, the hard limiter function cannot be
practically implemented because it is not differ-
entiable.  Thus, artificial neural network algo-
rithms employ differentiable activation functions
that have horizontal asymptotes at both 0 and 1
(i.e. limy_yoo f(v) =1 and lim,_,_, f(v) =0). An
example is the sigmoid function,

1

y:f(v):m (20)

For the neurons in the output layer, it is common
to use a linear activation function,

g=fv)=v (21)

The structure of the multilayer perceptron arti-
ficial neural network makes it capable of both uni-
variate and multivariate predictions. Networks are
trained using a backpropogation algorithm which
adjusts the weights and thresholds of each neuron
to minimize the error between the observations and
the network outputs. In this paper, we will em-
ploy a 3 layer feedforward ANN with a 30 neuron
sigmoid hidden layer and 6 neuron linear output
layer. The size of the linear input layer will vary.
The ANN will be trained using gradient descent
backpropagation for 200 epochs.

We refer the reader to [25] for a further discussion
of artificial neural networks and backpropogation
training algorithms.

2.6. Software Packages

This work employs the PyBrain Artificial Neural
Network library [26] and the Sci-Kit Learn Ordi-
nary Least Squares, Support Vector Regression, De-
cision Tree, and k-Nearest Neighbors libraries [27].
All plots are generated with Matplotlib [28].

3. SINGLE MODEL STUDIES

To motivate the advantage of our ensemble ap-
proach, we will begin by considering single model
approaches to electricity demand forecasting. In
this section, we will apply the regression models
above to 8 building datasets containing 2 years
of metered hourly electricity demand (kW). This
time-series data has been provided by the facili-
ties team at the University of California, Berkeley
and will be used as the observation data for each
forecasting model. Submetered electricity demand
data and building operations data, such a occu-
pancy measurements and mechanical system sched-
ules, are not available.

The 8 buildings are located on the University
of California, Berkeley campus and have been se-
lected to represent a heterogeneous population.
The buildings A, B, and D are occupied by the
physics, civil engineering, and environmental engi-
neering departments, respectively, and are primar-
ily comprised of faculty offices and research lab-
oratories. Building C is a university library and
building E houses faculty and departmental offices



for multiple humanities departments. Buildings F
and G are university administrative buildings and
building H is comprised mainly of lecture halls and
classrooms. Table 1 presents the square footage as
well as basic statistics regarding the electricity de-
mand of each building.

Building
A|/B|C|D|E|F|G|H

Size

(103 sq.ft.)
Mean (kW){333|33 [96 |109|113|114|23 |73
SD (kW) |44 |5 |26 |8 |36 [33 |2 |30
Min (kW) [190/20 |48 |61 |60 [69 |5 |29
Max (kW) [602|69 [221|150|271{236|73 |195

97 |140|67 |142|306(111|153|140

Table 1: Building Electricity Demand Statistics

The models will be used to generate short-term
multivariate electricity demand forecasts, specifi-
cally 6 consecutive hourly electricity demand pre-
dictions (i.e. § € R%). The accuracy of each fore-
cast § will be measured by the root mean squared
error (RMSE). To allow for comparison between
buildings, the performance of forecasting models
will be measured by the mean absolute percent er-
ror (MAPE).

1 m
F t i RMSE = | — i i) (22
orecast 1 - Z:: Vi — i) (22)

100‘7 Yij — Yij

Yi,j

Model MAPE =

(23)

i=1 j=1

with variables y; € R™, the i-th observation, and
7y; € R™, the i-th prediction, where m represents
the number of outputs in the prediction (m = 6)
and N, the number of predictions.

The regression models will employ 4 different in-
put types: electricity demand (D), time (T), elec-
tricity demand and time (DT), and electricity de-
mand, time, and exogenous weather data (DTE).
The electricity demand input type (D) consists of
the 24 hourly records that precede the desired fore-
cast (z € R*). The time input type (T) is the

current weekday and hour represented as a sparse
binary vector (z € {0,1}3!). The demand and time
input type (DT) combines the demand and time in-
puts (x € R%). The demand, time, and exogenous
weather data input type (DTE) is the demand and
time input with current outdoor air temperature
(°C) and relative humidity (%RH) data retrieved
from a local weather station (z € R°7)[29]. The
output of each forecasting model is a prediction of
the hourly electricity demand over the following 6
hours (y € RY).

Throughout this paper, we will use the term “re-
gression model” to refer to the model structure and
algorithm used to perform regression, “input type”
to refer to the subset of features used by each model,
and “forecasting model” to refer to the pairing of
regression model and input type.

3.1. Batch Study

For each of the 8 buildings, we train the fore-
casting models with demand data from that build-
ing. Electricity demand data from one building is
not used to fit the models of another building. We
consider 5 regression models (Ridge, SVR, DTree,
k-NN, and ANN) and 4 input types (D, T, DT,
and DTE) for a total of 20 forecasting models per
building. The forecasting models for each building
are trained in a batch manner (i.e. trained once
on a large dataset) using 18 months of hourly in-
put data from January 1st, 2012, to July 1st, 2013
(i.e. 13,128 training data points). For each model,
the training dataset depends on the input type (D,
T, DT, and DTE) but may include hourly electric-
ity demand records for the respective building (D),
time records represented as a sparse binary vector
(T), and hourly outdoor air temperature and rela-
tive humidity records (E).

For validation, the trained models are used to
generate a 6 hour electricity demand forecast (§ €
RS) for each building for every hour from July
1st, 2013, to January 1st, 2014 (i.e. 4,416 testing
data points). The results of the batch regression
study are presented in Figure 3. In the figure, each
data point represents the MAPE of one forecasting
model (i.e. 8 buildings with 20 models each for a
total of 160 models).

Examples of the electricity demand forecasts pro-
duced by the Building E Ridge regression model
with demand (D) input are presented in Figure 4.
Note that each blue line represents a multivariate
forecast y and that the figure plots ¢ starting at but
excluding the most recent power demand record.
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Figure 3: Batch Study Results
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Figure 4: Building E Ridge Forecast Sample

By comparing the results in Figure 3 for each
building, we can immediately distinguish forecast-
ers that consistently perform poorly (e.g. T in-
put) from forecasters that perform well (e.g. ANN,
Ridge, and k-NN with DT input). We also ob-
serve that certain forecasting models perform in-
consistently across the different buildings. For ex-
ample, SVR with D input performs well in Build-
ing A but relatively poorly in Buildings E and F.
Furthermore, there is dispersion among the results,
particularly in Buildings E, F, and H. This disper-
sion represents a challenge for building level appli-
cations. To produce the best results using a batch
approach, an engineer must perform model selec-
tion for every deployment. Just because a certain
regression model and input type has performed well
for one building does not guarantee it will do the
same for another building.

As shown, an ANN model outperforms the Ridge,
SVR, DTree, and k-NN models in 7 out of 8 build-
ing. However, there is no input type that performs
best in each building. In Building B, we observe
that the addition of the exogenous weather input

decreases the performance of the ANN. A possible
explanation is that the ANN found a link between
the weather input and the electricity demand in the
training data. However, this link may not have con-
tinued to appear in the test data, resulting in a loss
in performance.

Additionally, it could be argued that the ANN
model does not outperform the much simpler Ridge
and k-NN models to an extent that warrants the
additional complexity, particularly in Buildings D
and G. If further tuned to a particular building and
input type and trained over a higher number of
epochs, it is possible that the ANNs’ performances
could be further improved. However, this increase
in forecaster accuracy would come at a high compu-
tational cost. Instead, this work will focus on devel-
oping a computationally efficient ensemble method
for producing electricity demand forecasts by learn-
ing from data streams and adapting to individual
building energy use patterns.

3.2. Moving Horizon Study

In the batch regression study presented above,
each forecasting model was trained once on 18
months of data and then used to generate predic-
tions up to 6 months after the last training data
point. For buildings with very consistent electricity
demand patterns, using such a large training set will
help to prevent overfitting and to produce the best
possible results. For buildings with inconsistent or
changing electricity demand patterns, the absence
of the most recent data from the training set may
limit the performance of the forecasting model.
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Figure 5: Moving Horizon Study Results

In this section, we will consider training the mod-
els over a moving horizon. Specifically, at each hour
between July 1st, 2013, and January 1st, 2014, we
will train the forecasting models for each building
on the 3 months of data that precede that time step
(i.e. 2,016 training data points). Then, we will pro-
duce a 6 hour forecast (§ € R®) and record the er-
rors. In this way, the start and end times of the
training set will move relative to the current time
step and we can hope to better capture recent elec-
tricity demand patterns. It should be noted that
because we have significantly reduced the training
set size, we have introduced the potential for over-
fitting the models, a point that will be addressed
by our ensemble method. We will consider 4 re-
gression models (Ridge, SVR, DTree, and k-NN)
and 4 input types (D, T, DT, and DTE) for a total
of 16 forecasting models per building. The compu-
tational cost of training an ANN makes the model
unsuitable for a moving horizon approach.

The results of the moving horizon regression
study are presented in Figure 5. In the figure, each
data point represents the MAPE of one forecasting
model (i.e. 8 buildings with 16 models each for a
total of 128 models). The horizontal dotted line
marks, for each building, the highest performing
forecasting model (lowest MAPE) from the batch
regression study. In other words, for Buildings B,
C, D, E, and H, the dotted line indicates the MAPE
of the ANN model with DT input. For Buildings A
and F, the line marks the MAPE of the ANN model
with DTE input. For Building G, Ridge with DT
produced the lowest MAPE in the batch study.

While none of the models trained on a moving

horizon show a significant improvement in accuracy
over the best batch model, the results for each in-
dividual building are generally less dispersed in the
moving horizon cases than in the batch cases.

Because we have generated 16 forecasts for ev-
ery hour between July 1st, 2013, and January 1st,
2014, we are able to compare the performance of
the forecasting models at each time step and across
all 8 buildings. This analysis will aid in determining
which models to include in the ensemble method.
Figure 6 shows the fraction of time steps that a
specific regression model produced the most accu-
rate (lowest RMSE) electricity demand prediction
(regardless of input type). Here, we see that k-
Nearest Neighbors models produce the best forecast
with the highest frequency of any of the regression
models considered. Because we plan to incorpo-
rate several forecasters in the ensemble method, we
are also interested in identifying models that consis-
tently rank among the top. Figure 7 shows the frac-
tion of time steps that a specific regression model
produced a forecast that was among the best four
predictions. Here, we see that Ridge models most
consistently produced such a prediction. Repeating
this analysis for input types (not displayed), we find
that every input scores between 20% and 30% for
both the top and top four predictions, suggesting
no clear relative advantage.

Recognizing that a specific forecasting model
may have the highest accuracy in one time step
and the lowest accuracy in the next, we are also
interested in which regression models and inputs
show the poorest performance (highest RMSE). For
the model that generates the worst forecast at each
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time step (not displayed), Decision Tree Regression
ranks poorest (44%) followed by Ridge (31%). For
the worst four predictions, Decision Tree Regression
ranks poorest again (42%) followed again by Ridge
(26%). Figures 8 and 9 show the fraction of time
steps that a specific input type produced the least
accurate electricity demand prediction. Not sur-
prisingly, the demand only input (D) ranks worst
in both cases. For the buildings studied, exogenous
weather inputs do not appear to significantly im-
prove the forecast accuracy. Buildings located in
less temperate climates could be expected to show
greater correlation between temperature and elec-
tricity demand.

3.8. Single Model Study Conclusions

Based on the results from the batch and mov-
ing horizon studies, we assert that no single fore-
casting model (regression model and input type)
will produce the best results across every building.
To produce good results using a single model ap-
proach, an engineer must perform model and fea-
ture selection for each deployment, increasing the
cost of energy management applications that re-
quire building-level electricity demand forecasts.
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However, the results also show that there is a sub-
set of forecasting models that perform well for each
building. Furthermore, at each time step, one fore-
casting model produces a prediction that is more
accurate than any other prediction. If we train a set
of regression models and determine which model in
the set is most likely to produce the best prediction
at a given time step, we can formulate an ensemble
method that is able to perform model and feature
selection by learning from past electricity demand.
This is the core motivation of the gated ensemble
learning method presented in the next section.

4. ENSEMBLE METHOD

4.1. Background

Given the many unpredictable behaviors of oc-
cupants and the unique physical and mechanical
characteristics of every building, a single model ap-
proach to electricity demand forecasting may per-
form very well in one case and very poorly in an-
other. Without being able to observe the causes
of electricity demand changes (through extensive
sub-metering and/or occupancy sensing), it is dif-
ficult to justify why a model does or does not per-
form well. Furthermore, the incorporation of exoge-
nous signals like regional weather conditions may
improve a model’s accuracy but such benefits can-
not be guaranteed. Only through observation and
experimentation can the best regression model and
input type be identified for a particular building.

The assertion that the best forecasting model can
be identified through data driven experimentation
underlies the ensemble method presented in this pa-
per. To build upon existing literature and to im-
prove the portability of electricity demand forecast-
ers, we have developed a method that tests multiple
models before selecting one that is best suited for
a particular building and instance in time.

Our multiple model regression method falls under
a category of ensemble learning methods commonly
referred to as a “bucket of models” [30][31]. It is
important to recognize that unlike other ensemble
methods (which average, stack, or otherwise com-
bine the outputs from multiple models), the bucket
of models approach selects a single model from the
ensemble set. Consequently, a bucket of models ap-
proach can perform no better than the best model
in the set. Therefore, to produce accurate fore-
casts, it is important that the individual models
perform well, though perhaps only in certain con-
ditions. Additionally, our ensemble method must



be able to identify and avoid models that are likely
to perform poorly for a particular building. This ca-
pability will alleviate the need for prior knowledge
of a building’s energy use and, in practice, allow for
model and feature selection to be performed in real
time.

4.2. Method

Our gated ensemble learning method can be di-
vided into 4 steps: Training, Validation, Gating,
and Testing. In the training step, each model is
trained on a subset of historic data, with the most
recent electricity demand data points reserved for
validation, as shown in Figure 10. The size of the
training subset may vary by application and by
training approach. For models trained in a batch
manner, a large data set (e.g. >12 months) is re-
quired. Additionally, the training step is either
performed only once or periodically (e.g. every 6
months) rather than at every time step.

For models trained in a moving horizon manner,
a smaller dataset is required (e.g. 2 to 12 months)
and the training step is performed periodically (e.g.
daily) or at every time step. Again, the length of
the dataset can be customized to the application.
For example, because the use patterns of university
buildings change according to an academic calen-
dar, a training set size of 2 or 3 months may be
ideal. For an office building with very consistent
energy use patterns, a training set size of 6 months
or more may produce the best results. Stated more
explicitly, small training sets are more capable of
capturing recent energy use patterns but carry the
risk of allowing the regression model to overfit the
data. By contrast, a large dataset will capture con-
sistent energy use patterns but may miss recent or
short-term changes, thereby appearing to underfit
the data. In this paper, we will favor smaller train-
ing sets (3 months) for moving horizon models and
larger trainings sets (18 months) for batch models.

In the validation step, the most recent historic
data is used to generate predictions with each fore-
casting model, as shown in Figure 10. These fore-
casts are compared with the electricity demand
data (that was not used for model training) to de-
termine each model’s performance. Again, the size
of the data set used for validation may vary by ap-
plication, but in our implementation, the length of
the validation set is equal to twice the desired fore-
cast length (i.e. for a 6 hour forecast, the previ-
ous 12 hourly electricity demand data points are
reserved for validation).
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Figure 10: Graphical Representation of Gated Ensemble Re-
gression Method with 3 Models and 3 Hour Forecast Horizon

The measure of a model’s performance or the cri-
teria for identifying the “best” model will depend
on the application. In some cases, we may want
to define “best” as the forecast that will produce
the highest pay-off or incur the least risk. In other
cases, we may want the forecast with the small-
est positive or negative error. In this paper, we
will focus on producing the most accurate forecast
as defined by the lowest root mean squared error
(RMSE).

In the gating step, a method is applied to select
a single model from the bucket of models accord-
ing to its relative performance during the valida-
tion step. In other words, the gating method is
responsible for choosing which model in the bucket
of models will be used in the test step to generate
the electricity demand prediction. The objective of
the gating method is to select the best model based
on present and/or past information from the vali-
dation step. In this paper, we will implement and
compare 2 alternative gating methods. The first
method is cross-validation selection (CV). Put sim-
ply, the CV gate will select the forecasting model
that performed best (produced the lowest RMSE)
during the validation step. The CV gate can be con-
sidered a greedy approach because it has no mem-
ory of how its past decisions impacted the accuracy
of the test prediction. Instead, the model selection
is based entirely of the current performances in the
validation step.

The second gating method uses a single recur-
sively trained linear regression model (SR) to pre-
dict the performance of each forecaster in the
bucket of models. Given n forecasters, the SR
model input x € R™! is the forecasting model’s
performance during the validation step (i.e. zp41 =
Past RMSE of forecaster j) and a sparse binary
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Figure 11: Gated Ensemble Study Results

vector representing each forecaster (i.e. for fore-
caster j, z; = 1l and x; = 0 for i = 1,...,j —
1,7+ 1,...,n). The SR model output § € R is the
forecaster’s predicted performance during the test
step (i.e. § = Predicted RMSE of forecaster j). In
other words, the linear model includes a parameter
for each of the regression models and a parameter
corresponding to the validation RMSE. Thus, given
a forecasting model and its performance during the
validation step, we will train the linear model to
predict the performance during the test step. In
this way, the SR gate learns how well a model’s val-
idation performance does or does not indicate the
performance during the test step. This capability
should help to avoid models that perform poorly
and favor models that perform well. The model
with the best predicted performance (i.e. lowest §)
is selected by the SR gate for use in the test step.

Finally, in the testing step, the model selected
in the gating step is used to generate an electricity
demand forecast. Our multiple model method can
be summarized by the following steps:

1. Train each model on a subset of the historical
data.
2. Validate each model using historic data that
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immediately precedes the current time step.
3. Apply a gating method to select a model ac-
cording to its performance during validation.
4. Use the selected model to generate a predic-
tion.

5. MULTIPLE MODEL STUDY

To test our approach, we have implemented the
gated ensemble learning method using two regres-
sion models [Ordinary Least Squares with /5 Regu-
larization (Ridge) and k-Nearest Neighbors (k-NN)]
and four input types [electricity demand (D), time
(T), electricity demand and time (DT), and elec-
tricity demand, time, and exogenous weather data
(DTE)]. Despite the poor performance of the de-
mand only and time only inputs in the batch and
moving horizon studies, we have included them to
observe if the gating methods choose to avoid the
inputs. Therefore, the bucket of models will include
the best (k-NN with DT) and the worst (Ridge with
T) forecasting models from the single model stud-
ies. We have elected to exclude the ANN models
from the ensemble due to their computational com-
plexity.



The regression models are trained in both batch
(BA) and moving horizon (MH) manners, for a to-
tal of 16 forecasting models per building. Next,
we generated a 6 hour electricity demand forecast
(7 € RSY) for every hour between July 1st, 2013,
and January 1st, 2014 using the Training, Valida-
tion, Gating, and Testing steps described above.
The batch models are trained once on 18 months of
data and the moving horizon models are trained at
every time step on 3 months of data.

The results, employing both of the gating meth-
ods described, are presented in Figure 11. For test-
ing purposes, we have also implemented an Oracle
gate, which simply selects the best prediction for
each time step regardless of the performances of
the models in the validation step. The results from
the Oracle gate represent the theoretical optimal of
the ensemble approach.

In Figure 11, the top subplot presents the over-
all performance of each gate as measured by the
MAPE of the selected predictions. The dotted lines
represent the best performance (lowest MAPE) of
any single model from the batch study and the
dashed lines, from the moving horizon study. The
results show that our ensemble method is able to
perform comparably to the best forecaster from the
batch and moving horizon studies without any prior
knowledge of the energy end-use or the relative per-
formance of the contained forecasting models. The
Oracle gate is able to outperform the ANN models
from the batch study, however, the cross-validation
gate (CV) and single regression (SR) gate are not.
Among the gating methods studied, there is no
clear winner. The SR gate shows a small advan-
tage in buildings B and G, but the worst perfor-
mance in building C. In each of the buildings, the
CV gate performs comparably to the best model
from the moving horizon study. The performance
of the Oracle gate, particularly in buildings C, E,
and H, suggests there is still potential for a gating
method (not presented here) to further improve our
ensemble approach.

The second subplot shows the percent utilization
of each regression model by the Oracle, CV, and
SR gating methods, regardless of input type. In
other words, the plot shows the percentage of time
steps that a particular regression model and train-
ing manner was selected by the respective gating
method. Because the Oracle gate represents the op-
timal decision given the forecasting models in the
set, we would like to see comparable utilization per-
centages between the Oracle and the other gates.
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Figure 13: Optimal Prediction Generation by a Forecaster
over Consecutive Time Steps When Applied to Commercial
Dataset

Based on the subplot, this is generally the case with
respect to regression model selection.

The bottom subplot shows the percent utiliza-
tion of each input type by the Oracle, CV, and SR
gating methods. Here, we observe larger differences
between the behaviors of the gates. For Buildings
A, E, and F, the SR gate favors the electricity de-
mand and time (DT) inputs much more than the
Oracle gate. For Buildings E and D, the SR gate
underutilizes the electricity demand only (D) input
compared to the CV and Oracle gates. For Build-
ing C, the CV and Oracle gates avoid the time only
(T) input but the SR gate does not. It should be
noted that neither of these subplots quantifies the
impact of the percent utilizations on the MAPE of
the gates. Nonetheless, the percent utilization met-
ric provides useful insight into the decision making
of each gate.



In general, we see very similar utilization rates
between the Oracle and CV gates. This does not
mean that both gates select the same forecaster at
the each time step, but does suggest that the CV
gate is capable of identifying forecasters that work
well for a certain building. In Buildings E and F, we
see that all 3 gates favor the k-NN models over the
Ridge models. Additionally, in each of the build-
ings, the inclusion of exogenous weather data does
not appear to significantly improve the accuracy of
the predictions, as suggested by the Oracle’s DTE
utilization rate. This could mean that electricity
demand is not strongly correlated with weather or
that correlation only appears under certain condi-
tions (e.g. an unusually cold or warm day).

Figure 12 presents a sample of the predictions for
Building A. The top subplot shows the actual elec-
tricity demand data from 8/6/13 to 8/9/13 and a
series of multivariate forecasts selected by the Ora-
cle gate (i.e. the most accurate forecast at each time
step). The bottom subplot details which forecast-
ing model generated the selected prediction. The
marker color denotes the regression model and the
marker shape, the input type. A filled marker indi-
cates that the model was trained in a batch manner
and a half-filled marker, a moving horizon manner.

Since the Oracle gate chooses the most accurate
forecast at each time step, Figure 12 supports the
notion that a certain forecaster may generate the
best prediction several time steps in a row. Figure
13 shows, for all 8 buildings, the number of times a
forecaster produced the best prediction over multi-
ple consecutive time steps and the lengths of such
sequences. For the validation step to properly in-
form the gating method, we would like to observe
high frequencies of large repeated model sequences.
Using fewer models would, of course, increase the
probability of such sequences at the loss of potential
performance.

6. RESIDENTIAL STUDY

To further test our ensemble approach, we have
repeated the single model batch study, single model
moving horizon study, and multiple model ensem-
ble study using 24 residential electricity demand
datasets. This time-series demand data has been
downloaded by the individual customers from the
electric utility’s website and provided to our re-
search group. Each dataset is from a home in north-
ern California but has been anonymized such that
we do not know its exact location. Accordingly, for
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Figure 14: Residential Study Results

this study, we have excluded the forecasting models
that use weather data as inputs.

We utilize two regression models [Ordinary Least
Squares with /¢y Regularization (Ridge) and k-
Nearest Neighbors (k-NN)] and three input types
[electricity demand (D), time (T), and demand and
time (DT)]. The regression models are trained in
both batch (BA) and moving horizon (MH) man-
ners, for a total of 12 forecasting models. In each of
the studies, we generate a 6 hour electricity demand
forecast (§ € RY) for every hour between October
1st, 2014, and January 1st, 2015. The batch mod-
els are trained once on 9 months of data and the
moving horizon models are trained at every time
step on 3 months of data.

The results from the single model batch, single
model moving horizon, and multiple model ensem-
ble studies are presented in Figure 14. In the fig-
ure, each bar represents the mean absolute percent
error (MAPE) of the respective predictions across
all 24 residential building datasets. Moving from
left to right, the first 6 bars represent the results
from the single model batch study and the next 6
bars, the single model moving horizon study. Here,
we observe that the MAPEs are much larger for
the residential predictions than for the commer-
cial/university predictions. This can be explained
by the fact that the residential electricity demands
are much smaller and are composed of fewer loads
than the commercial/university demands. There-
fore, any change to the residential demand produces
a larger percent change and any prediction error
will correspond to a larger percent error. In the
single model studies, the highest performing fore-
caster is the k-Nearest Neighbors regression model
with demand input (D) trained in a moving horizon
manner (MAPE: 63.5%).

In Figure 14, the Oracle, CV, and SR bars



show the results produced by our ensemble learning
method. As previously stated, the results from the
Oracle gate (MAPE: 37.1%) represent the optimal
potential given the forecasters in the bucket of mod-
els. The CV gate represents the results (MAPE:
61.5%) using cross-validation to select which fore-
caster to utilize. Here, we observe that the CV gate
performs comparably to the best forecaster in the
single model studies. The SR gate represents the
results (MAPE: 55.8%) using a single recursively
trained linear regression model to select a forecaster
by predicting the performance of each model. These
results suggest that the SR gate outperforms the
CV gate as well as any of the single model ap-
proaches. In other words, the SR gate is able to
learn from the past performance of each model and
to make better decisions about which model to se-
lect at each time step.

The Oracle gate’s percent utilization of each fore-
caster in the bucket of models is shown in Figure
15. These results show that, across the 24 resi-
dential electricity demand datasets, the Oracle gate
shows a slight preference for the k-Nearest Neigh-
bors models. This does not indicate that the k-NN
models perform significantly better (lower RMSE)
than the Ridge models, only that the k-NN models
produce the best prediction with a higher frequency.

Lastly, Figure 16 shows, for all 24 residential
buildings, the number of times a forecaster pro-
duced the best prediction over multiple consecu-
tive time steps and the lengths of such sequences.
Compared to the commercial /university buildings
(Figure 13), we observe larger sequences of optimal
prediction generation when applying the ensem-
ble method to the residential buildings. It should
be noted that for the residential studies we have
not incorporated weather data and are thus using
4 fewer forecasting models than in the commer-
cial/university studies. Nonetheless, the Oracle’s
forecaster utilization rates (ranging from 5.0% to
14.6%) and the presence of large optimal prediction
generation sequences support the underlying asser-
tion of our ensemble learning method: by selecting
between multiple models at each time step, we can
obtain better results than a single model approach.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a gated ensemble
learning method for short-term electricity demand
forecasting. The contribution of this method is to
allow for the incorporation of multiple forecasting
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Dataset

models trained in both batch and moving horizon
manners. Stated more explicitly, rather than choos-
ing a single approach, an engineer can utilize mul-
tiple models with the intention of improving the re-
liability of the forecaster to produce useful results.
This makes the method well suited for real world
applications. At deployment, the moving horizon
models can be utilized until sufficient data is avail-
able to train the batch models. This adaptability
also makes the method suitable for control appli-
cations. Rather than assuming that demand be-
haviors are time invariant, the method will work to
recognize both long and short-term electricity de-
mand patterns.

The relative performance of the Oracle gate sug-
gests that there is potential for continued devel-
opment of the gating functions. For instance,
none of the gating functions attempt to identify re-
peated model selection sequences. Given the opti-
mal model in the previous few time steps, a gat-
ing method could determine the probability that a
model will be optimal in the next time step. Also,
in our implementation, the validation step uses the



RMSE of 6 multivariate forecasts to measure the
performance of each model. It may be more effec-
tive to use fewer forecasts or even univariate predic-
tions in order to identify the optimal model at the
given time step. Finally, the addition of a feature
selection procedure may help to reduce the dimen-
sionality of the regression models or even eliminate
certain input types from consideration.

By applying our gated ensemble learning method
to 32 unique building electricity demand data sets
(8 commercial/university and 24 residential), we
demonstrate that the incorporation of multiple
models can yield better results than a single model
approach. While the development of the gating
methods is ongoing, the ability of each gate to per-
form model validation and selection in real time
greatly improves the method’s adaptability and
ease of use. Utilizing this data-driven approach,
we empirically show that the ensemble method is
capable of aiding in the production of accurate mul-
tivariate electricity demand forecasts for building-
level applications.
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