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Abstract—Plug-in Electric Vehicle (PEV) charging stations
couple future transportation systems and power systems. That
is, PEV driving and charging behavior will influence the two
networks simultaneously. This paper studies optimal planning of
PEV fast-charging stations considering the interactions between
the transportation and electrical networks. The geographical tar-
geted planning area is a highway transportation network powered
by a high voltage distribution network. First, we propose the
capacitated-flow refueling location model (CFRLM) to explicitly
capture PEV charging demands on the transportation network
under driving range constraints. Then, a mixed-integer linear
programming (MILP) model is formulated for PEV fast-charging
station planning considering both transportation and electrical
constraints based on CFRLM, which can be solved by de-
terministic branch-and-bound methods. Numerical experiments
are conducted to illustrate the proposed planning method. The
influences of PEV population, power system security operation
constraints, and PEV range are analyzed.

Index Terms—Plug-in electric vehicle, charging station, plan-
ning, capacitated flow-refueling location model, mixed integer
programming.

I. INTRODUCTION

LUG-IN electric vehicles with lower emissions and en-

ergy consumption than internal combustion engine ve-
hicles are regarded as a promising tool to combat energy
sustainability and climate change. Therefore, governments,
automobile companies, energy corporations, etc., have made
great efforts to promote PEV development [1].

A major barrier for PEV adoption is their limited driving
range compared with internal combustion engine vehicles —
known as “range anxiety” [2]. Therefore, it is vitally important
to properly site PEV charging systems to ameliorate range
anxiety. Generally, PEV charging can be divided into two
categories: 1) Destination charging, which happens when
a PEV arrives at its destination, including home charging,
workplace charging; 2) Urgent charging, which happens when
a PEV is enroute and its state-of-charge (SoC') falls below
a certain threshold. Because most of the customers’ daily
mileages are below the PEVs’ drive range on the market,
destination charging is the major energy supply method for
PEVs. However, complementary PEV urgent charging is still
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necessary in case of long-distance driving demands, espe-
cially on highway networks [2]. Destination charging needs
are mostly satisfied by distributed charging spots with low-
power (or normal-power) chargers deployed in private or
public parking lots, while urgent charging needs are mostly
satisfied by fast-charging stations [3]. In recent years, both
distributed charging and fast-charging stations have gained
heavy investments. These investments are still insufficient to
meet the growing PEV fleet. For example, in China another
4.8 million distributed charging spots and 12 thousand fast-
charging stations are planned for construction by 2020 [4].

Since fast-charging stations couple transportation and power
networks, their locations and sizes not only affect PEV driv-
ing behavior, but also significantly impact transportation and
power network operation. Therefore, the planning of fast-
charging stations should take both transportation and electrical
constraints into consideration. The locations and sizes of fast-
charging stations in a transportation network should satisfy
PEV driving demands, while simultaneously ensuring the
security operation constraints of power systems, e.g., distribu-
tion line current limits and nodal voltage limits. In addition,
an appropriate fast-charging station planning method should
minimize the investment costs of both charging stations and
corresponding power grid upgrades.

PEV charging station planning has become a research
hotspot over recent years. We can generally divide this lit-
erature into three categorical perspectives:

1) Transportation Approach: Planning of gasoline stations
has been studied for decades and the corresponding method-
ologies have been adopted and redeveloped for PEV charging
station planning. These methods can be further divided into
three major methodologies: a) nodal demand-based planning
[5]-[7]; b) transportation simulation-based planning [8], [9];
c) traffic flow-based planning [10]-[16]. The nodal demand-
based planning methods assume PEV charging occurs on some
geographical nodes of the target planning area and locate the
charging stations to satisfy charging demand [5]-[7]. However,
these methods only consider the geographical straight line
distances between charging nodes while the transportation
network congestion constraints are ignored. The transportation
simulation-based planning methods use simulation to estimate
PEV charging demands. The simulations are often based
on real world comprehensive individual travel survey data
[8], [9]. Obtaining such data can be costly for some target
planning areas. Considering the mobility behavior of PEVs,
some researchers proposed traffic flow based planning methods
[10]-[16]. These methods use origin-destination (OD) traffic



flow to estimate charging demands. In [10], the flow capturing
location model (FCLM) was proposed, which seeks to locate
a certain number of stations on a transportation network in
order to capture as much traffic flow (demands) as possible.
FCLM does not consider the driving range constraint of
PEVs. Reference [11] modified FCLM into the flow-refueling
location model (FRLM) which uses a flow-refueling concept
to consider driving range. FRLM and its modified versions
were also utilized in [12]-[16]. Articles from the transportation
perspective [S]-[16] ignore power system constraints and the
planning results may need readjustment according to the
practical power system conditions.

2) Electrical Approach: As a new type of power demand,
the PEV charging station planning in power systems has also
drawn much attention. Existing work usually aims to site
charging stations in power systems to satisfy power system
economic or security operation constraints, while minimizing
the investment costs for the charging stations and correspond-
ing power grid upgrades. In [17], a two-step screening method
was developed to locate charging stations in a distribution
network and a modified primal-dual interior point algorithm
was proposed to determine sizing. Reference [18] presents a
framework for optimal design of battery charging/swapping
stations in distribution networks based on life cycle cost
analysis. In [19], the optimal sizing and siting of a PEV
charging station with vehicle-to-grid capabilities in distribution
networks was studied. In [20], a multi-objective optimization
problem was developed to obtain the optimal siting and sizing
of charging stations and renewable energy sources in distribu-
tion networks. References [17]-[20] ignored the transportation
constraints and the results may need readjustment according
to the practical transportation conditions.

3) Multidisciplinary Approach: There are few published
papers that have studied PEV charging station planning consid-
ering both transportation and electrical constraints. In [21], an
equilibrium modeling framework was proposed in a coupled
transportation and power network. The authors assumed the
transmission nodal electricity prices will influence PEV charg-
ing choices and therefore influence the traffic flow. However,
the nodal electricity prices may hardly influence traffic flow
since there is usually a long geographical distance between
two transmission nodes and the costs for a PEV to travel
from one node to another is high. In [22], a multi-objective
PEV charging station planning method was proposed to ensure
charging service while reducing power losses and voltage
deviations in distribution networks. The FCLM was used and a
heuristic simulation procedure was adopted to consider driving
range constraints. In [23], the authors studied coordinated
planning for integrated power distribution networks and PEV
charging systems based on a multi-objective evolutionary algo-
rithm. The authors used the FCLM to consider transportation
constraints, while the driving range constraint was ignored.
Additionally, [22], [23] consider low voltage distribution net-
works with service radiuses much smaller than a typical PEVs’
driving range, so that the optimality of the planing results
was not guaranteed. Reference [24] proposed a mixed-integer
non-linear programming model for optimal siting and sizing
of PEV charging stations solved by a genetic algorithm. The

PEV charging demands were simply assumed to be uniformly
distributed across the target area. In [25], the authors studied
charging station siting which balances the benefits of PEV
owner, charging station owner, and power grid operator. The
effect of PEV charging on the power grid was simply assumed
to be proportional to the charging power.

This paper studies optimal planning of highway PEV fast-
charging stations utilizing a multidisciplinary approach, where
both transportation and electrical constraints are considered.
The planning objective is to increase social welfare and we
assume the social planner has access to both transportation
and power system information. The geographical targeted
planning area is a highway transportation network powered by
a high voltage distribution network with large service radius.
Compared with the published literature, the major innovations
of this paper are twofold:

1) A capacitated flow-refueling location model (CFRLM) is
proposed, in which the PEVs’ driving range constraint is
explicitly incorporated. CFRLM utilizes OD traffic flows
to estimate PEV charging demands and adopts queuing
theory to model service abilities of PEV charging sta-
tions on the transportation network.

2) A mixed-integer linear programming (MILP) model for
fast-charging station planning in coupled transportation
and distribution networks is formulated, which can
be solved by deterministic branch-and-bound methods.
The planning model can optimize investment costs for
both charging stations and distribution networks. The
transportation constraints of CFRLM and the security
operation constraints of the distribution network are
considered simultaneously.

Numerical experiments are also conducted to validate the
proposed planning method. The influences of various factors,
such as PEV population, power system security operation
constraints, PEV driving range, and PEV arrival/departure
SoC's are also analyzed.

The CFRLM is formulated in Section II. Section III intro-
duces the mixed-integer linear programming model for high-
way fast-charging station planning. Case studies are described
in Section IV. Section V provides conclusions and discussions.

II. CAPACITATED FLOW-REFUELING LOCATION MODEL

The proposed CFRLM is based on the flexible formulation
of FRLM proposed in [12] and used in [16]. Compared with
[12] and [16], the advantages of CFRLM are twofold. First,
the service capacities of charging stations are considered in
CFRLM. Since a PEV charging station’s investment costs and
maximum charging power are relevant to its capacity, i.e.,
number of charging spots, considering capacitated charging
stations makes the planning model more practical. To define
the service ability of each charging station, queuing theory
is implemented in CFRLM. Secondly, we enable unsatisfied
charging demand. Specifically, satisfying charging demand
may be infeasible due to limited distribution line capacity.
There, we utilize a penalty term to penalize the unsatisfied
charging demands in CFRLM.
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(a) A single path transportation network

(b) The corresponding expanded network (driving range 100 km)

Fig. 1. An example of the transportation network expansion.

A. Driving Range Logic & Transportation Network Expansion

In this part, we review the driving range constraint logic (or
refueling logic) and the corresponding transportation network
expansion technique in [12], which are the foundations of
CFRLM. The corresponding notations can be found in Table I.

We take a simple transportation network G(Wg, A,)
in Fig. 1(a) as an example, which has a single travel
path, i.e., path g. The path has 4 transportation nodes,
ie, ¥p = {A,B,C,D}, and 3 arcs, ie., A
{(4,B),(B,C),(C,D)}. A flow of PEVs, ie., F,, with
driving range I = 100 km after a single charge need to travel
from origin node A to destination node D without running
out of energy. The PEVs enter the transportation network at
node A with SoCs equal to SoC, and they need to leave
the transportation network at node D with SoC's higher than
SoCy'. The planner’s objective is to locate charging stations in
the candidate location set \I!‘q“ to satisfy the driving demands.

The original transportation network, i.e., G(Vy', A;) (see
Fig. 1(a)), is expanded into a new network, i.e., G(\ilg‘,flq)
(see Fig. 1(b)), by the following steps:

1) Add source node s before the origin node A and a sink
node ¢ after the destination node D. Define \il‘q“ = vy
{s,t}.

2) Add two pseudo arcs, i.e., {s, A} and {D,t}. And let
distance d; 4 = (1 —SoC,) x R and dp; = SoCy X R.

3) Define the ordering index of each node in \112“ on path
q as its index number from the source node s. For
example, A is the second node on path ¢q: s-A-B-C-
D-t and its ordering index is 2. Connect any two nodes,
say ¢ and j, in \i/‘q“ by a pseudo arc if the ordering index
of node i is less than that of node j, and node j can be
reached from node ¢ after a single charge. For network
G(¥y, Ay), the pseudo arcs (s, B),(B,D),(C,t) are
added.

4) Add a new pseudo arc (s, t) to the network and let Aq =
A,U{(s,A),(s,B),(B,D),(C,t),(D,t),(s,t)}.

In the expanded network G (\i/gl, A,), each path from s to ¢
(excluding path {s,t}) characterizes a feasible solution for the
charging station locations in the node set Wy'. For example,
the PEV traffic flow can travel through path {s, B, D,t} on
the condition that charging stations are located at B and D.
Note that PEV traffic flow along path ¢ requires at least one

1S0Cy corresponds to the distance between the driver’s destination and the
exit of the transportation network.

TABLE I

NOTATIONS USED IN THE CFRLM
0] Index of nodes for original transportation network. 4,5 € ¥ (@)
(4,5)  Index of arcs from node i to node j. (i,7) € Ay
q Index of paths of the transportation network. ¢ € Q
\Il‘&) Set of nodes of the original network (on path g).
\Ilt(‘;) Set of nodes of the expanded network (on path g).
A Set of arcs of the original network (on path g).
A Set of arcs of the expanded network (on path q).
d;,j Distance between node ¢ and node j.
Flo Volume of traffic flow (on path q).

Q) Set of paths of the original network (travel through node 7).

R Driving range of PEVs, in km.

SoC,  Arrival SoC of a PEV at the origin node of a path.

SoCy  Departure SoC of a PEV at the destination node of a path.

C1,i Fixed costs for building a new charging station at node i,
including buildings costs etc.

C2,i Costs for adding an extra charging spot in a station at node i,
including land use costs, charging spot purchase costs etc.

cp Penalty for unsatisfied charging demand.

g(y;)  Charging service ability, given y; charging spots.

Ui Maximum possible number of charging spots in station <.

Si Binary variable denoting charging station location at node 4:
s; = 1, if there is a station at node ¢; s; = 0, otherwise.

:L’gj Continuous variable, fraction of OD flow on arc (¢, j), path q.

Yi Integer variable, number of charging spots in station at node 4.

station located in Wy'. The planner’s objective is to locate some
stations in Wy' so that the PEV traffic flow can find a path in
the expanded network G(\I/‘“ A,) to travel from s to t. If
there is no feasible set due to budget limits or distribution
network constraints, the traffic flow must travel through the
pseudo path {s,t}, on which no charging station is needed.
This path captures unsatisfied charging demands. In summary,
this expanded transportation network model incorporates PEV
driving range constraints.

For a network with multiple paths, ie., G(¥™, A), the
same expansion method is used for each path, rendering a
corresponding expanded network, i.e., G(¥™, A).

B. Capacitated Flow Refueling Location Model

Based on the expanded network, the CFRLM can be formu-
lated as follows (see Table I for the corresponding notations):

min_ Z (c1,i8i + coiys) + Z e Iy (D
{Si,yiv’”ij} iewtn qeQ
subject to:
1, i=s
> - di=g b=t
{il(i,5)€Aa} {41(,i)€AL} 0, 1i#s,t
VgeQ,vie ¥, (2
ol >0, VgeQ,v(i,j) € A, 3)
Z Z Foxf, < g(yi), View", )
q€Qi {j|(j,i) €A}
yi < gisi, Vie W, )



yi €Z, Yiecu™, s; € {0,1}, Vie ™ (6)

The first term in objective function (1) is the summation of
investment costs for each charging station, including a fixed
cost per station and cost per number of charging spots. The
second term in (1) is the monetary penalty for unsatisfied
charging demands, which is proportional to the traffic flow
traveling directly through the pseudo source and sink arcs,
ie., 1, F,.

Equations (2)—(3) define the traffic flow equilibrium con-
straints, which ensure that the outflow minus inflow must equal
the virtual supply and demand of the node. Equation (4) is
the service ability constraint for each charging station. The
traffic flow path can include a given node only if there is
a charging station and enough charging spots are installed.
Equation (5) upper-bounds the number of charging spots, if
there is a charging station at that node.

Given the distribution of charging demands and charging
service time, the service ability of a charging station is a
function of the number of charging spots, i.e., F' = g(y) in
constraint (4). For simplicity, a planner may assume linear
relationship ¢g(y) = Ay, in which A is the amount of charging
demands each charging spot can satisfy. This assumption was
used in previous work, such as [26]. To enhance the model
accuracy, we use queuing theory [27] to estimate g(y) in this
paper.> And since g(y) is nonlinear and convex, it makes the
constraint (4) concave and thus the CFRLM is non-convex
and difficult to scale. Thus, we use piecewise linearization
[28] to reformulate constraint (4) into a mixed integer linear
constraint. Details of the queuing modeling and piecewise
linearization is given in Appendix A.

In practice, the charging stations can be located at any
place in the transportation network, producing an infinite
dimensional planning problem. This is intractable. In CFRLM,
the charging stations can only be located at predefined trans-
portation nodes, i.e., U'". To increase modeling accuracy, we
can add auxiliary nodes on the long original arcs in the
network - thus increasing the network granularity. As a result,
the expanded transportation network has more nodes and the
arc distances are decreased. Charging stations can be located
at the original and auxiliary nodes, along the original arcs.

III. CHARGING STATION PLANNING MODEL

This section expands the CFRLM into a mixed integer linear
programming planning model considering coupled transporta-
tion and power network constraints. When the PEV traffic
flow is small, the PEV fast-charging load is small and has
negligible impact on the power system. However, with rapidly
increasing PEV adoption, the fast-charging power will grow
significantly and may threaten secure operation of power
distribution networks. This will be particularly predominant in
a highway transportation network, where the covered area is
mostly rural and loads are traditionally low. PEV fast-charging
loads may become a major part of the total power demand.

We study PEV charging station planning in 110 kV high
voltage distribution networks, to directly address limited PEV

2We can also adopt more accurate simulations or empirical data to estimate
g(y) in practice.

TABLE II
NOTATIONS USED IN THE PLANNING MODEL
b Index of branches of the distribution network. b € ¥
n Index of nodes of the distribution network. n € ¥dn
ydb Set of branches of the distribution network.
Ydn Set of nodes of the distribution network.
win Set of transportation nodes connected to distribution node 7.
B Investment costs budget.
€3, Per-unit costs for distribution line at location 4, in $/(kVA-km).
C4i Per-unit costs for substation capacity expansion at 7, in $/kVA.
dbase Base load current at distribution node n.
dbase Column vector of nodal base load current, [d?2°]T,
fo Upper limit of branch current of branch b.
gn Generation current injection at distribution node n.
g Column vector of the nodal generation injection, [gn]T.
l; Required distribution line length to install a charging station
at location .
p Rated charging power of a charging spot.
Pisf'(']’ Initial substation capacity available at transportation node 3.
S Node-branch incidence matrix for the distribution network.
ﬁ/VTl Lower/upper limit of nodal voltage at distribution node n.
Zp Impedance of branch b.
dsy PEV charging current at distribution node n.
a®v Column vector of nodal PEV charging current, [d$/]7.
o Current of branch b.
f Column vector of branch current, [f,]7.
P; Maximum PEV charging power at transportation node .
P;“b Substation capacity expansion at transportation node <.
Vi Nodal voltage at distribution node n.
Y4 Column vector of the nodal voltage, [Vn]T.
1% Reference voltage of the distribution network.

driving range. In practice, PEV charging stations are usually
connected to medium voltage distribution networks, e.g. 10
kV networks in China. The planning results can be further
adjusted for the lower voltage distribution networks, for which
the previous works in [22], [23] can be used.

A. Planning Objective

The planning model objective is to minimize investment
costs, subject to satisfying PEV charging demand, formulated
as follows (see Table II for the corresponding notations):

min {Csta + C(gri + Cpen} (7)
{56,y:}
where:
Coa = Z (c1,i8i + ¢2,i93) ®)
7;6‘1"“
Coi = Z (cs,iliP; + ca,i PP™) ©)
iewn
Open = Z CpJUZth (10)
q€Q

where, the first term and the third term in (7) respectively
represent the charging station investment costs, i.e., Cy,, and
the penalty for unsatisfied charging demands, i.e., Cpen, in
CFRLM. The second term in (7) accounts for power distri-
bution network costs, i.e., Cgyi. This includes the costs for
distribution lines, i.e., the first term in (9), and the costs for



substation capacity expansion, i.e., the second term in (9). Note
that the three terms in (7) have the same unit.

The distribution line investment cost is approximately pro-
portional to the product of maximum charging station power,
i.e., P;, and the required distribution line length, i.e., I; [29].
P; can be calculated as:

Vi e o, an

In practice, the required distribution line length must be
determined for each candidate location.

In some locations, existing power substations have sufficient
capacity to supply added PEV charging stations. If the existing
substation capacity is insufficient, then the substation must be
be expanded. Let P;%b denotes the surplus substation capacity
at location ¢. Then the required substation capacity expansion
can be calculated as:

P* = max(0, P, — PIY), Vie ™

P; = py;,

12)

B. Planning Constraints

1) Transportation Constraints: The planning model must
satisfy CFRLM constraints (2)—(6).

2) Kirchhoff’s Law Constraints [30]: The branch currents
and nodal voltages of the distribution network must satisfy
Kirchhoff’s Current Law (KCL) and Kirchhoff’s Voltage Law
(KVL), which are defined respectively as follows:

Sf 4 g = b T dbase7
2 fp + [S]Lw V =0,

13)

Vb e v, (14)

in which, the PEV charging current at distribution node n
is the summation of all the charging current at its coupled
transportation nodes:

=" PV, VYneu™
iewn

15)

The KCL and KVL constraints provide a linear approximation
of the optimal power flow constraints in distribution networks,
which was also used in [30].

3) Distribution Line Current and Nodal Voltage Limits:
The distribution line currents and nodal voltages must not
violate their permitted ranges, which are respectively defined
as follows:

Vb € U,
Vn e oo,

‘fb| Sﬁ?
Vo <V, <V,

(16)
a7
4) Budget Constraint: In some scenarios, the total afford-

able investment costs of the PEV charging system planner is
limited, and defined as follows:

Cya+ Cyi < B. (18)

IV. CASE STUDIES
A. Case Overview and Parameter Settings

We consider a 25-node highway transportation network [31]
coupled with a 14-node 110 kV high voltage distribution
network to illustrate the proposed planning method.

Fig. 3. A 110 kV distribution network used for the case study.

The 25-node transportation system is depicted in Fig. 2.
The number on each arc represents the distance between the
corresponding two nodes. We assume the per-unit distance in
Fig. 2 is 10 km. For example, the distance of arc (1,2) is
4 units, corresponding to 40 km. The decimal next to each
node is the node’s weight, i.e., W, which represents its traffic
flow gravitation [31]. The gravity spatial interaction model was
used to generate an OD flow structure based on node weights
and arc distances [10]:

FiV = Fel x Fyy/ > Fy,Viji#j.  (20)
i#]
where FFEY is the total PEV traffic flow (average number of

PEVs that travel through this transportation network) during
peak hour, in h'!; F};EV is the PEV traffic flow from node i to
node j, in h™'.

To enhance network granularity, we add extra auxiliary
nodes on the arcs with distances longer than 20 km. As a
result, the modified transportation network has 93 nodes and
the longest distance of all arcs is 20 km. The charging stations
can be located at the original and auxiliary nodes. The weights
of auxiliary nodes were set to 0.

The diagram of the 110 kV high voltage distribution
network is shown in Fig. 3. We assume node 1 is connected
to a 220 kV/110 kV transformer with 150 MVA capacity. Due
to limited space, the parameters of the distribution network
are omitted in this paper, but can be downloaded in https:


https://github.com/zhanghc09/PEV-charging-network-planning/blob/master/110kV_distribution_system.pdf

TABLE III
NODE COUPLING RELATIONSHIP OF THE TWO NETWORKS

Distribution Node ID 01 02 03 04 05 06 07
Transportation Node ID - 13 08 12 22 14 24
Distribution Node ID 08 09 10 11 12 13 14
Transportation Node ID 04 02 05 09 15 17 20

//github.com/zhanghc09/PEV-charging-network-planning/
blob/master/110kV_distribution_system.pdf. The node
coupling relationship between the distribution and
transportation network is recorded in Table III. We assume the
transportation nodes not included in Table III are connected
to the nearest distribution nodes geographically. The voltage
constraints are V5, = 0.95 and V., = 1.05, and the branch
current limits are set at their rated capacities.

The PEV driving range after a charge, i.e., R, is assumed
to be 200 km and the energy consumption is 0.14 kWh/km.?
The rated charging power for each charging spot (p) is 44 kW,
and the charging efficiency (1) is 92% [7]. Consequently, the
average service time to recharge a PEV with empty battery is
about = (200 km x 0.14 kWh/km)/(92% x 44 kW) = 42
minutes. The service time’s coefficient of variance, i.e., ci, is
assumed to be 0.5 to reflect the influence of stochastic driv-
ing/charging behaviors, energy consumptions etc. In practice,
the PEV charging power is not constant and a typical charging
process usually includes two stages: 1) the constant current
charge, when the battery is charged around its rated charging
power; 2) the constant voltage charge, when the charging
power decreases gradually to top off batteries [32], [33].
Because the constant voltage stage is quite time-consuming,
Tesla recommends its customers to charge PEVs only at the
first stage, i.e., charge PEVs to about 80% SoC's, to save time
[33]. Reference [32] also shows that charging PEVs at the
constant voltage stage would under-utilize the station’s service
ability during peak charging demand intervals. Therefore, we
assume that all the customers only charge their PEVs at the
first stage in highway networks to save time, so that the
charging power can be regarded to be constant.

We assume the maximum permitted average waiting time
T = 10 minutes. The arrival SoC and departure SoC' for
all paths in the transportation network are assumed to be
both 50%, thereby forcing at least one charging event. The
maximum number of spots in each charging station, i.e., ¥,
is assumed to be 200. In practice, y; can be defined according
to land use limitation etc.

The fixed costs for each PEV charging station is assumed
to be ¢1,;=$ 163,000. The land use costs is 407 $/m? and
adding one extra charging spot requires 20 m? land. Per-unit
purchase cost for one charging spot is $ 23,500 [7]. Thus we
have c2;=407 $/m?x20 m?+ $ 23,500. The distribution line
cost is assumed to be c3 ;=120 $/(kVA-km) [34]. The distance
from the PEV charging station to its nearest low/medium
voltage substation, i.e., ;, is assumed to be 10% of the
distance between the PEV charging station and its nearest

3R is not necessarily equal to the drive range after getting fully recharged.
In highway networks, PEVs are not likely to get fully recharged at charging
stations, which is explained later in this paragraph.

TABLE IV
PLANNING RESULTS SUMMARY (1000 AND 1500 PEVS/H)

PEVs No. of  No. of Investment costs (M$) Unsatisfied
(' Stations Spots Station Grid Total Demand
1000 19 938 35.03 2222  57.25 0.00 %
1500 21 1382 50.37  46.83 97.20 0.28 %

110 kV distribution node. The substation expansion cost is
assumed to be c4,;=788 $/kVA [23]. In practice, the land
use and labor costs vary by location. To model this feature
across nodes, the per-unit costs, i.e., ¢14, C2; and cq;, at
each location ¢ are assumed to be greater than the base
values introduced above by 5W; x 100%. We assume each
original transportation node has 1 MVA surplus substation
capacity which can be utilized by charging stations, while the
auxiliary nodes have no spare substation capacity. The per-unit
penalty cost for unsatisfied charging demand c,= $ 10* and
the budget constraint B = oco. These parameter values are for
illustration and not necessarily representative of a particular
transportation/power system network.

Because there are 93 candidate charging station locations,
the investment variables include 93 integer variables, i.e., y,
and 93 binary variables, i.e., s. We used three linear segments
to approximate the nonlinear function g(y) in (4). As a result,
a total of 93x4=372 binary variables and 372 continuous
variables are introduced to reformulate (4) (see Appendix A).
The other variables are all continuous including the traffic
flow, i.e., x, voltages, i.e., V, etc. with a total number of
33,340. The constraint number is 7,853. Note that the scale
of the problem is mainly determined by the scales of the
transportation and distribution networks (integer and binary
variables). PEV driving range and arrival/departure SoC's
may influence the structure of the expanded network and
therefore influence the scale of the continuous traffic flow
variables, i.e., z. For example, longer drive range leads to more
complex expanded transportation network, and as a result, a
larger scale problem. However, because PEV driving range
and arrival/departure SoC's are only related to continuous
variables, their influences are not significant. The scale of
PEV traffic flow cannot influence the scale of the problem. We
used CPLEX [35] to solve the optimal PEV charging station
planning problem on a laptop with a quadcore Intel Core i7
processor and 8 GB memory. It takes about 40 minutes to
solve one single planning problem described above with a
0.5% convergent gap.

B. Planning Results and Analysis

PEV charging station planning results under different peak
hour PEV traffic flows are demonstrated in Fig. 4. The
planning results for the 1,000 and 1,500 PEVs/h scenarios
are summarized in Table IV, the locations of the stations in
the transportation network are demonstrated in Fig. 5 and
Fig. 6, in which the corresponding number of charging spots
are labeled for each station. Note that the station locations
in the distribution network can be obtained according to the
coupling relationship in Table III.


https://github.com/zhanghc09/PEV-charging-network-planning/blob/master/110kV_distribution_system.pdf
https://github.com/zhanghc09/PEV-charging-network-planning/blob/master/110kV_distribution_system.pdf
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Fig. 5. Station locations (1000 PEVs/h).

TABLE V
CONGESTION LEVEL OF DISTRIBUTION LINES (1500 PEVS/H)

Line ID 01 02 03 04 05 06 07

Level (%) 944 999 638 586 76.1 227 89.6
Line ID 08 09 10 11 12 13
Level (%) 623 114 290 145 756 578

As expected, the number of spots grows with PEV traffic
flow. When the PEV traffic flow grows beyond 1,500 PEVs/h,
the charging demands can no longer be fully satisfied due to
the distribution network’s operation constraints. The maximum
number of charging spots in the system is about 1,800. In this
case, the active constraints are the distribution line current
limits, i.e., (16). The congestion level, i.e., the ratio of the
actual line current to the corresponding line capacity, of each
distribution line in the 1,500 PEVs/h scenario is listed in
Table V. Line 02’s current reaches to its upper limit.

Unlike spots, the number of charging stations begin to
decrease with the growth of PEV traffic flow when the latter
is beyond 2,000 PEVs/h. When the PEV traffic flow is low,
the planning model locates charging stations to satisfy all the
charging demands because the penalty for unsatisfied charging
demands is high. Therefore, the number of charging stations
tends to increase with traffic flow. However, when the traffic
flow increases beyond the system’s capacity, the planning
model only locates fewer centralized charging stations (on the

Fig. 6. Station locations (1500 PEVs/h).
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Fig. 7. Station locations (R=400 km).

premise that the charging stations and the distribution system
are still fully utilized in order to 1) decrease the fixed costs
in objective (8) and 2) build charging stations at low costs
nodes. This phenomenon can also be visualized by the average
investment costs for every 1,000 charging spots in Fig. 4(b).
At the first stage (500-2,000 PEVs/h), the average investment
costs per spot increase with the growth of PEV traffic flow
because the planning constraints force new charging stations to
be built in higher costs areas. And then the average investment
costs per spot decrease at the second stage (2,500-3,000
PEVs/h) since the number of charging stations reduces. As
a result, the total investment costs decreases after the traffic
flow grows higher than 2,500 PEVs/h (note that the unsatisfied
charging demand ratio also rises which leads to significant
penalty costs).

C. Sensitivity Analysis

1) Distribution Network Constraints: As discussed in Sec-
tion I'V-B, the distribution network constraints limit the service
ability of the total charging system in the transportation
network. Since distribution lines are the most expensive ele-
ments in a distribution network, we increased each distribution
line’s capacity by 10% and compared the results in Fig. 8.
When the capacities are increased, more charging demand can
be satisfied as traffic flow increases beyond 1,500 PEVs/h.
This sensitive analysis can provide guidance for power grid
upgrades.
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2) Driving Range After A Charge: As battery technology
and manufacturing mature, PEV driving range will increase
with battery capacity. Planning results under different PEV
driving range scenarios are demonstrated in Fig. 9. We assume
the PEVs have driven for 100 km before arriving at the trans-
portation network and they need to drive another 100 km after
they depart from the network before arriving their destinations.
As expected, the investment costs and unsatisfied demand
decrease with increasing range. When the PEVs’ driving range
after a charge is higher than 500 km, constructing charging
stations are not necessary in this system. The station locations
and their corresponding configurations are demonstrated in
Fig. 7 under the scenario of 400 km driving range.

3) State-of-Charge: The arrival SoC's depend on the dis-
tances PEVs travel before arriving to the transportation net-
work. The departure SoC depends on the distances PEVs
travel to their destinations after leaving the transportation
network. Required PEV investment costs under different SoC,
and SoCjy are visualized in Fig. 10. The higher the SoC, is,
the lower the investment costs are and conversely the lower
the SoCy is, the lower the investment costs are. In practice,
SoC, and SoCy should be obtained by investigating the PEV
mobility before arriving and after leaving the transportation
network. Without this information, the planner can use low
SoC, and high SoCy to make a worst-case planning decision.

4) Maximum Arc Length: As we have introduced in
CFRLM, we can divide long arcs into short arcs by adding
auxiliary nodes (candidate locations). Decreasing maximum
arc length increases the candidate charging station siting gran-
ularity (see Table VI). However, increasing candidate locations
increases the optimization program size. The PEV charging
network planner should appropriately select the maximum arc
length to balance granularity with problem complexity.
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Fig. 10. Influence of arrival and departure SoC' (1000 PEVs/h).

TABLE VI
INFLUENCE OF MAXIMUM ARC LENGTH

Maximum arc length (km) 10 20 30 40 50
Total costs (M$) 5520 5725 5748 5840 58.61

V. CONCLUSION & DISCUSSION

This paper studies PEV fast-charging station siting by con-
sidering the coupled interactions between the transportation
and power networks. CFRLM is proposed to explicitly incor-
porate PEV driving range and OD traffic flow to estimate PEV
charging demand. In addition, M /M /s queuing is adopted
to model each charging station’s service ability. A mixed
integer linear programming (MILP) model for the planning of
PEV fast-charging stations in coupled transportation and high
voltage distribution networks is proposed, using the CFRLM.
We incorporate distribution network security operation con-
straints. Numerical experiments illustrate the effectiveness
of the proposed method. Various sensitivities, such as PEV
population, line capacity, driving range, arrival and departure
SoC's, and network granularity have notable influences on the
optimal planning results.

In practice, the PEV driving range and arrival/departure
SoC's are respectively heterogeneous and stochastic. In the
future, stochastic formulation of the CFRLM will be an
important research focus. One possible method to extend the
CFRLM into a stochastic model is to respectively generate
an expanded transportation network for each type of PEV
(divided by drive range and arrival/departure SoC's etc.).
And the traffic flow equilibrium constraint (2) should be
satisfied for each type of PEV, i.e., satisfied for each expanded
transportation network. In this way, the CFRLM can be
modeled as a stochastic programming model in which multiple
types of PEVs’ charging demands are satisfied. In this paper,
all the PEVs are assumed to have uniform driving range
and arrival/departure SoC'. Note that, the planning model,
based on this assumption, provides a feasible and conservative
solution when we consider the shortest driving range, lowest
arrival SoC' and highest departure SoC.* The solution can

4Note that it is not economic to design a charging network to satisfy all the
possible charging demands. For example, some short-distance PEVs, which
are only designed for short-distance urban commuting, are not supposed to
be the target customers of charging stations on highway networks. Therefore,
in practice, there should be proper entry thresholds for drive range and arrival
SoC' and an acceptable service standard for departure SoC' on highway
networks. And these thresholds and standard will be the input for the planning.



still provide meaningful guidance for PEV charging facility
investments and help promote PEV adoption in practice.

In addition, this paper only considers peak OD traffic flows.
In practice, one may consider dynamic OD traffic flows [36]
to model charging demands for all time intervals. This added
temporal granularity can increase model accuracy — a topic of
future work.

APPENDIX A
QUEUING MODELING AND PIECEWISE LINEARIZATION OF
CONSTRAINT (4)

According to [32], the arrival of PEVs can be modeled as
a Poisson process, with a parameter equal to its OD flow
F, and parameter  that characterizes average service time
with a general distribution. The charging spots are assumed
to be identical and PEVs are served based on the first-
come first-served rule. Then the service ability of charging
stations with different spot numbers can be modeled with an
M/G/s/k queue [32], in which M represents the Poisson
process, GG represents the general service time distribution,
s represents the number of spots in a station, and k is the
waiting spaces in a station. Highway fast-charging stations
usually have sufficient waiting spaces so that we can assume
k = oo for simplicity in the planning model, as discussed
in [37]. Therefore, we adopt the M/G/s queue [27] in this
paper. When the distributions of traffic flow and service time
are given at a charing station, the minimum required charging
spot number is given by the following optimization model:

y=g '(F)=minz (21)
subject to:
W(M/G/Js) = EM/ M/ ‘?ﬁ“ LU )
zsl ( )z -t
zp
W(M/M/s) = F'l— [ — i)
(23)
1 (1-p) 717097/1—;7
RD2[1+F(9)p<1—e @ ))] (24)
0 9440

F(9):8(1+0) ¢ 2} @

z—1 F

Where, EW(M/G/s) is the average waiting time of the
M/G/s queue, T is its upper limit, z is the number of charging
spots, and ¢? is the coefficient of variance of the service time.
EW (M /G/s) is limited by equation (22) to guarantee service
quality. Because EW (M /G/s) decreases monotonously with
the increase of z, problem (22)—(26) can be solved heuristically
by traversing z. Interested readers can refer to [27] for detailed
information.

Based on model (22)—(26), we can traverse the charging
demand parameter F' to obtain the corresponding minimum
number of charging spots y (optimal z), thus providing y =
g Y(F) and F = g(y). Afterwards, we can use piecewise

linearization to reformulate constraint (4) into a mixed integer
linear constraint [28].
Assume that g(y) is approximated by three linear segments:

ar+by, ca<y<ec
F=gly)=qa2+by, c2<y<ecs (27)
a3 +b3y, c3<y<cy

where, a; and b;(¢ = 1, 2, 3) are the coefficients of the linear
functions, and c¢;(s = 1,2, 3,4) are the breakpoints. Then, by
introducing four nonnegative continuous variables y; and four
binary variables B;(i = 1, 2, 3,4), the (27) can be equivalently
reformulated as the following equations (28)-(33) :

4
)= glci)yi, (28)
=1
4
y=_ cii (29)
=1
4
doui=1, (30)
=1
y; < By, Vi € {1,2,3,4}, (€2))
4
Y B <2, (32)
i=1
B;+B; <1,Vi,j€{1,2,3,4} and |i —j| #1.  (33)

By approximating the nonlinear function g(y) by equations
(28)-(33), the concave constraint (4) is reformulated into a set
of mixed integer linear constraints. Piecewise linearization is
a mature technique. Interested readers can refer to [28] for
detailed information.
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