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Abstract

We consider the problem of optimally designing an excitation input for parameter identification of an elec-

trochemical Li-ion battery model. The conventional approach to performing parameter identification uses

standard test cycles. In contrast, we optimally design the input trajectory to maximize parameter identifia-

bility in the sense of Fisher information. Specifically, we derive sensitivity equations for the electrochemical

model. This approach enables parameter sensitivity analysis and optimal parameter fitting via gradient-based

algorithms. This paper presents a general systematic approach to identify the electrochemical parameters in

a non-invasive way. First, we group parameters into two sets: (i) equilibrium parameters, and (ii) dynamical

parameters. We also divide the dynamical parameters into subsets by calculating orthogonalized sensitivity,

which mitigates linear dependence between parameters. A large number of input profiles have been devised

to constitute an input library. Then, the optimal inputs are selected from the input library to maximize the

Fisher information, via convex programming. Using this framework a number of relevant experiments are

obtained to parameterize. To validate our approach experimentally, we consider a 18650 Lithium nickel

cobalt aluminum oxide battery. Compared to the conventional approach, our proposal achieves lower volt-

age RMSE across all experimental testing cycles.

zE-mail: sspark@berkeley.edu



Introduction

Batteries are a key enabling technology behind electrified transportation, portable consumer elec-

tronics, and more. To enhance the safety and performance of these devices, one must understand

their electrochemical behavior. To this end, battery systems researchers are deeply interested in

mathematical electrochemical models. An experimentally validated model can be used for de-

sign, simulation and analysis, or online battery management systems (BMS).1, 2 Identifying the

unknown model parameters, however, is challenging for multiple reasons. First, battery cell man-

ufacturers do not disclose this information on data sheets for users. Second, one can only measure

voltage, current, and temperature - at best. Third, characterizing certain properties, e.g. diffusivi-

ties, requires destructive testing. Finally, the measured signals are generally nonlinear with respect

to the model parameters, and the dynamics are governed by coupled nonlinear partial differential-

algebraic equations.

Accurate electrochemical battery models are critical for a variety of tasks, such as designing

high-performance battery management systems, battery pack design, and analysis. However, iden-

tifying parameters in electrochemical battery models from measured voltage, current, and tempera-

ture data is notoriously difficult. Recently, non-invasive parameter identification of electrochemical

models has become an emergent research topic. Schmidt et al.3 conducted combined parameter

analysis and identification by using a Fisher information matrix approach in combination with

sensitivity analysis. They use a reduced electrochemical model – a single particle model with

electrolyte potential. Recently, Bizeray et al.4 analyze parameter sensitivity in a single particle

model and show it is fully parameterized with six subgroups, under certain mild conditions on

the electrode potentials. In contrast, Forman et al.5 use an “all-in-one” approach to identifying

88 parameters from driving cycle data using a genetic algorithm and the Doyle-Fuller-Newman

model. They validate the identified parameter values with experiments and perform Fisher infor-

mation analysis ex post facto. Similarly, authors in Zhang et al.6 use a multi-objective genetic

algorithm called NSGA-II for a LiFePo4 cell. They use terminal voltage and surface temperature



as identification objectives. In other work by Zhang et al.,7 they propose the “Best Practicable

Conditions” for each parameter based on sensitivity analysis and clustering analysis. They derived

the best identification strategy for each parameter under this condition. The authors also conduct

an experimental design which attempts to identify highly sensitive parameters to poorly sensitive

parameters. Recently, both Jobman et al.8 and Jin et al.9 propose a two-step procedure that se-

quences parameter identification. The thermodynamic parameters are identified first, and then the

kinetic parameters are identified second via pulses and/or electrochemical impedance spectroscopy

(EIS).

Rather than identify all the parameters, some researchers focus on identifying specific subsets

of parameters, such as battery health-related or kinetic parameters. For example, the physical pa-

rameters, such as diffusion coefficients and activation energies are targeted in.6 In Marcicki et al.,10

the authors focus on the electrochemical parameters related to power and capacity fade, as well as

their temperature dependence under a variety of charge sustaining and depleting experiments. In

Vazquez-Arenas et al.,11 the researchers analyze sensitivity of certain key parameters using Anal-

ysis of Variations (ANOVA), and identify the kinetic and transport parameters with standard test

cycles.

Most existing literature on battery parameter identification focuses on parameter fitting, namely,

matching model output to experimental data. However, it is unclear if the experimental data is

“sufficiently rich” to identify the parameters. A small set of publications in the battery parameter

identification literature directly address this problem by formulating an input trajectory optimiza-

tion problem.12, 13 This work optimizes the amplitude and frequency of a sinusoidal input signal to

maximize the Fisher information matrix, for an equivalent circuit model and single particle model,

respectively. One could exploit a series of inputs that excite specific parameter sensitivity, how-

ever, collecting the required data from experiments can be cost and time intensive. This motivates

the following question: Which inputs should be applied to maximize parameter identifiability in a

systematic way? In addition, the estimated parameters should be characterized by confidence inter-

vals. These questions motivate optimal experimental design (OED), which provides an important



link between experimental design and modeling.14 In this paper, we propose an electrochemical

model-based optimal experiment design framework that yields parameter estimates with statistical

information. Instead of formulating a nonlinear trajectory optimization problem, we propose a

convex input selection problem.

The paper is organized as follows. First, we briefly presents the DFN electrochemical Li-ion

battery model. We generalize this battery model and describe the mathematical background for

experimental design. Next section details the proposed optimal experimental design for parameter

identification. After that, we present the experimental identification process and a comparison with

a conventional approach. In conclusion section, we summarize our work and provide perspectives

on future work.

Electrochemical battery model

Doyle-Fuller-Newman (DFN) model. — We consider the Doyle-Fuller-Newman (DFN) model

to predict the evolution of lithium concentration in the solid c±s (x,r, t), lithium concentration in

the electrolyte ce(x, t), solid electric potential φ±s (x, t), electrolyte electric potential φe(x, t), ionic

current i±e (x, t), molar ion fluxes j±n (x, t), battery core temperature T1(t), and surface temperature

T2(t)15, 16 . The schematic of DFN model is shown in Figure 1. The model describes the transport

of Li-ions govened by diffusion in solid and liquid phase as well as charge conservation in both

eletrode. The govening equations are summarized in Appendix A.

Parameter of interest. — The electrochemistry-based battery model combined with two-state ther-

mal dynamics summarized in Appendix B is capable of high-fidelity simulations. However, it has

a large number of parameters that must be identified for experimental data. Next, we distinguish

fixed parameters from those we seek to identify from data. We classify parameters into two cat-

egories: fixed geometric / thermal parameters in Table 1 and electrochemical parameters listed in

Table 2.

For the fixed parameter category, we directly measure the geometric parameters and adopt the



thermal parameters for a cylindrical 18650 cell from the literature.6 We then divide the electro-

chemical parameters in Table 2 into two groups: equilibrium parameters and dynamical parame-

ters. By “dynamical parameters", we mean parameters associated with the dynamics. There are

21 to-be-identified parameters in total. The equilibrium parameters are closely related to the cell

charge capacity. The dynamical parameters characterize the internal dynamics of the battery, e.g.

diffusion, ion transport, ohmic overpotential and electrochemical reactions. Due to the wide range

of dynamics parameter values, we apply normalization. Parameter θi is normalized to θ̄i according

to:

Logarithmic scale: θ̄i =
logθi− logθi,min

logθi,max− logθi,min
, Linear scale: θ̄i =

θi−θi,min

θi,max−θi,min
,

[1]

where each parameter’s upper and lower bound is determined from the existing literature values,

and possibly any a priori knowledge of the physically meaningful parameter values.

System generalization

Next, we abstract the electrochemical battery model into a general dynamical system format to

formulate our optimal experimental design approach. The dynamical system notation is shown in

Table 3. In particular, the DFN model is represented by differential algebraic equations (DAEs)

after discretizing [A1]-[A21] in space via a suitable method, e.g. finite differences, Padé approxi-

mation, spectral methods (see e.g.17–20):

ẋ = fff (x,z,u,θθθ), x(t0) = x0, [2]

0 = ggg(x,z,u,θθθ), z(t0) = z0, [3]

y = hhh(x,z,u,θθθ). [4]

Denote x = [c−s ,c
+
s ,ce,T1,T2]

T ∈ Rnx as the state vector, z = [φ−s ,φ+
s , i−e , i

+
e ,φe, j−n , j+p ]

T ∈ Rnz



as the algebraic variable vector, y = V (t) as the output variable defined in [A21]. Importantly,

θθθ = [D−s ,D
+
s , . . . ,c

0
e ] ∈ Rnp is the vector of dynamical parameters in Table 2 which we seek to

identify.

Sensitivity analysis is used to understand how a model’s output depends on variations in the

parameter values.21 Based on nominal parameter values, local sensitivity analysis measures the

effects of small changes in the parameters have on the output. For continuous dynamical systems,

the local sensitivities are defined as the first-order partial derivatives of the system output with

respect to the parameters. We briefly introduce how to derive local sensitivities in dynamical sys-

tems described by [2]-[4]. Subsequently, we develop this approach toward a parameter estimation

framework via Fisher information.

Define sensitivity variables as follows:

Sx =
∂x
∂ θ̄θθ

, Sz =
∂z
∂ θ̄θθ

, Sy =
∂y
∂ θ̄θθ

, [5]

where Sx ∈ Rnx×np ,Sz ∈ Rnz×np,Sy ∈ Rny×np are sensitivity matrices. The i, j matrix element is

defined as the partial derivative of the i-th variable to the j-th normalized parameter, e.g.

[Sx]i, j(t) =
∂xi(t)
∂ θ̄ j

. [6]

The evolution of the sensitivity variables is governed by the sensitivity differential algebraic

equations (SDAEs), which can be derived following the procedure in:22

d
dt

Sx =
∂ fff
∂x

Sx +
∂ fff
∂z

Sz +
∂ fff
∂θθθ

, Sx(0) = Sx0, [7]

0 =
∂ggg
∂x

Sx +
∂ggg
∂z

Sz +
∂ggg
∂θθθ

, Sz(0) = Sz0, [8]

Sy =
∂hhh
∂x

Sx +
∂hhh
∂z

Sz +
∂hhh
∂θθθ

. [9]

The advantage of SDAEs is that they provide a rigorous mathematical computation of the

sensitivities compared to a perturbation method where sensitivities are obtained by perturbing each



parameter slightly and calculating the output difference with respect to nominal parameters. Note

that SDAEs are linear time-varying DAEs, where the Jacobians are computed at each time step.

The Jacobians can be derived analytically by-hand, or calculated numerically via finite differences.

In this work, we utilize automatic differentiation since it provides accurate, automated, and fast

Jacobian calculations. In particular, we use CasADi,23 which efficiently computes the first and

second-order derivatives. In this work, the battery model DAEs and the corresponding SDAEs

are simulated by using the IDAS integrator provided by SUNDIALS via the CasADi interface.24

Besides convenience for simulation, the automatic calculation of Jacobians provides advantages

for optimal experiment design and parameter estimation, as described in the following sections.

Optimal experimental design

In this section, we propose a systematic framework for Li-ion battery parameter identification. The

following three-step identification process takes account of experimental design blocks in Figure 2.

• Step 1: Equilibrium parameter identification

– Run OCV experiment
– Non-linear Least-Squares

• Step 2: Sensitivity analysis for dynamical parameters

– Design Input Library
– Sensitivity Analysis
– Grouping Parameters

• Step 3: Experimental design for dynamical parameter identification

– Experimental Measurement Error Quantification
– OED-CVX programming
– Design Optimal Input
– Experimental Design
– Parameter Estimation

As a first step, one should select a mathematical model to represent the system under study.

The mathematical model considered here is the DFN model. The DFN model mathematically



takes the form of DAEs. Once the battery model is selected, then nominal parameter values must

be determined. It is important to note that finding nominal parameter values near the true values is

beneficial, since the optimal parameter fitting algorithms are based on gradient-descent approach

and therefore converge to local minima. We searched relevant papers to choose credible nominal

values.

After setting nominal parameter values, we separate the parameters into two groups: equilib-

rium parameters and dynamical parameters. For equilibrium parameter identification, we adopt

the method in.25 Note that it is possible to derive sensitivity values for equilibrium parameters,

however, these values turned out to be dependant on the initial states, resulting in non-zero values

for zero currents. For this reason, we solve the non-linear least square problem using data gener-

ated from an open circuit voltage (OCV) experiment, which applies very low rate charge/discharge

cycles to characterize the equilibrium state. To estimate the dynamical parameters, we generate an

input library of possible input trajectories. The sensitivities for each input trajectory are calculated

in the library. Then we partition the dynamical parameters into groups, based on their sensitivity

magnitudes. High sensitivity parameter groups should be identified first, followed by less sensitive

parameters groups.

After grouping the parameters, we run optimal experimental design via convex programming to

select optimal inputs for parameter estimation. We use the open-source cvx solver to select opti-

mal inputs. Then, corresponding experiments are executed to collect experimental measurements.

For the experimental setup, we utilize a PEC Corp. SBT2050 series tester and Espec environmen-

tal chamber. Once experimental measurements are acquired, the parameter estimation algorithm

is applied to fit the simulation result to experimental measurements. In this work, we utilize the

Levenberg-Marquardt algorithm for parameter updates at each iteration. We repeat this process

until each parameter group is complete. Once we finalize the identified parameters, we compare

the identified model output predictions versus a testing data set. For comparison, we benchmark

our proposed approach against simple discharge and charge current profiles, which we refer to as a

“conventional approach”. The following subsections contain detailed analysis for each step of the



proposed model-based design of experiments.

Equilibrium parameter identification. — We formulate a procedure to identify parameters in the

equilibrium structure of electrochemical models. In words, these parameters correspond to cy-

clable lithium in the solid phase nLi,s [mol], electrode capacity Q± [Ah], and the stoichiometric

points θ± [-]. Note, in this subsection we overload the symbol θ to represent stochiometric points

to remain consistent with the literature. To identify these parameters, we require experimentally

obtained open circuit voltage (OCV) data and known open circuit potential functions for each

electrode U±(·). Open circuit potentials for each electrode are carefully measured from half cells

constructed from the commercial cell. Knowledge of the individual open circuit potentials, U±(·)

is required for equilibrium parameter identification, a finding that is consistent with existing liter-

ature.4, 8, 9 We adopt the procedure from a patent by one of the co-authors.25

Consider the equilibrium structure of the electrochemical model described in.15 The relation-

ship between cyclable lithium nLi,s and normalized electrode concentrations θ± is given by:

nLi,s = ε
−
s L−A c−s,max ·θ−(k)+ ε

+
s L+A c+s,max ·θ+(k), ∀ k, [10]

where k indexes stochiometric points parameterized by time or Ah-processed. For convenience, let

us define the lumped parameters H± as

H± = ε
±
s L±A · c±s,max. [11]

Dimensional analysis reveals that H± have dimensions of [mol]. Consequently, we define H±

to be the molar capacity of the electrodes. The charge capacity of the electrodes is therefore given

by:

Q± = F ·H±, [12]

where F is Faraday’s constant. Then, let us define a recursive relationship that relates the steady-



state normalized anode concentrations before and after injecting current I for ∆t time units.

θ
−(k+1) = θ

−(k)− ∆t
FH−

· I, ∀ k. [13]

The equilibrium voltage, i.e. OCV, is given by:

V (k) =U+(θ+(k))−U−(θ−(k)), ∀ k. [14]

Solving [10] for θ+(k) and substituting into [14] gives:

V (k) =U+

(
nLi,s−H−θ−(k)

H+

)
−U−(θ−(k)), ∀ k. [15]

To summarize, we have unknowns x = [θ−(0),H+,H−,nLi,s]
T and equations [13], [15].

Then, we formulate the following nonlinear optimization problem to find the unknown vari-

ables x given experimentally obtained cell OCV data Vocv(k) and known open circuit potential

functions U±(θ±):

minimize
x

N

∑
k=0

[V (k)−Vocv(k)]
2 , [16]

subject to: V (k) =U+

(
nLi,s−H−θ−(k)

H+

)
−U−(θ−(k)), ∀ k, [17]

V max =U+

(
nLi,s−H−θ−(0)

H+

)
−U−(θ−(0)), [18]

θ
−(k+1) = θ

−(k)− ∆t
FH−

· I, ∀ k = 0,1, · · · ,N−1, [19]

where N is the total number of experimental data points, and V max corresponds to the maximum

OCV and the first index k = 0. Note the last constraint is initialized with optimization variable

θ−(0). This optimization program is nonlinear and non convex in the optimization variables,

requiring a nonlinear optimization solver, such as fmincon in Matlab.

Suppose that θ±(0)? and θ±(N)? correspond to the optimized normalized concentrations at



the maximum and minimum voltage limits, respectively, according to the cell’s datasheet. Then

the stochiometric points are given by:

θ
±,? = θ

±(0)?, θ
±,?

= θ
±(N)?. [20]

Suppose that H±,? correspond to the optimized molar capacities of each electrode. Then the

charge capacity of each electrode Q±,? and the cell Q? can be calculated as:

Q±,? = F ·N±,?, Q? = min
{

Q+,?,Q−,?,F ·n?Li,s
}
. [21]

By solving the optimization problem [16]-[19] using OCV data from three averaged C/50

charge/discharge cycles, we obtain the following equilibrium parameters as follows:

Figure 3 compares the identified equilibrium model against experimental data. We achieve an

overall root mean square error (RMSE) of less than 5 mV in 98% of the operating range. If one

uses faster OCV tests, e.g. C/25, C/10, or C/5, then the resulting model identification accuracy will

degrade. Based on the identified structure, we define the cell state-of-charge (SOC) in association

with the equilibrium voltage as listed in Table 5, which is used for simulation and experiment

design in subsequent sections.

Sensitivity analysis for dynamical parameters. — Next we identify the dynamic parameters in

Table 2. A fundamental challenge is linear dependence between the parameter sensitivities, result-

ing in non-uniqueness between estimated parameter values. For this reason, we adopt a parameter

grouping-based approach.3 In our approach, each parameter’s sensitivity is analyzed across a large

number of input profiles.

In order to design the optimal set of experiments for identifying battery parameters, a suite of

candidate input profiles has been generated. The input library is heuristically designed to cover

a wide range of frequency content and current magnitudes. Broadly, these candidate profiles can

be categorized as 1) pulses, 2) sinusoids, and 3) driving cycles. The profiles were generated by



a custom Matlab script, which iterated across several design parameters for each input profile

category. For example, pulses were generated by various combinations of pulse width, duty ratio,

total time, charge/discharge, and initial voltage. Sinusoidal profiles were generated for various

combinations of frequency, total profile time, initial voltage, and charge/discharge. The range

of input profile characteristics, e.g. frequency, was determined with consideration for hardware

limitations of our battery tester, computational limits/time, and aliasing phenomenon. In all cases,

the input magnitudes were normalized such that their L1 norm is 1 Ah, thereby enabling a fair

comparison between inputs. A total of 738 profiles exists across these three input categories.

Setting constraints that define the feasible set of input profiles is the first step in evaluating the

candidate input profiles. Across all profile categories, the following constraints must be upheld:

1. T2 ≤ 50oC

2. |I(t)| ≤ 5C

3. 600 sec ≤ t f ≤ 3600 sec

Additionally, all input profiles are generated from the following initial SOC: SOC0 ∈{0.8,0.6,0.4,0.2}.

The initial voltage V0 values associated with initial SOC are determined according to the Table 5.

On the other hand, input profiles need to keep the SOC within its upper and lower limit. To check

that these conditions hold, the absolute ∆SOC for each profile is calculated and added to SOC0. The

immediate conclusions are that driving cycle profiles, all of which are net discharging, cannot be

applied when the battery SOC is 20%. Similarly, discharging pulse and sinusoid profiles cannot be

applied when the battery SOC is 20%. Charging pulse and sinusoid profiles cannot be applied for

SOC ≥ 80%. Consequently, these inputs are parsed out of the input library. The remainder of this

section will describe the parameters of each profile category and its corresponding normalization

scheme.

Pulse profiles are generated with six input variables for a total of 540 pulse profiles as shown

in Table 6:



Note that the pulse width upper bound is set to be commensurate with the characteristic diffu-

sion time for a given battery chemistry. The current values are normalized using an L1 norm, i.e.

the integral of the current magnitude over the total time of the profile: I(t)/
∫
|I(t)|dt. Therefore,

the total normalized amount of charge processed in each pulse is equal to 1 Ah.

Sinusoid profiles are generated with four input variables for a total of 180 sinusoid profiles, as

detailed in Table 7. Note that the frequency range was set in order to: (i) avoid exciting dynamics

occurring at un-modeled frequencies, and (ii) not violate the sampling rate limit of a standard

battery tester. The current values are also normalized with the L1 norm, i.e. the integral of the

current magnitude over the total time of the profile: I(t)/
∫
|I(t)|dt. Therefore, the total normalized

amount of charge processed in each pulse is equal to 1 Ah. Charge only, discharge only, and

charge-discharge profiles follow the same structure as the pulse profiles.

The dynamic drive cycle profiles summarized in Table 8 are evaluated at three different initial

SOCs, for a total of 18 dynamic drive cycle profiles. Note that US06 is the most aggressive cycle

in terms of peak current applied. The current values are normalized to the L1 norm so that the total

normalized amount of charge processed in each pulse is equal to 1 Ah.

There are 540 pulse inputs, 180 sinusoidal inputs, and 18 driving cycle inputs, yielding a total of

738 inputs and 329.65 hours in the input library. Note that short duration input profiles tend to have

large input magnitudes due to normalization while long duration input profiles have relatively small

input magnitudes. High performance computing cluster is used to parallelize model simulation and

sensitivity calculations.

When input library in constructed, we introduce the parameter grouping methodology for pa-

rameter identification. It is well known (see e.g.5) that the entire electrochemical parameter vector

θθθ is weakly identifiable from the measured output, since the system is nonlinear in the param-

eters. This is due to linear dependence between the parameter sensitivity vectors.3 When the

linear dependence exists in parameter sensitivity vector space, an output produces nearly identical

reactions when two different parameters are perturbed. Therefore, it is necessary to analyze the lin-

ear dependence between electrochemical parameters, and rank/organize them into groups to avoid



non-unique solutions during the parameter identification process. Suitable linear transformations

of ST
y Sy can reveal properties such as norm and linear dependence.28 Orthogonalization allows us

to systematically rank the most influential parameters on the model output.

For parameter grouping, we first perform sensitivity analysis across the library of input pro-

files. After calculating the sensitivities [7]-[9] for 738 profiles through parallel computing, we

apply the Gram-Schmidt process on ST
y Sy to reveal the orthogonalized sensitivity magnitudes and

linear dependence.29 Figure 4 visualizes the average sensitivity magnitudes via Graham-Schmidt

orthogonalization over 738 profiles.

Based on this sensitivity analysis, we group the parameters based on their orthogonalized sen-

sitivity magnitudes. The resultant groups are shown in Table 9. It is evident that some of the

parameters have strong identifiability, i.e. particle radii R±s . Other parameters, e.g. the trans-

ference number t0
c and solid phase conductivities σ±, are weakly identifiable. To validate these

conclusions, we apply a parameter perturbation approach to a parameter from each of the four

groups. Figure 5(a) visually demonstrates that Group 1 parameter R−s has the largest impact on

voltage, followed by representative parameters in Group 2 (D−s ), Group 3 (R−f ), and Group 4 (σ−).

For fair comparison, we perturb each representative parameter according to its normalized value,

denoted by upper bars in Figure 5. Note, one should not expect these conclusions to be generally

true across all cell chemistries, models, and manufacturers. These conclusions are specific to the

cell under study and normalization.

In the parameter identification framework, Group 1 is identified first, while the other param-

eters are fixed to their nominal values. Next, Group 2 parameters are identified while fixing the

remaining unidentified parameters, and so forth.

Experimental design for dynamical parameter identification. — In statistical experiment design,

the amount of “information” on parameter vector θθθ contained in the observation y from an ex-

periment is calculated by the Fisher information matrix, F.30 The Fisher information matrix is



mathematically defined as:

F =
∫ t f

0
ST

y (t)Q(t)−1Sy(t)dt, [22]

where t ∈ [0, t f ], and Q(t) is the covariance matrix of the measurement error. Since the true pa-

rameters θθθ
∗ are unknown, the sensitivity is calculated around nominal parameter values θθθ 0. The

deviation of the parameter estimates from their true values can be expressed as the covariance

matrix Σ. According to the Cramer-Rao bound,31,32 the inverse of the Fisher information matrix

provides a lower bound on Σ,

F−1 ≤ Σ. [23]

Our goal is to find inputs that minimize the lower bound of the parameter estimation error,

thus improving the parameter estimation quality. To optimize the amount of information, a proper

scalarization of F should be considered. Several scalarization criteria are commonly used in the

literature such as:

• D-optimality : logdet(F−1).

• A-optimality : trace(F−1).

• E-optimality : λmax(F).

Each optimality criterion has a different geometrical interpretation. For instance, D-optimal

design minimizes the geometric mean of the errors in the parameters, while E-optimal design

minimizes the largest eigenvalue of the confidence region of parameters. In this work, we use

D-optimal design as it is the most commonly used.14 However, the other criteria are equally

applicable in this framework.

We formulate a procedure to optimize experiment design to produce inputs that are maximally

informative for parameter estimation. A natural and mathematically elegant approach is to for-

mulate an optimal control problem. Namely, one may seek an input trajectory that maximizes

D-optimality subject to the system dynamics. This concept has been applied in.12, 13 However,



solving a large-scale optimal control problem with thousands of states and nonlinear dynamics

given by [2]-[4], [7]-[9] is computationally intractable. Two weeks of wall clock time are needed

to optimize a 100 second input trajectory for the electrochemical model on a PC with an INTEL

Core i5 – 1.8GHz dual core, Turbo Boost up to 2.9GHz, with 3MB shared L3 cache, and 8GB

RAM. The previous literature12, 13 side-steps this challenge using control vector parameterization

and simplified models, such as an equilivalent circuit model or single particle model.

To bypass the challenge of solving a large-scale nonlinear optimal control problem, we pursue

a different approach. Specifically, we seek the set of inputs from an input library which maximizes

the Fisher information matrix. This process yields a convex optimization program, which can be

rapidly solved with polynomial complexity open-source solvers, such as cvx.33

We now detail the theory behind optimal experiment design via convex optimization. Suppose

we have a set of L experimental inputs ui(t), i = 1,2, · · · ,L. For each input profile ui(t), we obtain

a corresponding sensitivity vector Sy,i(t) by solving [2]-[4] and [7]-[9] simultaneously. Amongst

these L inputs ui(t), i = 1,2, . . . , l, we select M inputs that are maximally informative as measured

by the Fisher information matrix F , where M < L. Let m j ∈ {0,1} be a binary value that indicates

if experiment j is executed from the input library. Then, the total number of experiments is given

by

m1 +m2 + . . .+ml = M. [24]

We then rewrite the Fisher information matrix as:

F =
L

∑
i=1

miST
y,iQ

−1
i Sy,i. [25]

We now formulate a combinatorial optimization problem to maximize the D-optimality crite-

rion of F :

minimize
mi

logdet

(
L

∑
i=1

miST
y,iQ

−1
i Sy,i

)−1

, [26]



subject to mi ∈ {0,1}, [27]

m1 + . . .+ml = M. [28]

This problem is a binary integer program, where the optimal number of experiments mi is the

solution. In general, large-scale combinatorial problems are NP-hard. In this work, we relax the

integer constraint (27) into 0≤mi ≤ 1, yielding a relaxed optimization problem that is convex. Let

ηi = mi/M be the fraction of experiment type i to execute. Then the Fisher information [25] can

be re-written as

F = M
L

∑
i=1

ηiST
y,iQ

−1
i Sy,i, [29]

where η ∈ RL, 1T η = 1. Thus, our final convex optimal experiment design problem is:

minimize
η

logdet

(
L

∑
i=1

ηiST
y,iQ

−1
i Sy,i

)−1

, [30]

subject to 0≤ ηi ≤
1
M
, ∀ i 1T

η = 1, [31]

where M can be dropped without affecting the minimizer. One can show this is a convex problem

with respect to η .34 Additionally, the solutions will be integral; that is, the solution to relaxed

optimization problem [30]-[31] is also the solution to [26]-[27].

Remark: Suppose that associated with each experiment ui(t) is a cost ci, which can represent

time required, economic/labor cost, or battery degradation. The total cost is:

c1m1 + · · ·+ clml = mcT
η . [32]

Suppose we have a cost budget of B. One can then add a budget constraint as a scalar linear



inequality, yielding convex program:

minimize
η

logdet

(
L

∑
i=1

ηiST
y,iQ

−1
i Sy,i

)−1

, [33]

subject to 0� η � 1
M
, 1T

η = 1, [34]

mcT
η ≤ B. [35]

Consider the output measurement covariance Qi in [30]. This quantity is critically important

to include in the optimization formulation. To motivate this point, consider figure 6a and 6b which

visualize the battery tester’s measured voltage for ten repeated pulse inputs. Figure 6a contains

time steps in which the measured voltage has variance larger than 30 mV. This variance is uncor-

related with the order in which the experiments are performed. In contrast, the sinusoidal tests in

Figure 6b have variance consistently around 0.3 mV. Consequently, there can be non-trivial vari-

ation in the battery tester’s measured voltage, depending on the input profile. Note, our SBT2050

test system manual claims a voltage resolution of 100 µV. The precise source of the measurement

variance is unknown.

This motivates quantification of the output measurement covariance. Namely, [30]-[31] re-

quires Qi for each input in the library. However, experimentally characterizing Qi for each input

requires running every experiment in the input library multiple times (e.g. 10 times) – an in-

tractable task. Therefore, we propose to predict the covariance Qi using a regression model trained

from a small number of experiments. This enables us to account for variance in experimental trials

without running a large number of experiments.

The size of matrix Q is based on the number of samples taken during an experiment. Due

to this, we scalarize Q in order to compare how Q varies across experiments that have different

lengths. For a given experiment and its corresponding covariance matrix Qexp, we scalarize Qexp



using the square root of the mean across the diagonal entries of Qexp:

q =

√
1
n

n

∑
i

Qexp
i,i , [36]

where n is the dimension of the matrix Q. Next, we seek a regression model to predict q from the

current input profile. To this end, we consider a metric of “input intensity” as the feature in our

regression model. Namely, we propose to use the L2 norm, Ĩ, to characterize input intensity where

Ĩ =

√∫ t f

0
I(t)2dt. [37]

Using Ĩ as a regression model feature, we fit the following regression models to q:

for charge inputs: q̂c = acĨ +bc, for discharge inputs: q̂d = ad · ebd ·Ĩ, [38]

where ac = 6.2382×10−5, bc = −4.0739×10−3, ad = 2.1045×10−4, bd = 1.7020×10−2. For

inputs that are not purely charge or discharge, the two models are averaged:

q̂cd =
1
2
(qc +qd) . [39]

The scalar predictions q̂ are then squared and constructed into a matrix according to:

Q̂ = q̂2 · In, [40]

where In is an n× n identity matrix. For training, 5 drive cycle profiles are used to estimate the

parameters ac,bc,ad,bd in [38]. We test the predicted variance on drive cycle inputs. Data for

training and testing is provided in Figure 6c, along with the curve fit regression model predictions.

After obtaining experimental data, we now seek to optimally fit the parameter vector θθθ to this

data. The optimization problem for parameter identification can be formulated as a nonlinear least



squares problem:

minimize
θ̂θθ

M

∑
i=1

k f

∑
k=0

yi(k)− ŷi(k; θ̂θθ)

Qi(k)
, [41]

where k indexes the timed samples, M is the number of optimized input profiles obtained from

optimal input design, yi(k) is the experimentally measured voltage, ŷi(k; θ̂) is the model’s voltage

prediction, and Qi(k) is the measurement variance for input profile i at time step k. The Levenberg-

Marquardt algorithm is used to update the parameters θ̂θθ iteratively to solve the nonlinear optimiza-

tion problem [41]. This algorithm adaptively updates the parameter estimates via a hybridization

of the gradient descent update and the Gauss-Newton update:35

[
JT WJ+ γ ·diag(JT WJ)

]
∆θθθ = JT W(y− ŷ), [42]

where J = ∂ ŷ/∂ θ̂θθ is the local sensitivity of the output ŷ, and W is the inverse of the measurement

error covariance matrix, W = Q−1. The value of γ weighs gradient descent update against Gauss-

Newton update. Conveniently, the Levenberg-Marquardt algorithm directly utilizes the Jacobians

computed via automatic differentiation, obtained from the sensitivity analysis. Then, the parameter

updates are iteratively updated according to:

θθθ(n+1) = θθθ(n)+∆θθθ , [43]

where n is the iteration index.

After optimally fitting the parameters, estimation error statistics are calculated according to

ρθθθ = JT WJ, [44]

σθθθ =
√

diag[JT WJ]−1, [45]

where ρθθθ is the parameter covariance matrix, and σθθθ is the standard parameter error. Lastly, 95%



confidence intervals for the parameter estimates are calculated as follows:

θ̂θθ − ttt(1−0.05,N)
σθθθ√

N
≤ θθθ

∗ ≤ θ̂θθ + ttt(1−0.05,N)
σθθθ√

N
, [46]

where N is the number of observations, and ttt is the upper critical value for the t-distribution with

n−1 freedom.36

Experimental results

In this section the proposed optimal experimental design is applied to a 18650 Lithium nickel-

cobalt-aluminum oxide (NCA) battery cell manufactured by Panasonic, with rated capacity of

2700mAh, Vmax: 4.2V, Vmin: 2.5V, and nominal voltage: 3.6V. To assess the benefits of our pro-

posed approach, we compare results against parameter identification using a conventional approach

with standard test cycles.

Parameter identification results. — With consideration for output measurement error covariance

Q, the results for optimal input selections for parameter identification are listed in the Table 10.

The optimized inputs have moderate magnitude and do not increase cell temperature more than

5◦C. Based on the sensitivity analysis and parameter grouping, we estimate parameters for each

group in a cumulative fashion. For example, we allow the Group 1 parameters to be refined with

Group 2 parameters while fitting the model parameter to Group 2 experimental data. Similarly,

Group 1 & 2 parameters are refined with Group 3 parameters and so on. Since we do not have

information on the true parameters, it is useful to identify the parameters in a cumulative way to

prevent overfitting and increase the degrees of freedom during optimization. The authors’ previous

work also showed that an optimized input reduces the condition number of the objective function’s

Hessian with respect to the parameters.37 This accelerates gradient descent methods for parameter

estimation.

Figure 7 displays the parameter identification results for each group. For instance, Group



1’s optimal input consists of a series of concatenated input profiles with id #339, 342, 345, 348,

365, as shown in Figure 7a. We also plot the identified model’s voltage prediction versus the

experimentally measured voltage. Finally, the cumulative distribution function of the absolute

voltage prediction error before and after applying parameter estimation are displayed in the bottom

subplot. Note the most significant improvements relative to the nominal parameter values come

after applying the Group 1 optimized inputs. This is intuitive, as the Group 1 parameters have the

greatest sensitivity, by definition.

The final parameter estimates along with their 95% confidence intervals are listed in Table 11.

The identified parameter values are also visualized in Figure 8 on a normalized axis, along with

the nominal values for comparison. The 95% confidence intervals are also visualized by error bars

for each parameter, and correspond to the optimized input for that parameter. Note that parameter

bounds are obtained from the literature38–41 to ensure that the identified values are physically

meaningful. Nominal parameter values that are away from the true parameter values could yield

inaccurate sensitivities. To overcome this issue, we identify the most highly sensitive parameters

at first to mitigate the negative effects as we accumulate the parameters to estimate. Furthermore,

orthogonalized sensitivity analysis assists to determine the most significant parameters to model

output. The results indicate that strongly identifiable parameters (e.g. R±s ) have narrow confidence

intervals while weakly identifiable parameters (e.g. σ±) have relatively wide confidence intervals.

This finding is intuitive, since large variations in the weakly identifiable parameters produce trivial

changes in the voltage output trajectory, as demonstrated in Figure 5.

Validation

In this section, the proposed optimal experimental design (OED) is tested on various input profiles

not used for identification, including driving cycles, sinusoidal inputs, and pulse inputs. In order

to investigate the performance of the proposed approach, a “conventional” experimental design

approach is considered for comparison. It consists of 7 standard constant charge / discharge pro-



files, along with a driving cycle. Unlike the proposed approach, the conventional approach does

not group parameters, nor design inputs to maximize identifiability. All parameters of interest are

identified from concatenating experimental data. The Levenberg-Marquardt algorithm is also uti-

lized to fit parameter values. The parameters are fit using an “all-in-one” approach, meaning they

are not grouped nor fit sequentially. All parameters are fit simultaneously.

Figure 9a and 9b compare the proposed and conventional approach to experimental constant

discharge data with respect to battery capacity. These figures demonstrate that our proposed ap-

proach outperforms the conventional approach in terms of voltage accuracy. Table 12 provides

the RMSE on up to 90% of capacity range for the 0.5C and 1C discharge cases. Both experimen-

tal design approaches improve the model accuracy compared to nominal parameters. However,

our proposed approach outperforms the conventional approach. Since we do not consider thermal

parameters in this paper, the voltage prediction accuracy decreases as temperature evolves away

from 25◦C. Specifically, constant discharge at 1C is enough to produce non-trivial heat generation

and cause surface temperature to nearly reach 30◦C. The voltage prediction in the extremely low

SOC region, such as below 3V, is difficult to match with experimental data. In this region voltage

drops dramatically and we have insufficient data sampling granularity to accurately identify the

equilibrium structure. On the other hand, battery cells rarely operate in this region in practice.

Besides constant discharge tests, validation is also conducted on sinusoidal and pulse inputs to

assure that the OED approach is able to capture a comprehensive set of input profiles. Figure 9c

and 9d show the applied current profile and output voltage for sample sinusoidal and pulse inputs

profiles. The voltage accuracy is calculated and summarized in Table 13. Again, the OED approach

outperforms the conventional approach.

Lastly, we use the driving cycle inputs described in Table.8 for validation. These driving cycles

originate from automotive fuel emission testing. The RMSE calculations are summarized in Ta-

ble. 14. The results show that the OED approach outperforms the conventional approach in every

case.



Conclusion

In this work we have established an optimal experimental design (OED) framework for systemat-

ically identifying the parameters of an electrochemical battery model. We summarize our unique

key contributions as follows.

1. A sensitivity analysis for the full-order electrochemical model, as known as the Doyle-Fuller-

Newman (DFN) model, is executed by deriving the sensitivity differential algebraic equa-

tions using Jacobians obtained via automatic differentiation. To the best of the authors’

knowledge, an sensitivity analysis for all the electrochemical parameters has never been ex-

ecuted before. We place emphasis on this sensitivity analysis, as it plays a crucial role in

computing the Fisher information matrix, and the parameter estimation algorithm via auto-

matic differentiation.

2. We formulate an optimal experimental design via convex optimization. Rather than solving a

large-scale nonlinear optimal control problem, we propose an input selection problem where

the optimal inputs are selected from a (large) discrete set. Notably, we quantify the exper-

imental output measurement variance for our battery tester to trade off Fisher information

with measurement variance.

3. We provide the confidence intervals along with the parameter estimates via nonlinear least

squares with the Levenberg-Marquardt algorithm.

We experimentally validate the performance of the proposed OED approach compared to con-

ventional approach on a 18650 lithium nickel-cobalt-aluminum oxide (NCA) cell. We quantify the

performance in terms of voltage accuracy with respect to experimentally measured voltage. We

use a set of 9 validation profiles ranging from constant current pulses to driving cycles. The pro-

posed approach achieves less than 15 mV RMSE in all validation scenarios, and outperforms the

conventional approach in terms of voltage accuracy in all cases. Future work might involve further



validation of the proposed OED framework using “synthetic” voltage and current data produced

from a model with known parameter values.
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Appendix A. Electrochemical model

Solid phase diffusion of Li-ions — The concentration of Li-ions in solid phase in the anode and

cathode is govened by Fick’s law.

∂c±s
∂ t

(x,r, t) =
1
r2

∂

∂ r

[
D±s r2 ∂c±s

∂ r
(x,r, t)

]
. [A1]

The boundary conditions for the solid-phase diffusion PDE [A1] are

∂c±s
∂ r

(x,0, t) = 0,
∂c±s
∂ r

(x,R±s , t) =−
1

D±s
j±n . [A2]

Eletrolyte diffusion of Li-ions — The lithium concentration in the electrolyte changes due to

concentration gradient-induced diffusive flow of ions and the current ie.

ε
j

e
∂c j

e

∂ t
(x, t) =

∂

∂x

[
Deff

e (c j
e)

∂c j
e

∂x
(x, t)+

1− t0
c

F
i j
e(x, t)

]
, j ∈ {−,sep,+} . [A3]

The boundary conditions for the electrolyte-phase diffusion PDE [A3] are given by

∂ce

∂x
(0−, t) =

∂ce

∂x
(0+, t) = 0, [A4]

Deff,−
e (ce(L−))

∂ce

∂x
(L−, t) = Deff,sep

e (ce(0sep))
∂ce

∂x
(0sep, t), [A5]



Deff,sep
e (ce(Lsep))

∂ce

∂x
(Lsep, t) = Deff,+

e (ce(L+))
∂ce

∂x
(L+, t), [A6]

ce(L−, t) = ce(0sep, t), [A7]

ce(Lsep, t) = ce(0+, t). [A8]

Solid phase Ohm’s law — The solid potential is calculated from Ohm’s law

σ
eff,± · ∂φ±s

∂x
(x, t) = i±e (x, t)− I(t). [A9]

The boundary conditions for the solid-phase potential ODE [A9] are given by

∂φ−s
∂x

(L−, t) =
∂φ+

s
∂x

(L+, t) = 0. [A10]

Electrolyte Ohm’s law — The electrolyte potential is described by

κ
eff(ce) ·

∂φe

∂x
(x, t) =−i±e (x, t)

+κ
eff(ce) ·

2RT1

F
(1− t0

c ) ·
(

1+
d ln fc/a

d lnce
(x, t)

)
∂ lnce

∂x
(x, t). [A11]

The boundary conditions for the electrolyte-phase potential ODE [A11] are given by

φe(0−, t) = 0, [A12]

φe(L−, t) = φe(0sep, t), [A13]

φe(Lsep, t) = φe(L+, t). [A14]

Electrolyte phase charge balance — At each point in the electrode, the molar flux is related to

the current in the electrolyte.

∂ i±e
∂x

(x, t) = a±s F j±n (x, t). [A15]



The boundary conditions for the ionic current ODE [A15] are given by

i−e (0
−, t) = i+e (0

+, t) = 0. [A16]

Butler-Volmer kinetics — The molar flux jn depends on the concentration cs of lithium in the

solid, the concentration ce of lithium in the electrolyte, and the solid-phase intercalation overpo-

tential η is desribed by the Butler-Volermer equation.

j±n (x, t) =
1
F

i±0 (x, t)
[

e
αaF
RT1

η±(x,t)− e−
αcF
RT1

η±(x,t)
]
, [A17]

where αα and αc are transport coefficients. The exchange current density i0 is given by

i±0 (x, t) = k±
[
c±ss(x, t)

]αc
[
ce(x, t)

(
c±s,max− c±ss(x, t)

)]αa . [A18]

The overpotential η corresponds to the reaction of solid-phase intercalation of lithium in the

electrode.

η
±(x, t) = φ

±
s (x, t)−φe(x, t)−U±(c±ss(x, t))−FR±f j±n (x, t), [A19]

c±ss(x, t) = c±s (x,R
±
s , t), [A20]

The input to the model is the applied current density I(t) [A m−2], and the output is the voltage

measured across the current collectors

V (t) = φ
+
s (0+, t)−φ

−
s (0−, t)−RcI(t). [A21]

Appendix B. Thermal Model

Two-state thermal model — A two-state model is used to capture the lumped thermal dynamics

of a cyliderical battery. This heat exchange is governed by convection and radiation between the



battery core and ambient.

C1
dT1

dt
(t) = h12[T2(t)−T1(t)]+ Q̇(t), [B1]

C2
dT2

dt
(t) = h12[T1(t)−T2(t)]+h2a[Tamb(t)−T2(t)], [B2]

Q̇(t) = I(t)
[
V (t)− [U+(c+s )−U−(c−s )]+T1(t)

[
∂U+

∂T1
(c+s )−

∂U−

∂T1
(c−s )

]]
,

[B3]

where the bulk state of charge, cs is given by

c±s (x, t) =
3

(R±s )3

∫ R±s

0
r2c±s (x,r, t)dr. [B4]

Temperature dependent parameters — The parameters D±s ,De,κ,k± vary with temperature

via the Arrhenius relationship:

ψ = ψref exp
[

Eψ

R

(
1
T1
− 1

Tref

)]
, [B5]

where ψ represents a temperature dependent parameter, Eψ is the activation energy [J mol−1], and

ψref is the reference parameter value at reference temperature Tref.



List of Symbols

Symbol Description [SI units]
as Specific interfacial surface area [m2 m−3]
A Electrode Area [m2]
cs Lithium concentration in solid phase [mol m−3]
css Lithium concentration at surface in solid phase [mol m−3]
ce Lithium concentration in electrolyte phase [mol m−3]
d ln fc/a
d lnce

Activity coefficient [-]
Ds Diffusion coefficient in solid phase [m2 s−1]
De Diffusion coefficient in electrolyte phase [m2 s−1]
F Faraday constant [ 96487Coulombmol−1]
i Ionic current [A m−2]
I Applied current density [A m−2]
j Molar ion flux [mol (m2 s)−1]
k Kinetic rate constants [(A m−2)(m3 mol−1)(1+α)]
Q̇ Heat generation [W (m−2)]
Q± Electrode capacity [Ah]
Q Voltage output variance [V2]
R Universal gas constant [8.3145 J(molK)−1]
Rc Resistance of connectors [Ωm2]
Rs Radius of solid particles [m]
R f Solid-electrolyte inter-phase film resistance [Ω m2]
t Time [seconds]
t0
c Transference number [-]

T1 Temperature at core [K]
T2 Temperature at surface [K]
Tamb Ambient temperature [K]
u Input magnitude [-]
U Open circuit potential of solid material [V]
V Terminal voltage [V]
α Charge transfer coefficients [-]
εs Volume fraction in solid phase [-]
εe Volume fraction in electrolyte phase [-]
η Overpotential of an electrode [V]
θ− Negative electrode stoichiometry [-]
θ+ Positive electrode stoichiometry [-]
κ Electrolyte conductivity [Sm−1]
σ Solid phase conductivity [Sm−1]
φ Electric potential [V]
x State variable vector [-]
y Output vector [-]
z Algebraic variable vector [-]
S Sensitivity vector w.r.t parameters [-]
θθθ Parameter vector [-]
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Tables

Table 1. Fixed geometric / thermal parameters.

Geometric parameters
Symbol Description [SI units]
L− Thickness of negative electrode [m]
Lsep Thickness of separator [m]
L+ Thickness of positive electrode [m]
A Electrode current collector area [m2]

Thermal parameters
Symbol Description [SI units]
C1 Heat capacity of battery core [J (m2 K)−1]
C2 Heat capacity of battery surface [J (m2 K)−1]
h12 Heat transfer coefficients from core to surface [W (m2 K)−1]
h2a Heat transfer coefficients from surface to ambient [W (m2 K)−1]
E{D±s ,De,κ,k±} Activation energy for Arrhenius temperature dependence [kJ mol−1]



Table 2. Parameters of interest for identification.

Equilibrium parameters
Symbol Description [SI units] Normalization scheme
ε−s Solid-phase volume fraction [-] -
ε+s Solid-phase volume fraction [-] -
nLi,s Moles of cyclable lithium in solid phase [mol] -

Dynamics parameters
Symbol Description [SI units] Normalization scheme
D−s Solid-phase diffusion coefficients of the anode [m2 s−1] Logarithmic
D+

s Cathode solid-phase diffusion coefficients of the cathode [m2 s−1] Logarithmic
R−s Solid-phase particle radii of the anode [m] Linear
R+

s Solid-phase particle radii of the cathode [m] Linear
σ− Solid-phase conductivity of the anode [Sm−1] Logarithmic
σ+ Solid-phase conductivity of the cathode [Sm−1] Logarithmic
De(·) Electrolyte diffusion coefficient [m2 s−1] Linear
ε−e Electrolyte volume fraction [-] Linear
ε

sep
e Electrolyte volume fraction [-] Linear

ε+e Electrolyte volume fraction [-] Linear
κ(·) Electrolyte conductivity [Sm−1] Linear
t0
c Transference number [-] Linear
dln fc/a
dlnce

(·) Activity coefficient [-] Linear
k− Kinetic rate constants [(A m−2)(m3 mol−1)(1+α)] Logarithmic
k+ Kinetic rate constants [(A m−2)(m3 mol−1)(1+α)] Logarithmic
R−f Film resistance [Ω m2] Linear
R+

f Film resistance [Ω m2] Linear
ce(x,0) Initial Li-ion concentration in electrolyte [mol m−3] Linear



Table 3. DAE notation for the electrochemical model.

DAE Variables DFN Variables
x c−s ,c

+
s ,ce,T1,T2

z φ−s ,φ+
s , i−e , i

+
e ,φe, j−n , j+p

u I
θθθ dynamic parameters in Table 2



Table 4. Identified equilibrium parameters.

Parameter Estimated values
ε−s 5.438895e-01
ε+s 6.663649e-01
nLi,s 0.1406 moles



Table 5. Cell SOC to voltage mapping.

SOC Voltage mapping [V]
80% 3.9481
60% 3.7689
40% 3.5982
20% 3.4562



Table 6. Pulse profile specification.

Input variable Setting
Amplitude 0.5C to 5C, in 0.5C increments
Pulse width 1 sec to 1000 sec
Duty cycle n∗ (pulse width), n ∈ {1,2,3}
Total time 600 sec (10 min) to 3600 sec (1 hr)
Initial voltage V0 = {3.9481 3.7689 3.5982 3.4562}
Current charge only, discharge only, or both



Table 7. Sinusoid profile specification.

Input variable Setting
Frequency {0.01, 0.05, 0.1} Hz
Total time 600 sec (10 min) to 3600 sec (1 hr)
Initial voltage V0 = {3.9481 3.7689 3.5982 3.4562}
Current charge only, discharge only, or both



Table 8. Driving cycle profile specification.

Name Description
DC1 naturalistic morning driving test profile26

DC2 nautralistic evening driving test profile26

LA92 Unified driving schedule for emission inventory27

SC04 Speed correction driving schedule27

UDDS Urban dynamometer driving schedule27

US06 High acceleration aggressive driving schedule27



Table 9. Dynamic parameter groups.

Group 1 Group 2 Group 3 Group 4
R−s D−s R−f σ−

R+
s D+

s k− σ+

ε−e ε+e ε
sep
e

κ(·) ce0 k+

De(·) R+
f t0

c
dln fc/a
dlnce

(·)



Table 10. Input profiles from optimal experimental design.

Group 1 Group 2 Group 3 Group 4
#339 #90 #292 #120
#342 #120 #365 #343
#345 #339 #467 #362
#348 #345 #503 #503
#365 #365 #507 #507



Table 11. Final identification results for NCA 18650 Li-ion battery.

Parameter Unit Lower Upper Nominal Result 95% C.I.†

D−s [m2 s−1] 2.25e-16 1.05e-12 3.90e-14 2.634e-14 2.407e-18
D+

s [m2 s−1] 2.00e-16 1.00e-12 1.00e-13 6.625e-14 1.548e-17
R−s [m] 1.00e-06 1.00e-04 10.9e-06 20.235e-06 8.362e-10
R+

s [m] 1.00e-06 1.00e-04 10.9e-06 17.163e-06 7.494e-10
ε−s [-] - - - 0.5438 -
ε+s [-] - - - 0.6663 -
σ− [Sm−1] 50 500 100 500 1.740e+03
σ+ [Sm−1] 50 500 100 500 1.334e+02
De(·) [m2 s−1] 0.5 1.5 1 1.195 1.176e-03
ε−e [-] 0.18 0.45 0.3 0.289 3.687e-04
ε

sep
e [-] 0.45 0.5 0.5 0.468 5.801e-04

ε+e [-] 0.18 0.33 0.3 0.307 5.523e-04
κ(·) [Sm−1] 0.5 1.5 1 1.398 1.308e-03
t0
c [-] 0.36 0.363 0.363 0.36 5.585e-04
dln fc/a
dlnce

(·) [-] 0.5 1.5 1 0.573 9.971e-04
k− [(A m−2)(m3 mol−1)(1+α)] 7.5e-05 7.5e-03 7.5e-04 7.5e-05 4.457e-07
k+ [(A m−2)(m3 mol−1)(1+α)] 2.3e-04 2.3e-02 2.3e-03 2.3e-04 4.614e-06
R−f [Ω m2] 1.0e-05 1.0e-03 5.0e-04 8.719e-05 6.773e-06
R+

f [Ω m2] 1.0e-04 1.0e-03 1.0e-03 4.619e-04 6.963e-06
nLi,s [mol] - - - 0.1406 -
ce(x,0) [mol m−3] 500 1500 1000 1500 8.191e-01

†Confidence interval calculated at the end of identification process in Figure 7d



Table 12. RMSE between simulation and experimental measurement up to 90% capacity in con-
stant discharge.

Parameters 0.5C discharge 1C discharge
Nominal parameters 33.7 mV 55.7 mV
Conventional approach 19.9 mV 36.1 mV
Proposed approach 11.8 mV 25.5 mV



Table 13. RMSE between simulation and experimental measurement with sinusoidal and pulse
inputs.

Input profiles Errors in OED [mV] Errors in conventional [mV]
Sinusoidal input 10.13 12.01

Pulse input 14.06 16.63



Table 14. RMSE between simulations and experimental measurements with driving cycle inputs.

Input profiles Errors in OED [mV] Errors in conventional [mV]
DC 1 6.89 7.96
DC 2 8.49 12.50
LA 92 11.90 13.70
SC 04 14.50 17.20
UDDS 12.40 14.70



Figures

Figure 1. The schematic of first principles electrochemical model as known as Doyle-Fuller-
Newman (DFN) model.



Figure 2. The proposed model-based design of experiments framework for parameter identification
in of the DFN model.



Figure 3. OCV comparison between identified model and experimental data for three averaged
C/50 charge/discharge cycles.



Figure 4. The sorted average orthogonalized sensitivity magnitudes across all inputs in the input
library.



(a) Perturbation of Group 1 parameter R−s . (b) Perturbation of Group 2 parameter D−s .

(c) Perturbation of Group 3 parameter R−f . (d) Perturbation of Group 4 parameter σ
−.

Figure 5. The comparison of model output impact by changing parameters.



(a) Zoom of multiple, superim-
posed pulse experimental trials.
This experiment has up to 30
mV of measured voltage vari-
ance.

(b) Zoom of multiple, superim-
posed sinusoidal experimental
trials. This experiment has 0.3
mV of measured voltage vari-
ance.

(c) Scalarized variance from
training data, testing data, and
regression model (curve fit).

Figure 6. Experimental outputs and quantification.



(a) Identification results for Group 1 parameters. (b) Identification results for Group 2 parameters.

(c) Identification results for Group 3 parameters. (d) Identification results for Group 4 parameters.

Figure 7. Identification results for optimal designed inputs.



Figure 8. Parameter estimates and 95% confidence intervals versus the nominal parameter values.



(a) 0.5C validation with respect to discharge capacity (b) 1C validation with respect to discharge capacity

(c) Sinusoidal input validation (d) Pulse input validation

Figure 9. Experimental validation results for the NCA 18650 battery with testing profiles.
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(b) Perturbation of Group 2 parameter D−
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(c) Perturbation of Group 3 parameter R−
f .
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(d) Perturbation of Group 4 parameter σ
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Figure 5. The comparison of model output impact by changing parameters.
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Figure 6. Experimental outputs and quantification.



(a) Identification results for Group 1 parameters. (b) Identification results for Group 2 parameters.

(c) Identification results for Group 3 parameters. (d) Identification results for Group 4 parameters.

Figure 7. Identification results for optimal designed inputs.
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Figure 9. Experimental validation results for the NCA 18650 battery with testing profiles.
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