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Abstract

Model Based Optimal Control, Estimation, and Validation of Lithium-Ion Batteries

by

Hector Eduardo Perez

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Assistant Professor Scott J. Moura, Chair

This dissertation focuses on developing and experimentally validating model based control
techniques to enhance the operation of lithium ion batteries, safely. An overview of the
contributions to address the challenges that arise are provided below.

Chapter 1: This chapter provides an introduction to battery fundamentals, models, and
control and estimation techniques. Additionally, it provides motivation for the contributions
of this dissertation.

Chapter 2: This chapter examines reference governor (RG) methods for satisfying state
constraints in Li-ion batteries. Mathematically, these constraints are formulated from a first
principles electrochemical model. Consequently, the constraints explicitly model specific
degradation mechanisms, such as lithium plating, lithium depletion, and overheating. This
contrasts with the present paradigm of limiting measured voltage, current, and/or tempera-
ture. The critical challenges, however, are that (i) the electrochemical states evolve according
to a system of nonlinear partial differential equations, and (ii) the states are not physically
measurable. Assuming available state and parameter estimates, this chapter develops RGs
for electrochemical battery models. The results demonstrate how electrochemical model
state information can be utilized to ensure safe operation, while simultaneously enhancing
energy capacity, power, and charge speeds in Li-ion batteries.

Chapter 3: Complex multi-partial differential equation (PDE) electrochemical battery
models are characterized by parameters that are often difficult to measure or identify. This
parametric uncertainty influences the state estimates of electrochemical model-based ob-
servers for applications such as state-of-charge (SOC) estimation. This chapter develops two
sensitivity-based interval observers that map bounded parameter uncertainty to state esti-
mation intervals, within the context of electrochemical PDE models and SOC estimation.
Theoretically, this chapter extends the notion of interval observers to PDE models using
a sensitivity-based approach. Practically, this chapter quantifies the sensitivity of battery
state estimates to parameter variations, enabling robust battery management schemes. The
effectiveness of the proposed sensitivity-based interval observers is verified via a numerical
study for the range of uncertain parameters.
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Chapter 4: This chapter seeks to derive insight on battery charging control using elec-
trochemistry models. Directly using full order complex multi-partial differential equation
(PDE) electrochemical battery models is difficult and sometimes impossible to implement.
This chapter develops an approach for obtaining optimal charge control schemes, while en-
suring safety through constraint satisfaction. An optimal charge control problem is math-
ematically formulated via a coupled reduced order electrochemical-thermal model which
conserves key electrochemical and thermal state information. The Legendre-Gauss-Radau
(LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is employed to
solve the resulting nonlinear multi-state optimal control problem. Minimum time charge pro-
tocols are analyzed in detail subject to solid and electrolyte phase concentration constraints,
as well as temperature constraints. The optimization scheme is examined using different
input current bounds, and an insight on battery design for fast charging is provided. Exper-
imental results are provided to compare the tradeoffs between an electrochemical-thermal
model based optimal charge protocol and a traditional charge protocol.

Chapter 5: Fast and safe charging protocols are crucial for enhancing the practicality of
batteries, especially for mobile applications such as smartphones and electric vehicles. This
chapter proposes an innovative approach to devising optimally health-conscious fast-safe
charge protocols. A multi-objective optimal control problem is mathematically formulated
via a coupled electro-thermal-aging battery model, where electrical and aging sub-models de-
pend upon the core temperature captured by a two-state thermal sub-model. The Legendre-
Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation
is employed to solve the resulting highly nonlinear six-state optimal control problem. Charge
time and health degradation are therefore optimally traded off, subject to both electrical and
thermal constraints. Minimum-time, minimum-aging, and balanced charge scenarios are ex-
amined in detail. Sensitivities to the upper voltage bound, ambient temperature, and cooling
convection resistance are investigated as well. Experimental results are provided to compare
the tradeoffs between a balanced and traditional charge protocol.

Chapter 6: This chapter provides concluding remarks on the findings of this dissertation
and a discussion of future work.
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The double spatial derivative estimates ĉ−srr(r, t) along with input current I(t)
and output inversion ϕ(V, I) are fed into the sensitivity PDEs. The sensitivity
estimates S1(r, t), S2(r, t), S3(r, t), S4(r, t), spatial derivatives of the sensitivity
estimates S1r(r, t), S2r(r, t), S3r(r, t), S4r(r, t), and the concentration estimates
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Chapter 1

Introduction

Battery systems are an enabling technology as we progress towards an electrified future that
ranges from mobile devices such as smart phones to electrified transportation. There are
currently around 7.4 billion active mobile subscriptions around the globe [10]. The Electric
Vehicles Initiative (EVI), a multi-government initiative to accelerate the adoption of electric
vehicles (EVs) worldwide aims for 20 million EVs including plug in electric vehicles (PHEVs)
and fuel cell electric vehicles (FCVs) by the year 2020 [11]. The pressing needs of battery
technologies are apparent based on cost and energy targets despite their respective decrease
and increase over the past few years [11]. Even though these technologies have advanced, the
growing needs of our society call for rapid charging and increased performance of batteries.
To accomplish this, better batteries can be made through the development of new materials
or higher performance can be obtained from existing (or new) batteries through controls &
estimation advances. This work focuses on the latter to enhance the operation of lithium
ion batteries with respect to charge time, power, energy, and life, safely.

As battery technologies mature, careful control strategies are required to ensure safety.
Figure 1.1-1.2, show lithium ion batteries that exploded in a smart phone and a commercial
airplane, respectively. The damage possible from the misuse of these batteries is apparent,
and it is clear that safety is extremely important for the proliferation of battery technologies.
The model based techniques discussed in this dissertation aim to address some of the chal-
lenges that arise when achieving the highest performance physically possible from lithium
ion batteries within a safe operating window.

The rest of this chapter gives an overview of battery systems, fundamentals, models,
controls and estimation, and organization of the dissertation.
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Figure 1.1: Battery Cell Failure in a Samsung Galaxy S3 Smart Phone, adopted from [1]

Figure 1.2: Battery Pack Failure in a Boeing 787 Commercial Airplane, adopted from [2]
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Figure 1.3: Left: A123 26650 2.3Ah Cylindrical Cell, adopted from [3]. Right: A123 AMP20
20Ah Prismatic Cell, adopted from [3].

Figure 1.4: 2016 Chevrolet Malibu HEV 1.5kWh Battery Pack, adopted from [4]

1.1 Battery System Overview
Commercial lithium ion battery cells usually are usually packaged in two forms, cylindrical
and prismatic (shown in Fig. 1.3). The operating voltage of a single cell for various lithium
ion battery chemistries is typically between 2 and 4.2 volts. For applications requiring higher
voltages and energy/power capacities, battery cells are connected in series and parallel to
form a battery pack with the desired voltage and energy/power. A battery pack composed of
multiple cells for an HEV is shown Fig. 1.4. The battery pack also consists of various sensors
(current, voltage, and temperature) which are connected to a battery management system
(BMS) which manages its operation (eg. charging, discharging, etc.). This dissertation
develops and validates model based techniques which are meant to occur within the BMS.
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Figure 1.5: Cylindrical Cell Construction, adopted from [5]

1.2 Battery Fundamentals
The typical construction of a spirally wound cylindrical battery cell is shown in Fig. 1.5.
The copper foil typically serves as the current collector for the negative electrode known as
the anode (which contains the active material), which is attached to the negative terminal
of the cell. The separator is an electrical insulator which allows lithium ions to flow from the
anode to the cathode (and vice versa), while ensuring electrons flow external to the cell. The
aluminum foil typically serves as the current collector for the positive electrode known as
the cathode (which contains the active material), which is attached to the positive terminal
of the cell. This electrode assembly is rolled up into a jelly roll, and then inserted into a
cylindrical can (with current collectors attached to the terminals of the cell). The electrolyte
is then inserted (which flows through the porous electrodes and separator assembly) and
the can is sealed. A similar process is followed to form prismatic cells which use stacked or
folded electrode assembly designs to form a cell.

A cross section of an electrode assembly is shown in Fig. 1.6 to understand the operation
of a lithium ion battery. When fully charged, the majority of the lithium in the cell exists
within the solid phase particles in the anode, typically lithiated carbon LixC6, that are
idealized as symmetric spherical particles. Under discharge, the lithium diffuses from the
interior to the surface of the spherical particles in the anode. An electrochemical reaction at
the surface separates the lithium into a positive lithium ion and electron as

LixC6 
 C6 + xLi+ + xe−. (1.1)

The lithium ion then migrates from the anode through the separator and into the cathode.
The corresponding electron then travels through an external circuit, since the separator is
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Figure 1.6: Electrochemical Cell Cross Section

electrically insulating, powering the connected load. The electron and lithium ion then meet
at the particles’ surface in the cathode, typically a lithium metal oxide LiMO2, and undergo
the electrochemical reaction

Li1−xMO2 + xLi+ + xe− 
 LiMO2. (1.2)

The produced lithium atom then diffuses into the interior of the spherical particles in the
cathode. The entire process can be reversed by applying sufficient electric potential across
the current collectors at the anode and cathode, yielding an electrochemical storage device.

1.3 Battery Models
The first principles models used in battery systems generally fall into one of two categories:
1) electrochemical (EChem) models, and 2) equivalent circuit models (ECM). The EChem
models predict measurable variables such as voltage, and also internal variables (lithium-ion
concentration in the solid and electrolyte, electric potential, etc.) that cannot be measured
in a commercial battery cell but can be used to directly limit specific degradation mecha-
nisms. Most EChem models are derived from the Doyle-Fuller-Newman (DFN) model [6],
which is based upon porous electrode and concentrated solution theory. A full order EChem
model (which models multiple spherical particles along the direction of each electrode) is
composed of coupled nonlinear partial differential equations, ordinary differential equations
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in space and time, and algebraic equations that make it challenging for control and estima-
tion. Due to that, simplifications to the full order EChem model are made to form a reduced
order EChem model known as the Single Particle Model with Electrolyte Dynamics (SPMe)
which idealizes each electrode as a single spherical particle while maintaining the elecrolyte
dynamics. This model maintains key state information useful for control while maintaining
good accuracy compared to the full order EChem model. A starting point when using an
EChem model for battery controls is typically the Single Particle Model (SPM) which as-
sumes constant electrolyte concentration that essentially gets rid of the electrolyte dynamics
in the SPMe. This model is generally valid under low input current rates where the elec-
trolyte concentration is approximately constant. The ECMs predict measurable variables
such as voltage via equivalent circuits. While coupled nonlinear ordinary differential equa-
tion ECMs can yield highly accurate voltage predictions under multiple operating conditions
when highly parameterized circuit elements are used, their internal states do not directly
relate to specific degradation mechanisms. An evolution of the models described (from full
order EChem model to ECM) are shown in Fig. 1.7.

An overview of the models employed in this dissertation for control and estimation are
as follows: 1) In chapter 2, the full order EChem model is coupled to a bulk temperature
dynamics model for control. 2) In chapter 3, the SPM is used to map parametric uncertainty
to bounds on state estimates of interest. 3) In chapter 4, the SPMe is coupled to a two
state temperature model to form a Single Particle Model with Electrolyte and Temperature
Dynamics (SPMeT) used for determining optimal charging trajectories. 4) In chapter 5,
an ECM is coupled to a two state thermal model and an aging model to form the Electro-
Thermal-Aging (ETA) model used for determining optimal charging trajectories. Details of
these models are presented in each chapter of this dissertation.

1.4 Battery Control and Estimation
To ensure longevity and robust operation, battery systems are typically oversized, which
results in them being underutilized. While oversizing mitigates degradation mechanisms, it
can be overly conservative. Traditional control approaches utilize voltage and current limits
that do not directly correspond to internal degradation mechanisms, hence the importance of
using an electrochemical model for control. This dissertation seeks to expand the operating
regime of lithium ion batteries by regulating immeasurable electrochemical states within
safe limits as illustrated in Fig. 1.8. Some challenges to using the full order electrochemical
model is that it lacks desirable properties for control design (eg. full controllability and
observability), and it is extremely complex. Additionally, the model contains 20+ parameters
that contain uncertainty in their values, which poses a challenge when estimating internal
model states used for control. This dissertation presents solutions to these challenges.
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Figure 1.7: Overview of Battery Models

Figure 1.8: Operation Limits Comparison



CHAPTER 1. INTRODUCTION 8

1.5 Challenges
The design and validation of model based optimal control strategies for lithium ion battery
systems is challenging due to:

• The potential benefits of electrochemical model based control of lithium ion batteries
over traditional control techniques involving only voltage and current measurements
has not been fully quantified. Therefore a quantification of these benefits is required.

• Full order electrochemical battery models are extremely complex and are generally not
suitable for control design due to their model structure and computational require-
ments. Therefore reduced order models are required.

• Parametric uncertainty exists in the 20+ parameters used in full order electrochemical
battery models. Therefore estimation techniques that map parametric uncertainty to
bounds on internal states used for control are required.

• The experimental validation of coupled nonlinear lithium ion battery models from
voltage and temperature measurements is not a trivial task. It is a required step for
experimentally validating the optimal control strategies developed in this dissertation.

• Optimal charge control of lithium ion batteries using coupled lithium ion battery mod-
els is extremely challenging due to multiple states and nonlinearities. Therefore a
framework to solve these problems must be developed and validated.

1.6 New Contributions of this Dissertation
The overall goal of this dissertation is to provide solutions for safely enhancing the perfor-
mance of lithium ion batteries through model based techniques. The contributions towards
this goal and the knowledge base of battery systems and control are:

• Chapter 2: The design of optimal control schemes using full order electrochemical
battery models which demonstrates the potential performance enhancements of elec-
trochemical model-based control schemes over traditional battery control techniques.

• Chapter 3: The mapping of parametric uncertainty in reduced order electrochemical
battery models to interval estimates of model states using sensitivity analysis, a ranking
of the uncertain parameters for model identification purposes, and a verification of the
effectiveness of the interval estimates.

• Chapter 4: The framework for obtaining optimal battery charge control schemes that
result in lowest charge times using reduced order electrochemical-thermal models, an
insight on battery design optimization for fast charging, an experimental validation of
the reduced order electrochemical-thermal model, and an experimental aging verifica-
tion of the fast charge protocol obtained.
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• Chapter 5: The framework for obtaining optimal battery charge control schemes
that result in minimum-time and health-conscious protocols using equivalent circuit-
thermal-aging models, the tradeoffs between charge time and battery health degra-
dation, an insight on battery system optimization, an experimental validation of the
electrical-thermal model, and an experimental aging verification of the balanced charge
protocol obtained.

1.7 Organization
The remaining chapters of this dissertation are organized as follows. Chapter 2 presents
Modified Reference Governors to enhance the performance of lithium ion batteries using a
full order electrochemical model. Chapter 3 presents Sensitivity-Based Interval Observers
that map parametric uncertainty of reduced order lithium ion battery electrochemical models
to bounded state estimates. Electrochemical-thermal model based control techniques for fast
charging are then presented in Chapter 4, followed by equivalent circuit-thermal-aging model
based control techniques for minimum-time/health-conscious charging presented in Chapter
5. Finally, the key contributions of this dissertation and opportunities for future work are
presented in Chapter 6.
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Chapter 2

Enhanced Performance of Li-ion
Batteries via Modified Reference
Governors & Electrochemical Models

2.1 Introduction
This chapter develops a reference governor-based approach to operating lithium-ion batteries
at their safe operating limits.

Battery energy storage is a key enabling technology for portable electronics, electrified
transportation, renewable energy integration, and smart grids. A crucial obstacle to the pro-
liferation of battery energy storage is cost. Specifically, battery packs are typically oversized
and underutilized to ensure longevity and robust operation. Indeed, oversizing mitigates
several degradation mechanisms, such as lithium-plating, lithium depletion/over-saturation,
overheating, and stress fractures by reducing C-rates1. However, oversizing can be overly
conservative. This chapter seeks to eliminate this conservatism by developing reference
governor-based algorithms that enable smaller-sized batteries whose states satisfy operating
constraints that explicitly model degradation mechanisms. This is in contrast to the tradi-
tional approach, which utilizes voltage and current limits that do not directly correspond to
the internal degradation mechanisms.

A reference governor (RG) is an effective tool for controlling a system within pointwise-
in-time constraints. This add-on control scheme attenuates the command signal (electric
current, in our case) to a system such that state constraints are satisfied while maintain-
ing tracking performance [12–14]. This method has been applied to a variety of systems,
including electrochemical energy conversation devices. For example, Sun and Kolmanovsky
developed a robust nonlinear RG to protect against oxygen starvation in fuel cell systems [15].

1C-rate is a normalized measure of electric current that enables comparison between different sized
batteries. It is defined as the ratio of current in Amperes (A) to a cell’s nominal capacity in Ampere-hours
(Ah).
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Figure 2.1: Schematic of the Doyle-Fuller-Newman model [6]. The model considers two
phases: the solid and electrolyte. In the solid, states evolve in the x and r dimensions. In
the electrolyte, states evolve in the x dimension only. The cell is divided into three regions:
anode, separator, and cathode.

In [16], Vahidi et al. adopted a so-called “Fast” RG approach for fuel cells to protect against
compressor surge/chock and oxygen starvation. In battery systems, Plett designed an al-
gorithm to determine power limits in real-time [17]. This approach considers an equivalent
circuit model and terminal voltage constraints. Smith et al. utilized a reduced-order, lin-
earized electrochemical model for state estimation and prediction of maximum, safe current
draw [18]. Klein et al. use a detailed electrochemical model with nonlinear model predictive
control to determine optimal charging trajectories subject to state constraints [19]. Hu et
al. use equivalent circuit battery models to optimize charge time and power loss subject to
state of charge, current, voltage, and charge time constraints [20].

In this chapter we design schemes that govern commanded electrical current, in the
presence of constraints on the electrochemical states. As such, this article’s main contribution
is the design of modified RGs for battery constraint management via electrochemical models.
We present nonlinear and linear designs that trade-off guaranteed constraint satisfaction with
computational efficiency. This article extends our previous work [21] with a comprehensive
numerical study that quantifies the potential performance benefits of a modified RG over
traditional voltage-based control, with respect to power, energy, and safety.

The remainder of this chapter is structured as follows. Chapter 2.2 summarizes the
electrochemical model and presents two motivating examples. Chapter 2.3 develops the
nonlinear and linearized modified RGs. Chapter 2.4 presents results using multiple drive
cycles. Chapter 2.5 summarizes the main results.
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2.2 Electrochemical Model & Motivation

Doyle-Fuller-Newman Model
We consider the Doyle-Fuller-Newman (DFN) model in Fig. 2.1 to predict the evolution of
lithium concentration in the solid c±s (x, r, t), lithium concentration in the electrolyte ce(x, t),
solid electric potential φ±s (x, t), electrolyte electric potential φe(x, t), ionic current i±e (x, t),
molar ion fluxes j±n (x, t), and bulk cell temperature T (t) [6]. The governing equations are

∂c±s
∂t

(x, r, t) = 1
r2

∂

∂r

[
D±s r

2∂c
±
s

∂r
(x, r, t)

]
, (2.1)

εe
∂ce
∂t

(x, t) = ∂

∂x

[
Deff
e

∂ce
∂x

(x, t) + 1− t0c
F

i±e (x, t)
]
, (2.2)

∂φ±s
∂x

(x, t) = i±e (x, t)− I(t)
σeff,±

, (2.3)

∂φe
∂x

(x, t) = −i
±
e (x, t)
κeff

+ 2RT
F

(1− t0c)

×
(

1 + d ln fc/a
d ln ce

(x, t)
)
∂ ln ce
∂x

(x, t), (2.4)

∂i±e
∂x

(x, t) = asFj
±
n (x, t), (2.5)

j±n (x, t) = 1
F
i±0 (x, t)

[
e
αaF
RT

η±(x,t) − e−
αcF
RT

η±(x,t)
]
, (2.6)

ρavgcP
dT

dt
(t) = hcell [Tamb(t)− T (t)] + I(t)V (t)

−
∫ 0+

0−
asFjn(x, t)∆T (x, t)dx, (2.7)

where Deff
e = De(εe)brug, σeff,± = σ±(εs + εf )brug, κeff = κ(εe)brug. Note that De, κ, fc/a are

functions of ce(x, t) and

i±0 (x, t) = k±
[
c±ss(x, t)

]αc [
ce(x, t)

(
c±s,max − c±ss(x, t)

)]αa
, (2.8)

η±(x, t) = φ±s (x, t)− φe(x, t)
− U±(c±ss(x, t))− FR±f j±n (x, t), (2.9)

c±ss(x, t) = c±s (x,R±s , t), (2.10)

∆T (x, t) = U±(c±s (x, t))− T (t)∂U
±

∂T
(c±s (x, t)), (2.11)

c±s (x, t) = 3
(R±s )3

∫ R±
s

0
r2c±s (x, r, t)dr. (2.12)

Along with these equations are corresponding boundary and initial conditions. For brevity,
we only summarize the differential equations here. Further details, including notation defini-



CHAPTER 2. ENHANCED PERFORMANCE OF LI-ION BATTERIES VIA
MODIFIED REFERENCE GOVERNORS & ELECTROCHEMICAL MODELS 13

tions, can be found in [6,7]. The parameters are taken from the publicly available DUALFOIL
model, developed by Newman and his collaborators [22]. The simulations provided here cor-
respond to a LiCoO2-C cell. The cell capacity is 67Ah/m2, calculated from the maximum
concentration of the anode. However, the techniques are broadly applicable to any Li-ion
chemistry.

Constraints
It is critical to maintain the battery within a safe operating regime. This protects against
failure and maintains longevity. Towards this end, we consider several constraints,

θ±min ≤
c±s (x, r, t)
c±s,max

≤ θ±max, (2.13)

ce,min ≤ ce(x, t) ≤ ce,max, (2.14)
Tmin ≤ T (t) ≤ Tmax, (2.15)

ηs(x, t) = φs(x, t)− φe(x, t)− Us ≥ 0. (2.16)

Equations (2.13) and (2.14) protect the solid active material and electrolyte, respectively,
from lithium depletion/over-saturation. Equation (2.15) protects against excessively cold or
hot temperatures, which accelerates cell aging. Finally, (2.16) is a side reaction overpotential
constraint. It models when unwanted side reactions occur, such as lithium plating [23, 24]
when Us = 0V [7], and can also model accelerated growth of the solid/electrolyte interphase
film formation [25,26] when Us = 0.4V [26,27].

Numerical Implementation
Numerical solution of the coupled nonlinear PDAE (2.1)-(2.12) is by itself a nontrivial task.
A rich body of literature exists on this singular topic (cf. Ch. 4 of [28] and references
therein). In our work the PDEs governing diffusion in the solid phase, (2.1), are discretized
in the r-dimension via Padé approximates [29]. All the remaining PDEs are discretized in the
x dimension via the central difference method, such that the moles of lithium are conserved.
This ultimately produces a finite-dimensional continuous-time differential-algebraic equation
(DAE) system

ẋ(t) = f(x(t), z(t), I(t)), (2.17)
0 = g(x(t), z(t), I(t)), (2.18)

where x = [c±s , ce, T ]T , z = [φ±s , i±e , φe, j±n ]T . This DAE model is then propagated forward
in time via an implicit numerical scheme. In particular, the nonlinear discretized equations
are solved via Newton’s method, at each time step. A crucial step is to provide the scheme
with analytic expressions for the Jacobian, which ensures fast convergence and accurate
simulations. These Jacobians are also used for the linearized modified reference governor
design in Chapter 2.3.
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Figure 2.2: Motivating example of Li plating. Evolution of current I(t), reference current
Ir(t), and side reaction overpotential ηs(L−, t) for a 10sec 3C pulse charging scenario, with
and without a modified reference governor.

Motivating Examples
Next, we consider two motivating examples: Li plating and Li depletion in the electrolyte.
In Fig. 2.2 we consider a 10 sec, 3C pulse charging cycle at 80% SOC as an example scenario
when Li plating may occur. The solid lines in Fig. 2.2 display the side reaction overpotential
response at the anode/separator interface, ηs(L−, t). Note that ηs(L−, t) < 0 over several
time periods. This induces Li plating, leading to dendrite formation that may potentially
short-circuit the electrodes.

Figure 2.3 displays responses for 10 sec, 7C pulse discharging cycle at 60% SOC. Under
this scenario, Li is eventually depleted at the cathode/current collector interface, denoted by
solid lines ce(0+, t). The model stops and becomes invalid after 66 sec when ce(0+, t) < 0.

In the following chapter sections, we design an algorithm to protect the battery from
entering these unsafe regions.

2.3 Modified Reference Governor (MRG) Designs

Nonlinear MRG Design
We utilize the RG concept to handle constraint satisfaction in batteries. A RG is an add-
on system that guarantees constraint satisfaction and maintains a desired level of reference
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Figure 2.3: Motivating example of lithium depletion in the electrolyte. The model is invalid
after ce(0+, t) < 0. Evolution of current I(t), reference current Ir(t), and electrolyte con-
centration ce(0+, t) for a 10sec 7C pulse discharging scenario, with and without a modified
reference governor.
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Figure 2.4: Block diagram of modified reference governor with direct measurements of the
constrained variables y.

tracking. It operates in a discrete-time domain, since the computations may not be feasi-
bly performed in real-time. In our “modified” RG approach, the applied current I(t) and
reference current Ir(t) are related according to

I[k + 1] = β[k]Ir[k], β ∈ [0, 1], (2.19)

where I(t) = I[k] for t ∈ [k∆t, (k + 1)∆t), k ∈ Z, and similarly for Ir[k]. We define the
admissible set

O = {(x(t), z(t)) : y(τ) ∈ Y ,∀τ ∈ [t, t+ Ts]} , (2.20)
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where

ẋ(t) = f(x(t), z(t), βIr), (2.21)
0 = g(x(t), z(t), βIr), (2.22)

y(t) = C1x(t) + C2z(t) +D · βIr + E. (2.23)

The output variables y = [c±s , ce, T, ηs]T must exist in set Y , characterized by inequalities
(2.13)-(2.16). The goal is to find the maximum value of β which maintains the state in O

β∗[k] = max {β ∈ [0, 1] : (x(t), z(t)) ∈ O} , (2.24)

where (x(t), z(t)) depends on β via (2.20)-(2.23).
To determine parameter β∗ at each time instant, the electrochemical model is simulated

forward over the time interval [t, t+Ts], where Ts is the simulation horizon. If the constraints
are violated for a given value of β, then β is reduced and the model is re-simulated to
ascertain constraint satisfaction of the new value of β. If the constraints are satisfied, then
β is increased to reduce tracking error between I(t) and Ir(t). This process is iterated
according to the bisection algorithm.

Remark 1 We refer to (2.19) as a “modified” RG to distinguish it from the conventional
RG concept that assumes an asymptotically stable system and applies input

I[k + 1] = I[k] + β[k] (Ir[k]− I[k]) , β ∈ [0, 1], (2.25)

which inserts a low-pass filter between the reference and applied inputs [12,13]. A battery is
not asymptotically stable, but marginally stable. That is, an eigenvalue at the origin ensures
conservation of lithium, which is the key energy storage property of batteries. Hence, we
modify the conventional RG such that a zero current input is always feasible and returns the
battery equilibrium. A similar concept is used in [18].

Linear MRG Design
The nonlinear MRG developed in the previous chapter section achieves guaranteed constraint
satisfaction at the expense of computational effort. Computational complexity, however,
is often the deciding factor on which design ultimately reaches implementation. Next we
design and evaluate a computationally efficient MRG based upon a linearized model. The
critical benefit of the linear MRG is that the parameter β can be determined by an explicit
expression. In contrast, the nonlinear MRG requires simulations and optimization.

At each time step we linearize the model (2.21)-(2.22) around the state and input values
from the previous time step: (x0, z0, u0) = (x[k − 1], z[k − 1], I[k − 1]) to obtain evolution
equations

˙̃x = A11x̃+ A12z̃ +B1Ĩ , (2.26)
0 = A21x̃+ A22z̃ +B2Ĩ , (2.27)
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where x̃ = x − x0, z̃ = z − z0, Ĩ = βIr − I0 and A11, A12, A21, A22, B1, B2 are the Jacobian
terms of the nonlinear state equations (2.21)-(2.22), evaluated at (x0, z0, u0). Since this
DAE system is linear and semi-explicit of index 1, we can explicitly solve for z̃ and write the
system as

˙̃x = Ax̃+BĨ (2.28)
where A = A11−A12A

−1
22 A21 and B = B1−A12A

−1
22 B2. Under this representation, the states

after a simulation horizon horizon of Ts, can be computed analytically. That is,

x̃(t+ Ts) = eATsx̃(t) +
∫ t+Ts

t
eA(t+Ts−τ)BĨdτ, (2.29)

z̃(t+ Ts) = −A−1
22

[
A21x̃(t+ Ts) +B2Ĩ

]
. (2.30)

The constrained output variables after Ts time units are

y(t+ Ts) = C1
[
x0 + x̃(t+ Ts)

]
+ C2

[
z0 + z̃(t+ Ts)

]
+D · βIr + E ≤ 0 (2.31)

where C1, C2, D,E are matrices which incorporate inequalities (2.13)-(2.16). We also assume
the reference current Ir is constant over the simulation horizon - a typical assumption in RG
design [12, 13, 15, 16, 18]. We are now positioned to formulate the linearized MRG problem.
Given the current states and reference current (x(t), z(t), Ir(t)), solve

max
β∈[0,1]

β, subject to βF ≤ G (2.32)

where F,G are vectors that incorporate the constraints (2.13)-(2.16) and depend on x(t) and
Ir(t) as follows

F =
[
C1L− C2A

−1
22 (A21L+B2) +D

]
Ir, (2.33)

G = −E − C1
[
x0 + Φ(x(t)− x0)− LI0

]
− C2

[
z0 − A−1

22

[
A21(Φ(x(t)− x0)−B2I

0
]]
, (2.34)

where
Φ = eATs , L =

∫ t+Ts

t
eA(t+Ts−τ)Bdτ. (2.35)

The optimization problem (2.32) is a one-dimensional linear program. Consequently, it can
be solved explicitly by determining the dominating constraint

Hi =

Gi/Fi if Fi > 0
−Gi/Fi else

i = 1, 2, ..., Nc, (2.36)

β∗ = min {1, Hi | i = 1, 2, ..., Nc} , (2.37)

where Gi and Fi denote the ith element of G and F , respectively, and Nc is the total number
of elements.
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Figure 2.5: Comparison of CCCV and modified reference governor (MRG) charging. The
MRG regulates ηs near its limit, thereby achieving 95% SOC in 14.9min vs. 35.5min for
CCCV by allowing voltage to safely exceed 4.2V.

2.4 Numerical Results
MRG Simulations

We consider the case when the constrained output variables, y, are measurable, as shown in
Fig. 2.4. In practice, one needs to estimate these variables from measurements of current and
voltage, as done in [30]. This chapter section analyzes performance under the hypothetical
situation of output variable feedback. Prediction horizon Ts = 5 sec is used in all simulations.

In the following, we apply the MRG to the scenarios described in Chapter 2.2. Figure 2.2
displays the current I(t), reference current Ir(t), and side reaction overpotential ηs(L−, t)
for a 10sec 3C pulse charging scenario. Note how the MRG attenuates the current to satisfy
ηs > 0. Similarly, Fig. 2.3 displays the system responses for a 10sec 7C pulse discharging
scenario. Again, I(t) is attenuated such that lithium is not depleted in the electrolyte.

Next we demonstrate the benefits of utilizing a MRG for charging. Figure 2.5 compares
the standard charging protocol, constant charging-constant voltage (CCCV), to a reference
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Figure 2.6: Comparison of MRG and LMRG. Signals include current I(t), reference current
Ir(t), and side reaction overpotential ηs(L−, t) for a 10sec 3C pulse charging scenario. The
LMRG does not reach the constraint, due to linearization modeling errors.

governor-based charging. In both cases, we consider a constant 1C charging current. The
CCCV protocol applies 1C charging until the terminal voltage reaches a “maximum safe
voltage level,” 4.2V in this case. This occurs near the 7.5 min. mark. Then CCCV regulates
terminal voltage at the maximum value, 4.2V, while the current diminishes toward zero. The
4.2V limit is selected such that lithium plating does not occur due to overcharging. Indeed,
the side reaction overpotential remains positive. However, this approach is conservative.
Specifically, the side reaction overpotential can be regulated closer to its limit. The MRG
applies 1C charging subject to the constraint ηs(L−, t) ≥ 0. In Fig. 2.5 the MRG maintains
ηs ≥ 0 despite voltage exceeding 4.2V. Moreover, the cell attains 95% SOC in 14.9min using
the MRG vs 35.5min for CCCV. Also note that CCCV reaches an equilibrium SOC of 96%,
whereas the MRG achieves 100% SOC. Consequently, 60%-95% charging time is decreased
by 58% and charge capacity is increased by 4%.

Linear-MRG Simulations

Next we evaluate simulations of the linear MRG (LMRG) to ascertain the trade off between
computational efficiency and constraint satisfaction. Figure 2.6 compares the LMRG to the
nonlinear MRG, for the 10sec 3C pulse charging scenario. In the LMRG, ηs(L−, t) does
not reach the constraint, due to linearization modeling errors. This produces a conservative
response that is within the constraint. The opposite is portrayed in Fig. 2.7, for the 10sec
7C pulse discharging scenario, where ce(0+, t) violates the constraint over several time pe-
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riods. One might interpret the constraint over/undershoot as follows. All the constraints
can be categorized into “soft constraints” (small violations are allowable but undesirable,
e.g. SEI film growth) and “hard constraints” (small violations are not allowable, e.g. elec-
trolyte depletion). For hard constraints, the limits can be selected more conservatively to
avoid overshoots. Nonetheless, the constraint violation magnitude is relatively small and the
LMRG would be effective at mitigating degradation and prolonging battery life.

The critical advantage of the LMRG, however, is the increased computational efficiency.
That is, the LMRG computes β via the explicit expressions (2.33)-(2.37), whereas the non-
linear MRG requires nonlinear simulations and optimization. We consider the CPU time
for each MRG as one measure of computational efficiency. The data provided in Table 2.1
indicates that the linear MRG reduces CPU time by over four-fold on a 2.9 GHz dual-core
laptop with 16GB of RAM. Further improvements are possible via code optimization.

Table 2.1: CPU Time per Simulated Time for Nonlinear and Linear MRGs.

Scenario MRG Linear MRG
10sec 3C charging 1.48 sec/sec (100%) 0.34 sec/sec (23%)

10sec 7C discharging 2.16 sec/sec (100%) 0.39 sec/sec (18%)
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Remark 2 (Current Limits & Power Capacity) The LMRG also provides real-time es-
timates of the max/min safe current and power capacity. The limiting current is given by

Ilim(t) = Ir(t) ·min {Hi | i = 1, 2, ..., Nc} , (2.38)

and the corresponding instantaneous power capacity is

Pcap(t) = Ilim(t)V (t). (2.39)

These variables are useful for feedback to higher-level supervisory control systems [17,18,30].

Comparative Analysis
We evaluate the operational, power and energy capacity benefits of the MRG versus an indus-
try standard Voltage-Only (VO) controller on electric vehicle-like charge/discharge cycles.
For comparison purposes, we choose operational voltage limits of 2.8V and 3.9V for the VO
controller. Various automotive-relevant charge/discharge cycles cases were tested. To explore
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Figure 2.9: US06x3 (1.4I) MRG. Left: Reference Current Ir(t) and Current I(t), Volt-
age V (t), State of Charge SOC(t), Temperature T (t). Right: β(t), Side Reaction Over-
potential ηs(L−, t), Electrolyte Concentration ce(0+, t), ce(0−, t), Surface Concentrations
θ(0−, t), θ(L−, t), θ(0+, t), θ(L+, t).

state constraint management, reference current was scaled by factors of ×1.0,×1.2,×1.4
(1.0I, 1.2I, 1.4I). The MRG constraints from (2.13) - (2.16) chosen for this analysis are
the: Surface Concentrations θ(0−, t), θ(L−, t), θ(0+, t), θ(L+, t), Electrolyte Concentration
ce(0+, t), ce(0−, t), Temperature T (t), and Side Reaction Overpotential ηs(L−, t). The con-
straint regions represent critical locations where the variable is most likely to be largest and
smallest, respectively, for upper and lower bounds. It is assumed that that Us = 0 for the
Side Reaction Overpotential ηs(L−, t), and hence are constraining Li plating from occurring.
Due to space constraints, we only provide detailed examples with three concatenated US06
drive cycles (US06x3).

Figure 2.8 shows simulation results for the US06x3 profile whose current is scaled up by
40% (1.4I), applied to the VO controller. The upper voltage limit is first regulated before
the 1 min mark, while the electrochemical variables are still away from their limits. One
could operate the battery safely beyond this maximum voltage. Additionally, electrolyte
concentration at the cathode/current collector interface ce(0+, t) falls below its lower limit
near 10 min, which induces Li plating.

Figure 2.9 shows the simulation results for the US06x3 profile whose current is scaled
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over US06x3 cycle.

up by 40% (1.4I), applied to the MRG controller. Note that the maximum Li concentration
at the cathode/separator interface θ(L+, t) limit is first regulated around the 9 min mark,
yet the voltage exceeds the VO upper voltage limit before 9 min. All other constrained
electrochemical states are maintained within safe limits. This expands the operating regime,
safely.

Expanded Operating Regime

Figure 2.10 depicts the Temperature vs. Voltage operational points for the MRG vs. VO
controllers for the US06x3 1.0I, 1.2I, and 1.4I current profiles. The upper voltage limit on
the VO controller becomes more constrictive as the current magnitude is scaled up. The
MRG safely exceeds the VO voltage limits under all conditions, as previously noted. In
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Figure 2.11: US06x3 power responses for (a) 1.0I, (b) 1.2I, and (c) 1.4I.

automotive applications, this ultimately means the MRG is able to recuperate more energy
(i.e. from regenerate braking) than the VO controller.

Increased Power Capacity

Figure 2.11 exemplifies how the MRG allows increased power capacity. It provides power
responses for the MRG vs. VO controller for US06x3 1.0I, 1.2I, and 1.4I current profiles.
As current is increased, the VO attenuates power to respect the voltage limits, whereas the
MRG allows for increased power. Figure 2.12 displays the distribution of cell power for the
MRG vs. VO controller. This distribution elucidates how the MRG allows for greater charge
power (negative power) than the VO controller.

Table 2.2 presents the mean power (discharge and charge) benefit percentage results
from using the MRG over the VO controller for the US06x3 drive cycle as well as five other
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Figure 2.12: US06x3 Power Histogram for (a) 1.0I, (b) 1.2I, and (c) 1.4I.

automotive drive cycles (UDDSx2, SC04x4, LA92x2, DC1, DC2) from [25]. In the most
aggressive drive cycle (US06x3) the MRG achieves 11.03% and 150.61% more discharge and
charge power, respectively, over the VO controller in the 1.4I case. Across all six simulated
drive cycles, the MRG achieves average increases in discharge and charge power of 4.92%
and 57.15%, with a standard deviation of 4.02% and 43.19%, respectively, in the 1.4I case.

Increased Energy Capacity

Table 2.3 presents the net energy benefits for six drive cycles (US06x3, UDDSx2, SC04x4,
LA92x2, DC1, DC2). In the most aggressive drive cycle (US06x3) the MRG achieves a
22.99% net energy increase over the VO controller for the 1.4I case. Across all six simulated
drive cycles, the MRG achieves an average net energy increase of 10.04% with a standard
deviation of 6.05% in the 1.4I case.
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Table 2.2: Mean power benefits of using MRG vs. VO.

Drive Cycle Mode 1.0I 1.2I 1.4I
DC1 Discharge 0.09% 0.24% 4.02%

Charge 6.17% 13.23% 21.21%
DC2 Discharge 0.02% -0.21% -0.75%

Charge 6.50% 22.57% 40.38%
LA92x2 Discharge 0.09% 1.79% 8.91%

Charge 16.66% 36.11% 58.07%
SC04x4 Discharge 0.08% 0.18% 2.97%

Charge 15.71% 26.17% 39.11%
UDDSx2 Discharge 0.04% 0.18% 3.07%

Charge 6.02% 20.09% 33.49%
US06x3 Discharge 0.23% 5.60% 11.33%

Charge 44.56% 100.38% 150.61%
Average Discharge 0.09% 1.29% 4.92%

Charge 15.94% 36.43% 57.15%
Std. Dev. Discharge 0.07% 2.03% 4.02%

Charge 13.56% 29.42% 43.19%

Table 2.3: Energy benefits of using MRG vs. VO.

Drive Cycle 1.0I 1.2I 1.4I
DC1 2.77% 5.59% 4.68%
DC2 1.06% 3.56% 7.64%

LA92x2 7.25% 11.95% 10.65%
SC04x4 4.29% 6.69% 7.34%
UDDSx2 1.95% 5.71% 6.94%
US06x3 15.34% 20.64% 22.99%
Average 5.45% 9.02% 10.04%

Std. Dev. 4.84% 5.79% 6.05%

2.5 Conclusions
This chapter develops reference governor-based approaches to satisfying electrochemical state
constraints in batteries. As a consequence, it enables one to enhance power capacity, en-
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ergy capacity, and charging speed by eliminating the conservatism imposed by traditional
operating constraints (e.g. voltage limits). The key ingredients to this approach are the
following. First, we utilize a first principles electrochemical model to predict and constrain
the evolution of physical degradation mechanisms. Second, a nonlinear modified reference
governor (MRG) algorithm is developed assuming measurements of the constrained vari-
ables. Third, a linearized MRG is developed, which replaces simulations with an explicit
function evaluation at the expense of possible constraint dissatisfaction or conservatism. A
suite of simulations were executed to quantify the potential performance gains of MRGs over
voltage-only regulators. We found 60%-95% charge times can be reduced by 58%, charge
power can be increased by 57.15% on average, and energy can be increased by 10.04% on
average, for the considered case studies.
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Chapter 3

Sensitivity-Based Interval PDE
Observers for Lithium-Ion Battery
SOC Estimation

3.1 Introduction
This chapter develops sensitivity-based interval partial differential equation (PDE) observers
for state-of-charge (SOC) estimation in batteries, using an electrochemical-based model with
bounded uncertain parameters. The goal is to generate an interval estimate of battery SOC
that mathematically relates parametric uncertainty to estimation uncertainty.

Batteries are ubiquitous in applications ranging from smart phones to electrified trans-
portation. In telecommunications, there are currently about 7.4 billion active mobile sub-
scriptions around the globe [10]. In electrified transportation, the Electric Vehicles Initiative
(EVI), a multi-government initiative to accelerate the adoption of electric vehicles (EVs)
worldwide aims for 20 million EVs including plug in electric vehicles (PHEVs) and fuel cell
electric vehicles (FCVs) by the year 2020 [11]. The pressing needs of battery technologies
are apparent, based on cost and energy targets. Despite recent performance and cost in-
novations, additional improvements are necessary to reach the desired targets [11]. These
facts provide overwhelming motivation for accurate and robust SOC estimation to maximize
battery performance and lifetime.

To this end, electrochemical models [7] have attracted significant attention from battery
controls researchers, due to their potential for high accuracy predictions. The parameters
of these models, however, are often characterized by a bounded interval of uncertainty. In
this chapter, we seek to generate interval state estimates of lithium-ion concentration, given
a simple PDE electrochemical model, measurements of current and voltage, and bounds on
parameter values. Mathematically, we abstract this problem as an interval PDE observer
design task, based upon sensitivity equations. The two relevant bodies of literature include
electrochemical model-based SOC estimation and interval observers.
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Electrochemical battery models capture the spatio-temporal dynamics of lithium ion
concentration, electrode potential, and Butler-Volmer kinetics. Most models in the battery
controls literature have been derived from the Doyle-Fuller-Newman model [6], which in-
cludes PDEs, ODEs in space, ODEs in time, and nonlinear algebraic equations. This system
of equations is generally too complex for state observer design. Consequently, researchers
have combined various model reduction and estimation techniques to perform SOC esti-
mation. These include residue grouping/Kalman filters [18], electrode averaging/extended
Kalman filters [31], output error injection [32], and adaptive PDE observers [30]. The un-
derlying electrochemical models, however, are characterized by parametric uncertainty [33].
The sensitivity of state estimates to parametric uncertainty has not been addressed in the
literature.

Parallel to battery SOC estimation is the theory of interval observers. In state estimation
and filtering schemes, process and measurement noises are often assumed to be Gaussian. For
example, the venerable Kalman filter assumes zero mean Gaussian process and measurement
noise, rendering a Gaussian distribution for the state estimate [34]. That is, the Kalman
filter maps additive stochastic process/measurement noise to a Gaussian distribution on the
state estimate. In contrast, interval or bounding observers assume process and measure-
ment disturbances are unknown but bounded [35, 36]. These algorithms have been studied
in the context of wastewater treatment [37], biochemical processes [38], robotics [39], and
bioreactors [40]. We develop a similar yet different approach that assumes specified model
parameters are unknown but bounded. The approach is based upon sensitivity analysis [41]
and developed within the context of PDE state observers [42], yielding a new type of interval
observer.

This chapter connects the aforementioned bodies of literature by developing novel interval
observers based upon sensitivity equations. As such, the results provide two key contribu-
tions. First, two sensitivity-based interval observers are proposed that relate parametric
uncertainty to an interval state estimate, for battery SOC estimation. Second, the sensitiv-
ity equations provide a metric for ranking parameter sensitivity, as illustrated in Chapter
3.6. A parameter sweep study tests the effectiveness of the sensitivity-based interval ob-
servers. We develop these results within the context of an electrochemical PDE model of
lithium-ion batteries. This chapter extends our previous work [43] with: (i) the derivation
of an analytical bound interval observer, (ii) the comparison of the analytical bound interval
observer and the heuristic bound interval observer (proposed in [43]), and (iii) a numerical
study of the sensitivity-based interval observers for the range of uncertain parameters.

This chapter is organized as follows: The single particle model and corresponding back-
stepping observer have been designed in [30, 44], but are provided in Chapter 3.2 and 3.3,
respectively, for completeness. Chapters 3.4 and 3.5 develop the observer sensitivity equa-
tions and formulate the interval observers. Finally, Chapters 3.6 and 3.7 provide simulation
results and a summary of the key contributions.
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Figure 3.1: Each electrode is idealized as a single porous spherical particle. This model
results from assuming the electrolyte concentration is constant in space and time [7].

3.2 Electrochemical Model Development
The sensitivity-based interval PDE observer is based upon an observer-oriented electrochem-
ical model and backstepping observer designed in [30,44]. For completeness and context, we
summarize the model development here.

Single Particle Model
We consider the simplest of electrochemical battery models, known as the “single particle
model” (SPM) [45]. This model is derived from the complete Doyle-Fuller-Newman model
[6] by assuming the electrolyte Li concentration is constant in space and time [7]. This
approximation is reasonably valid for low C-rates (i.e. low current magnitudes).

As shown in Fig. 3.1 the model consists of two diffusion PDEs in spherical coordinates
governing Li concentration dynamics in the solid phase of the negative (c−s (r, t)) and positive
(c+
s (r, t)) electrodes.

∂c−s
∂t

(r, t) = D−s

[
2
r

∂c−s
∂r

(r, t) + ∂2c−s
∂r2 (r, t)

]
, (3.1)

∂c+
s

∂t
(r, t) = D+

s

[
2
r

∂c+
s

∂r
(r, t) + ∂2c+

s

∂r2 (r, t)
]
, (3.2)
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∂c−s
∂r

(0, t) = 0, ∂c−s
∂r

(R−s , t) = I(t)
D−s Fa

−AL−
, (3.3)

∂c+
s

∂r
(0, t) = 0, ∂c+

s

∂r
(R+

s , t) = − I(t)
D+
s Fa

+AL+ . (3.4)

The Neumann boundary conditions at r = R+
s and r = R−s signify the flux entering the

electrode is proportional to the input current I(t). The Neumann boundary conditions at r =
0 are spherical symmetry conditions and required for well-posedness. The measured terminal
voltage is governed by a combination of electric overpotential, electrode thermodynamics,
and Butler-Volmer kinetics. The end result is

V (t) = RT

α+F
sinh−1

(
−I(t)

2a+AL+i+0 (c+
ss(t))

)

− RT

α−F
sinh−1

(
I(t)

2a−AL−i−0 (c−ss(t))

)
+U+(c+

ss(t))− U−(c−ss(t)) +RfI(t), (3.5)

where the exchange current density ij0 and solid-electrolyte surface concentration cjss are,
respectively

ij0(cjss) = kj
√
c0
ec
j
ss(t)(cjs,max − cjss(t)), (3.6)

cjss(t) = cjs(Rj
s, t), j ∈ {+,−}. (3.7)

Functions U+(·) and U−(·) in (3.5) are the open circuit potentials of each electrode material,
given the surface concentration. Mathematically, these are strictly monotonically decreasing
functions. This fact implies the inverse of their derivatives is finite, a property that is required
in Chapter section 3.2. Further details on the electrochemical principles used to derive these
equations can be found in [6, 7]. The SPM parameter definitions can be found in [44].

Note that the bulk anode SOC is defined as the normalized volume sum

SOC(t) = 3
c−s,max(R−s )3

∫ R−
s

0
r2c−s (r, t)dr. (3.8)

This model contains the property that the total number of lithium ions is conserved [32].
Mathematically, d

dt
(nLi) = 0, where

nLi = ε+
s L

+A
4
3π(R+

s )3

∫ R+
s

0
4πr2c+

s (r, t)dr

+ ε−s L
−A

4
3π(R−s )3

∫ R−
s

0
4πr2c−s (r, t)dr. (3.9)

This property is important, as it relates the total concentration of lithium in the cathode
and anode. In previous work [30,44], we have leveraged this fact to perform model reduction
for the state estimation problem.
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Observability & Model Reduction
As previously demonstrated [30, 44], the SPM is not completely observable from measure-
ments of voltage and current only. Consequently, the SPM is reduced by approximating the
cathode diffusion dynamics (3.2) by its equilibrium. This renders a completely observable
model.

The reduced SPM has a PDE given by (3.1), boundary conditions given by (3.3), and
output equation

V (t) = RT

α+F
sinh−1

(
−I(t)

2a+AL+i+0 (αc−ss(t) + β)

)

− RT

α−F
sinh−1

(
I(t)

2a−AL−i−0 (c−ss(t))

)
(3.10)

+U+(αc−ss(t) + β)− U−(c−ss(t))−RfI(t).

Note that c+
ss(t) has been replaced by αc−ss(t) + β. This is the critical detail of the reduced

SPM. The equilibrium of the cathode states (i.e., c+
s (r, t) = c+

ss(t)) is computed from the
conservation of Li property in (3.9) to produce the relationship

c+
ss(t) = 1

ε+
s L

+A

[
nLi − ε−s L−Ac−ss(t)

]
, (3.11)

where α = − ε−s L
−

ε+s L+ and β = nLi
ε+s L+A

.

Output Function Inversion
The reduced SPM contains linear dynamics and a nonlinear output function. In general,
an output injection-based estimator would be nonlinear for this class of systems. However,
a linear estimator is implemented in this chapter by injecting the boundary state error as
in [30, 44]. This requires the boundary state to be calculated from the measured voltage as
shown by the block diagram in Fig. 3.2. The output function is invertible w.r.t. the boundary
state c−ss, uniformly in the input current I(t). We show this by defining h : R × R → R,
such that V (t) = h(c−ss(t), I(t)). The horizontal line test can be used to show that h is a one
to one function w.r.t. c−ss(t), uniformly in I(t). As a result it is possible to determine the
inverse function ϕ where c−ss(t) = ϕ(V (t), I(t)).

Normalization and State Transformation
Next we perform normalization and state transformation to simplify the observer structure
as done in [30,44]. First scale the radial r and time t coordinates as follows

r̄ = r

R−s
, t̄ = D−s

(R−s )2 t. (3.12)
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Diffusion 
PDE Copy + 
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Sensitivity 
PDEs

Interval 
Estimator

Figure 3.2: Block diagram of estimation scheme where the boundary state error is injected
into the estimator. The use of the boundary state c−ss is determined by ϕ(V, I), which inverts
the nonlinear output w.r.t. the state, uniformly in the input current. The double spatial
derivative estimates ĉ−srr(r, t) along with input current I(t) and output inversion ϕ(V, I) are
fed into the sensitivity PDEs. The sensitivity estimates S1(r, t), S2(r, t), S3(r, t), S4(r, t),
spatial derivatives of the sensitivity estimates S1r(r, t), S2r(r, t), S3r(r, t), S4r(r, t), and the
concentration estimates ĉ−s are used to calculate the interval estimates ĉ−s (r, t)H,A, ĉ−s (r, t)H,A.

Henceforth we will drop the bars over the space and time coordinates to simplify nota-
tion. Next we perform a state transformation to eliminate the first spatial derivative in the
spherical diffusion equation (3.1). Namely, let

c(r, t) = rc−s (r, t). (3.13)

This normalization and state transformation produces the following PDE with Dirichlet and
Robin boundary conditions

∂c

∂t
(r, t) = ε

∂2c

∂r2 (r, t), (3.14)

c(0, t) = 0, (3.15)
∂c

∂r
(1, t)− c(1, t) = −qρI(t). (3.16)

and nonlinear output map given by (3.10) where c+
ss = αc(1, t) + β (see (3.11)), and

c−ss = c(1, t). The parameter ρ = R−s /(D−s Fa−AL−) groups electrochemical parameters
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together. The parameters ε and q are nominally equal to one. Respectively, they represent
uncertainty in the diffusion and boundary input coefficients. This uncertainty could arise
from concentration-dependent diffusivity and unequal particle sizes. In the following chapter
sections, we derive interval observers that map uncertainty in these parameters to bounds
on the state estimates.

3.3 Backstepping PDE Observer Design
The sensitivity-based interval PDE observers are based upon the backstepping design re-
ported in [30, 44]. We summarize the observer design here. The state estimator structure
consists of a copy of the plant (3.14)-(3.16) plus boundary state error injection, as follows

∂ĉ

∂t
(r, t) = ε

∂2ĉ

∂r2 (r, t) + p1(r)c̃(1, t), (3.17)

ĉ(0, t) = 0, (3.18)
∂ĉ

∂r
(1, t)− ĉ(1, t) = −qρI(t) + p10c̃(1, t), (3.19)

where the boundary state error is given by

c̃(1, t) = γϕ(V (t), I(t))− ĉ(1, t). (3.20)

Function ϕ(V (t), I(t)) generates the boundary state from measured voltage and current by
inverting the output function, as demonstrated visually by the block diagram in Fig. 3.2, as
explained in Chapter section 3.2. The parameter γ represents the uncertainty in the output
inversion, and is nominally equal to one. The backstepping approach [42] is applied to design
the output injection gains p1(r) and p10, resulting in

p1(r) = −λr2x

[
I1(x)− 2λ

x
I2(x)

]
,where x =

√
λ(r2 − 1), (3.21)

p10 = 3− λ
x

, (3.22)

where λ is an observer design parameter that governs the estimation error system dynam-
ics. Functions I1(x) and I2(x) are, respectively, the first and second order modified Bessel
functions of the first kind.

This concludes the background information for deriving the proposed sensitivity-based
interval observers for electrochemical PDE models.

3.4 Observer Sensitivity Equations
The main contribution of this chapter is two interval observers based upon the aforemen-
tioned backstepping observer, and the following sensitivity equations. Consider the param-
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eterized PDE backstepping SPM observer

∂ĉ

∂t
(r, t) = ε

∂2ĉ

∂r2 (r, t) + p1(r) [γϕ(V (t), I(t))− ĉ(1, t)] , (3.23)

ĉ(r, t0) = δĉ0(r), (3.24)
ĉ(0, t) = 0, (3.25)

∂ĉ

∂r
(1, t)− ĉ(1, t) = −qρI(t) + p10 [γϕ(V (t), I(t))− ĉ(1, t)] , (3.26)

where θ = [ε, q, γ, δ]T represents the uncertain parameters, whose values are nominally given
by θ0 = [ε0, q0, γ0, δ0]T = [1, 1, 1, 1]T . The parameter δ represents uncertainty in the initial
condition of the observer. Suppose the nominal observer has a unique solution denoted
ĉ(r, t; θ0). We seek to study variations of this solution due to variations in θ.

In the following, we derive sensitivity equations w.r.t. ε using the procedure outlined by
Khalil in Chapter 3 of [41]. The remaining sensitivity equations w.r.t. q, γ, and δ follow
an identical process. Let us re-write the PDE (3.23) in partial integro-differential equation
(PIDE) form

ĉ(r, t) = δĉ0(r) +
∫ t

t0
[εĉrr(r, s; θ) + p1(r)(γϕ(V (t), I(t))− ĉ(1, s; θ))]ds, (3.27)

ĉ(r, t0) = δĉ0(r), (3.28)
ĉ(0, t) = 0, (3.29)

ĉr(1, t)− ĉ(1, t) = −qρI(t) + p10 [γϕ(V (t), I(t))− ĉ(1, t)] , (3.30)

where ĉrr = ∂2ĉ/∂r2. Taking partial derivatives of both sides w.r.t. ε yields

∂ĉ

∂ε
(r, t) =

∫ t

t0
[ε∂ĉrr
∂ε

(r, s; θ) + ĉrr(r, s; θ)− p1(r)∂ĉ
∂ε

(1, s; θ)]ds, (3.31)

∂ĉ

∂ε
(r, t0) = ∂ĉ

∂ε
(0, t) = 0, (3.32)

∂ĉr
∂ε

(1, t)− ∂ĉ

∂ε
(1, t) = −p10

∂ĉ

∂ε
, (3.33)

where ĉr = ∂ĉ/∂r, and since c0(r) is independent of ε. We denote ĉε = ∂ĉ/∂ε, and change
the order of differentiation in the first term on the RHS of (3.31)

ĉε(r, t) =
∫ t

t0
[ε∂

2ĉε
∂r2 (r, s; θ) + ĉrr(r, s; θ)− p1(r)ĉε(1, s; θ)]ds, (3.34)
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ĉε(r, t0) = ĉε(0, t) = 0, (3.35)
∂ĉε
∂r

(1, t)− ĉε(1, t) = −p10ĉε(1, t). (3.36)

Differentiating w.r.t. time, we find that ĉε(r, t) verifies the PDE

∂

∂t
cε(r, t) = ε

∂2

∂r2 ĉε(r, t; θ) + ĉrr(r, t; θ)− p1(r)ĉε(1, t; θ), (3.37)

ĉε(r, t0) = ĉε(0, t) = 0, (3.38)
∂ĉε
∂r

(1, t)− ĉε(1, t) = −p10ĉε(1, t). (3.39)

When θ = θ0, then the RHS of (3.37) depends only on the nominal solution ĉ(r, t; θ0).
Let S1(r, t) = ĉε(r, t; θ0) be the sensitivity function. Then S1(r, t) is the solution of the
“Sensitivity PDE”:

S1t(r, t) = ε0S1rr(r, t; θ0) + ĉrr(r, t; θ0)− p1(r)S1(1, t; θ0), (3.40)

S1(r, t0) = S1(0, t) = 0, (3.41)
S1r(1, t)− S1(1, t) = −p10S1(1, t). (3.42)

Note that the sensitivity PDE is a linear diffusion-reaction equation in S1(r, t) and driven
by exogenous signal ĉrr(r, t; θ0) in (3.40).

Similarly, the sensitivity equations w.r.t. q are computed as

S2t(r, t) = ε0S2rr(r, t; θ0)− p1(r)S2(1, t), (3.43)

S2(r, t0) = S2(0, t) = 0, (3.44)
S2r(1, t)− S2(1, t) = −ρI(t)− p10S2(1, t), (3.45)

where S2(r, t) = ĉq(r, t; θ0). The sensitivity PDE is a linear diffusion-reaction equation in
S2(r, t) and driven by exogenous signal I(t) in (3.45). The sensitivity equations w.r.t. γ are
computed as

S3t(r, t) = ε0S3rr(r, t; θ0) + p1(r)ϕ(V (t), I(t))− p1(r)S3(1, t), (3.46)

S3(r, t0) = S3(0, t) = 0, (3.47)
S3r(1, t)− S3(1, t) = p10ϕ(V (t), I(t))− p10S3(1, t), (3.48)
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where S3(r, t) = ĉγ(r, t; θ0). The sensitivity PDE is a linear diffusion-reaction equation
in S3(r, t) and driven by exogenous signal ϕ(V (t), I(t)) in (3.46) and (3.48). Lastly, the
sensitivity equations w.r.t. δ are computed as

S4t(r, t) = ε0S4rr(r, t; θ0)− p1(r)S4(1, t), (3.49)

S4(r, t0) = ĉ0(r), (3.50)
S4(0, t) = 0, (3.51)

S4r(1, t)− S4(1, t) = −p10S4(1, t), (3.52)

where S4(r, t) = ĉδ(r, t; θ0). The sensitivity PDE is a linear diffusion-reaction equation in
S4(r, t), and is autonomous. Note that Si(r, t), i ∈ {1, 2, 3, 4} quantify the sensitivity of the
estimated states to variations in the uncertain parameter values. We exploit this property
to also perform a sensitivity analysis in Section 3.6.

Consequently, when θ is close to the nominal value θ0, we can approximate the solution
ĉ(r, t; θ) around the nominal solution ĉ(r, t; θ0) to first-order accuracy by,

ĉ(r, t; θ) := ĉ(r, t; θ0) + S1(r, t)(ε− ε0) + S2(r, t)(q − q0)
+S3(r, t)(γ − γ0) + S4(r, t)(δ − δ0)
+O((θ − θ0)T (θ − θ0)). (3.53)

3.5 Sensitivity-based Interval Observers
We are now positioned to formulate the interval observers based upon the sensitivity equa-
tions derived in the previous section of this chapter. Two interval observers are constructed
and presented in this chapter section.

First, we assume the parameters θ = [ε, q, γ, δ]T are unknown but bounded as follows

ε ≤ ε ≤ ε, q ≤ q ≤ q, γ ≤ γ ≤ γ, δ ≤ δ ≤ δ, (3.54)

where the bounds ε, q, γ, δ, ε, q, γ, δ are known. The nominal state estimate ĉ(r, t; θ0) is
generated from the PDE backstepping observer. Now we formulate two interval observer
designs that trade-off provable bounds and conservatism.

Heuristic Bound Interval Observer
A Heuristic bound interval observer with interval estimates ĉ(r, t)H , ĉ(r, t)H is computed as

ĉ(r, t)H = min{ĉ(r, t)± S1(r, t)(ε− ε0)± S2(r, t)(q − q0)
±S3(r, t)(γ − γ0)± S4(r, t)(δ − δ0)}, (3.55)

ĉ(r, t)H = max{ĉ(r, t)± S1(r, t)(ε− ε0)± S2(r, t)(q − q0)
±S3(r, t)(γ − γ0)± S4(r, t)(δ − δ0)}, (3.56)
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where we consider all combinations of the + and − operators. Functions S1(r, t), S2(r, t),
S3(r, t), S4(r, t) are solutions to the sensitivity PDEs (3.40)-(3.52). These interval estimates
consider all possible cases where S1(r, t), S2(r, t), S3(r, t), S4(r, t) are positive or negative.
This allows for the absolute min/max to be used as the interval estimates, which are then
used to find the Heuristic interval estimates of bulk SOC

(
ˆSOC(t)H , ˆSOC(t)H

)
and voltage(

V̂ (t)H , V̂ (t)H
)

.
We coin this design as “heuristic,” since we have not proven that ĉ(r, t)H ≤ ĉ(r, t, ; θ) ≤

ĉ(r, t)H ∀ θ given by (3.54). However, the simulations in the following chapter section
demonstrate this to be true for all cases we considered.

Analytical Bound Interval Observer
Next we derive bounds ĉ(r, t)A, ĉ(r, t)A that satisfy

ĉ(r, t)A ≤ ĉ(r, t, ; θ) ≤ ĉ(r, t)A ∀ θ, (3.57)

given by (3.54). This Analytical bound interval observer is computed with L2-spatial norms,
the Triangle inequality, and Agmon’s inequality.

Define the first order-accurate deviation of the estimate ĉ(r, t; θ) from the nominal solution
ĉ(r, t; θ0) as

∆ĉ(r, t) := ĉ(r, t; θ)− ĉ(r, t; θ0), (3.58)
∆ĉ(r, t) := S1(r, t)(ε− ε0) + S2(r, t)(q − q0)

+S3(r, t)(γ − γ0) + S4(r, t)(δ − δ0). (3.59)

and assume the higher order terms are negligible. Taking the L2-spatial norm of both sides
yields

‖∆ĉ(r, t)‖ = ‖S1(r, t)(ε− ε0) + S2(r, t)(q − q0)
+S3(r, t)(γ − γ0) + S4(r, t)(δ − δ0)‖. (3.60)

Since (ε− ε0),(q − q0),(γ − γ0),(δ − δ0) are scalar, applying the Triangle inequality gives

‖∆ĉ(r, t)‖ ≤ ‖S1(t)‖ · |ε− ε0|+ ‖S2(t)‖ · |q − q0|
+‖S3(t)‖ · |γ − γ0|+ ‖S4(t)‖ · |δ − δ0|. (3.61)

We define the following based on the bounds of the uncertain parameters

∆εmax = max {|ε− ε0|, |ε− ε0|} , (3.62)
∆qmax = max

{
|q − q0|, |q − q0|

}
, (3.63)

∆γmax = max
{
|γ − γ0|, |γ − γ0|

}
, (3.64)

∆δmax = max
{
|δ − δ0|, |δ − δ0|

}
. (3.65)
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Applying these bounds, we can now define upper bounds on ‖∆ĉ(t)‖ as

‖∆ĉ(r, t)‖ ≤ ‖S1(t)‖ ·∆εmax + ‖S2(t)‖ ·∆qmax (3.66)
+‖S3(t)‖ ·∆γmax + ‖S4(t)‖ ·∆δmax.

Similarly, we define upper bounds on ‖∆ĉr(r, t)‖ as

‖∆ĉr(r, t)‖ ≤ ‖S1r(t)‖ ·∆εmax + ‖S2r(t)‖ ·∆qmax (3.67)
+‖S3r(t)‖ ·∆γmax + ‖S4r(t)‖ ·∆δmax.

This positions us to apply Agmon’s inequality,

max
r∈(0,1)

|∆ĉ(r, t)|2 ≤ 2‖∆ĉ(r, t)‖ · ‖∆ĉr(r, t)‖. (3.68)

Consequently, we define an upper bound on |∆ĉ(r, t)| as

|∆ĉ(t)|max := {2 [‖S1(t)‖ ·∆εmax + ‖S2(t)‖ ·∆qmax (3.69)
+‖S3(t)‖ ·∆γmax + ‖S4(t)‖ ·∆δmax]
· [‖S1r(t)‖ ·∆εmax + ‖S2r(t)‖ ·∆qmax

+‖S3r(t)‖ ·∆γmax + ‖S4r(t)‖ ·∆δmax]}1/2 .

We can now compute the Analytical bound interval estimates ĉ(r, t)A, ĉ(r, t)A as

ĉ(r, t)A = ĉ(r, t)− |∆ĉ(t)|max, (3.70)
ĉ(r, t)A = ĉ(r, t) + |∆ĉ(t)|max. (3.71)

Note these definitions of ĉ(r, t)A, ĉ(r, t)A satisfy (3.57). These interval estimates are then
used to find the Analytical interval estimates of bulk SOC

(
ˆSOC(t)A, ˆSOC(t)A

)
and voltage(

V̂ (t)A, V̂ (t)A
)

using (3.8) and (3.10), respectively.

3.6 Simulations
In this chapter section we present simulation examples of the interval PDE observers for
various charge/discharge cycles, along with a sensitivity analysis and a parameter sweep
study to test the effectiveness of the interval observers. We apply the observer to the re-
duced SPM, apply the sensitivity equations to the observer, whose results are then used in
the interval observers. We work in the normalized (r, t) coordinates but retain the original
state realization. The model parameters originate from [33] for a commercial LiFePO4 cell.
Estimation gain parameter λ = −5 from (3.21)-(3.22), as in [44]. The uncertain parame-
ters for the interval observers are set at θ = [0.9, 0.9, 0.9, 0.6]T and θ = [1.1, 1.1, 1.1, 1.4]T
which represents a ±10% deviation from the nominal parameters ε0, q0, γ0 and a reasonable



CHAPTER 3. SENSITIVITY-BASED INTERVAL PDE OBSERVERS FOR
LITHIUM-ION BATTERY SOC ESTIMATION 40

0 5 10 15

−5

0

5

C
ur

re
nt

 [C
−

ra
te

]

0 5 10 15
0

1

2

x 104

S
en

si
tiv

ity

 

 
S1(1, t)

S2(1, t)

S3(1, t)

S4(1, t)

0 5 10 15
0

0.5

1

B
ul

k 
S

O
C

 

 
SOC(t)

ˆSOC(t)

ˆSOC(t)H

0 5 10 15
3.1

3.2

3.3

3.4

3.5

Time [min]

V
ol

ta
ge

 

 V (t)

V̂ (t)

V̂ (t)H

  

ˆSOC(t)H
ˆSOC(t)A
ˆSOC(t)A0 2 4

0.2
0.4
0.6

 

 

  

V̂ (t)H

V̂ (t)A

V̂ (t)A
3.5 4 4.5 5 5.5

3.39
3.4

3.41
3.42
3.43

 

 

V (t)

V̂ (t)

V̂ (t)H

(a)

(d)

(c)

(b)

Figure 3.3: Pulse Charge/Discharge Cycle
(a) Input current. (b) Sensitivity. (c) Bulk
SOC. (d) Output Voltage.
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Figure 3.4: UDDSx2 Charge/Discharge Cy-
cle (a) Input current. (b) Sensitivity. (c)
Bulk SOC. (d) Output Voltage.

range of physically meaningful observer initial conditions for the nominal parameter δ0. All
PDE models are implemented using the finite central difference method. The SPM plant
and observer states are initialized at different values to demonstrate uncertainty in initial
conditions. Zero mean normally distributed noise with a standard deviation of 2mV is added
to the voltage measurement.

Charge/Discharge Cycles
First, a pulse current charge/discharge cycle is applied. Figure 3.3(a) shows the applied
current in terms of C-rate (normalized current against charge capacity), where positive
values indicate discharge rates. Figure 3.3(b) shows the resulting sensitivities of surface
concentration, where S3 has the largest time average, followed by S2, S1, and S4. This
indicates that the observer system is most sensitive to perturbations in γ, followed by q,
then ε, and finally δ. More specifically, the observer system is most sensitive to the output
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inversion ϕ as γ represents its uncertainty. Figure 3.3(c) shows the true and estimated bulk
SOC along with the upper and lower interval (Heuristic and Analytical) estimates. We see
that the estimate converges to within 1% of the the true value at t=4.13min. We also see
that the Heuristic interval estimates encapsulate the true SOC within reasonable bounds
after t=0.82min, while the Analytical interval estimates do so from the beginning. Figure
3.3(d) shows the plant output voltage with noise and estimated voltage along with the upper
and lower interval estimates. At t=1.19min the voltage error between the estimated and true
voltage with noise is less than 3mV.

Note that both the Heuristic and Analytical interval estimates bound the estimated state
ˆSOC(t), even though we have only mathematically proven this property for the Analytic

interval observer. The Analytical interval estimates are more conservative than the Heuris-
tic estimates, due to the various majorizations performed in the previous chapter section.
Consequently, the two observers trade-off provable bounds with conservatism.

Next, an electric vehicle-like charge/discharge cycle consisting of two concatenated urban
dynamometer driving schedules (UDDS) is applied. Figure 3.4(a) shows the applied current
in terms of C-rate. Figure 3.4(b) shows the resulting sensitivities, where S3 has the largest
time average, followed by S2, S1, and S4. Note that this is the same observation as seen with
the pulse current profile. Figure 3.4(c) shows the true and estimated bulk SOC along with
the upper and lower interval (Heuristic and Analytical) estimates. We see that the estimate
converges to within 1% of the the true value at t=4.25min. We also see that the Heuristic
interval estimates encapsulate the true SOC within reasonable bounds after t=0.91min, while
the Analytical interval estimates do so from the beginning. Figure 3.4(d) shows the plant
output voltage with noise and estimated voltage along with the upper and lower interval
estimates. At t=1.17min the voltage error between the estimated and true voltage with
noise is less than 3mV.

Similar to the pulsed current case, the Heuristic and Analytical interval estimates bound
the estimated state ˆSOC(t). Again, we see a trade-off between mathematically provable
bounds and conservatism.

Sensitivity Analysis
A set of electric vehicle-like charge/discharge cycles (US06x3, SC04x4, LA92x2, DC1, DC2)
[25] are applied to further understand the effects of parameter uncertainty through sensitivity
analysis on the observer system. We rank the parameters based on the integrated absolute
value of each sensitivity normalized by time,

Sranki = 1
T

∫ T

0
|Si(s)|ds, (3.72)

where i ∈ [1, 2, 3, 4], and T is the total time. Figure 3.5 shows that estimated SOC is most
sensitive to perturbations in γ, followed by q, ε, and finally δ. Consequently, accurate output
inversion is most important for accurate SOC estimation.
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Figure 3.5: Normalized parameter sensitivity ranking (average in blue, standard deviation in
red) across various electric vehicle-like charge/discharge cycles (UDDSx2, US06x3, SC04x4,
LA92x2, DC1, DC2).

Parameter Sweep
We now explore if the proposal interval observers bound the family of state trajectories
produces as we sweep the parameter values. The Heuristic and Analytical interval observer
bounds from the pulse current charge/discharge cycle in Fig. 3.3 are evaluated by individ-
ually sweeping the uncertain parameters (ε,q,γ,δ) of the nominal observer from their lower
to upper bounds. Figure 3.6-3.7, 3.8-3.9, 3.10-3.11, 3.12-3.13 shows the effectiveness of the
Heuristic and Analytical interval observer bounds when generating a family of observer es-
timate trajectories of each uncertain parameter (ε,q,γ,δ) for SOC and V , respectively. We
see that both interval observer bounds encapsulate the family of observer trajectories for all
cases when ε ∈ [0.9, 1.1], q ∈ [0.9, 1.1], γ ∈ [0.9, 1.1], δ ∈ [0.6, 1.4], respectively. Note that
the Heuristic interval observer bounds all the state trajectories for the cases considered here,
although this has not been proven analytically. If one desires provable bounds, then the
Analytical interval observer can be used in exchange for added conservatism. Additionally,
these results verify the sensitivity analysis findings (γ having the largest effect on observer
estimates) in the previous section. This is due to the fact that uncertainty in the output
inversion (via uncertain parameter γ) will result in uncertainty in the observer estimates.
Finally, these results also demonstrate that the observer is robust to the other uncertainties
presented in this chapter, such as measurement noise and the first-order approximation in
(3.53).
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Figure 3.6: Pulse Charge/Discharge
Cycle SOC Trajectories for ε =
{0.9, 0.95, 1.0, 1.05, 1.1}.
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Figure 3.7: Pulse Charge/Discharge
Cycle Voltage Trajectories for
ε = {0.9, 0.95, 1.0, 1.05, 1.1}.
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Figure 3.8: Pulse Charge/Discharge
Cycle SOC Trajectories for q =
{0.9, 0.95, 1.0, 1.05, 1.1}.
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Figure 3.9: Pulse Charge/Discharge
Cycle Voltage Trajectories for
q = {0.9, 0.95, 1.0, 1.05, 1.1}.
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Figure 3.10: Pulse Charge/Discharge
Cycle SOC Trajectories for γ =
{0.9, 0.95, 1.0, 1.05, 1.1}.
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Figure 3.11: Pulse Charge/Discharge
Cycle Voltage Trajectories for γ =
{0.9, 0.95, 1.0, 1.05, 1.1}.
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Figure 3.12: Pulse Charge/Discharge
Cycle SOC Trajectories for δ =
{0.6, 0.9, 1.0, 1.1, 1.4}.
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Figure 3.13: Pulse Charge/Discharge
Cycle Voltage Trajectories for δ =
{0.6, 0.9, 1.0, 1.1, 1.4}.
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3.7 Conclusions
This chapter examines the sensitivity of a previously developed backstepping PDE estima-
tor [30, 44] to perturbations in the nominal uncertain parameters. It then combines the
resulting sensitivities with the observer estimates to generate upper and lower interval es-
timates, for a given deviation in the nominal uncertain parameters. The sensitivity results
are also used to rank parameter sensitivity to understand which parameters have the great-
est effect on the observer estimates. This is important for prioritizing which parameters to
identify in a system identification process. The two proposed interval estimation algorithms
compromise analytically provable bounds with tightness. We explore this trade off in sim-
ulation, and demonstrate the effectiveness via a parameter sweep analysis. Ultimately, the
interval estimates can be integrated into a feedback control application to ensure robustness
to parameter uncertainty.
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Chapter 4

Optimal Charging of Li-Ion Batteries
via a Single Particle Model with
Electrolyte and Thermal Dynamics

4.1 Introduction
This chapter develops an approach to solve for optimal charge control schemes using an
electrochemical based model with thermal dynamics. The goal is to systematically obtain
optimal charge schemes that result in the lowest charge times, while understanding their
nature to gain an insight on battery design optimization for fast charging.

Batteries are widely utilized in mobile handsets, electric vehicles (EVs), and power grid
energy storage [30, 46]. They are an enabling technology for diversifying and securing our
future energy supplies. In contrast to simple and rapid refueling of gasoline or diesel, battery
recharge requires meticulous control and management, owing to complex electrochemical
reactions, immeasurable internal states, and serious safety concerns [47]. Fast charging is a
thriving area of research, as it increases the practicality and consumer acceptance of battery-
powered devices (e.g., EVs). Nevertheless, it can also impair battery longevity depending on
the charging method used, particularly due to heating. It is thus crucial to systematically
study the effects of electrochemical and thermal states on charging time, which is the focus
of this chapter.

The traditional charging protocol for Li-ion batteries is constant-current/constant-voltage
(CC-CV) [23]. In the CC stage, the charging current is constant until a pre-specified volt-
age threshold is reached, and in the CV stage the voltage threshold is maintained until the
current relaxes below a pre-specified threshold value. This technique is simple and easily im-
plemented. The current rate and voltage threshold are, however, almost universally selected
in an ad-hoc manner.

In the literature, various methods have been proposed to reduce charge times, such as
multi-stage CC (high CC followed by low CC) plus CV (CC-CC-CV) [48], boost charging
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(CV-CC-CV) [49], constant power-constant voltage (CP-CV) [24], fuzzy logic [50,51], neural
networks [52], grey system theory [53], and ant colony system algorithm [54]. Alternative
protocols were reported to prolong the battery lifetime as well, such as MCC-CV (low CC
followed by high CC plus CV) [24] and CC-CV with negative pulse (CC-CV-NP) [55]. This
literature provides enormous insight on rapid charging, but all the protocols are – at some
level – heuristic. That is, they employ basic knowledge, empirical observations, and experi-
ence of the battery’s electrical properties to devise a charging strategy. Their implementation
and performance are subject to cumbersome meta-parameter tuning. Furthermore, there are
no mathematical guarantees for fast charge optimality, nor constraint satisfaction.

Recently, some researchers have given first insights into model-based optimal charge
control [56–61]. A significant challenge for model-based charge control is numerically solving
a multi-state nonlinear calculus of variations optimal control problem. These previous studies
side-step this difficulty using linear-quadratic formulations [56], state independent electrical
parameters [57], piecewise constant time discretization [58], linear input-output models [59],
a one-step model predictive control formulation [60], or a reference governor formulation [61].
To directly face the nonlinear variational calculus problem, orthogonal collocation enabled
pseudo-spectral methods were employed in [62] to optimize charging time and efficiency
of lithium-ion batteries. This work was extended in [63] to consider aging and coupled
electrical-thermal dynamics via equivalent circuit type models. However, all of the foregoing
studies do not explore coupled and fully constrained electrochemical-thermal dynamics for
fast charge applications. Moreover, previous model based techniques do not give insight on
what parameters a battery cell designer can optimize for enabling faster charge times.

This chapter pursues a different approach to developing optimal fast charging proto-
cols using electrochemical-thermal models. Mathematically, we formulate a minimum time
optimal control problem via a coupled Single Particle Model with Electrolyte and Thermal
Dynamics (SPMeT). In the coupled model, two PDE single particle subsystems capture both
anode and cathode solid concentration dynamics, a three-PDE electrolyte subsystem cap-
tures the electrolyte concentration dynamics in three domains (anode, separator, cathode)
which all feed into the nonlinear voltage output function (4.10). The nonlinear voltage out-
put and bulk solid concentrations are then fed into the two-state thermal subsystem (4.14),
whose temperature feeds back into the nonlinear voltage output and solid/electrolyte dy-
namics. Due to the coupled electrochemical-thermal dynamics, the optimization problem is
highly nonlinear. Consequently, there are no analytic solutions and numerical solutions have
been considered extremely difficult. We challenge this entrenched mindset by leveraging the
Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval
collocation. It is also worth emphasizing that incorporating a two-state temperature model
in lieu of the commonly-used single lumped temperature yields more accurate predictions
and safer charging protocols. This chapter extends our previous work [64] with: (i) the incor-
poration of temperature dependent electrochemical model parameters and a two state ther-
mal model, (ii) an experimental validation of the electrochemical-thermal model dynamics
for charging, (iii) analysis of optimal charge protocols using the validated electrochemical-
thermal model, and (iv) experimental comparison and tradeoff analysis of capacity fade and
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Figure 4.1: Each electrode is idealized as a single porous spherical particle whose dynamics
evolve in the r dimension. The electrolyte concentration dynamics evolve in all regions in
the x dimension.

charging time for an electrochemical-thermal model based optimal charge protocol, and a
traditional CC-CV charge protocol.

The remainder of this chapter is structured as follows. In Chapter 4.2, the Single Particle
Model with Electrolyte and Thermal Dynamics is described. In Chapter 4.3, the minimum
time optimal charge control problem is formulated, and the LGR pseudo-spectral method
is briefly introduced. Optimization results are discussed in Chapter 4.4, followed by exper-
imental results in Chapter 4.5. Finally, Chapter 4.6 concludes with a summary of the key
findings.

4.2 Single Particle Model with Electrolyte and
Thermal Dynamics

The Single Particle Model with Electrolyte and Thermal Dynamics (SPMeT) is summarized
in this section. The Single Particle Model with Electrolyte Dynamics (SPMe) used here is
most similar to [65–67] and achieves a higher prediction accuracy than the Single Particle
Model without electrolyte dynamics. Complete details on the derivation and model prop-
erties of the SPMe are presented in [68]. The Thermal Model from [8, 9] is coupled to the
SPMe to form the SPMeT (see Fig. 4.1).
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s , c
−
s , ce subsystems.

SPMeT Model
The SPMeT model consists of: (i) two linear spherical diffusion PDEs modeling each elec-
trode’s solid concentration dynamics, (ii) a quasilinear diffusion equation (across three do-
mains) modeling the electrolyte concentration dynamics, (iii) a nonlinear output function
mapping boundary values of solid concentration, electrolyte concentration, and current to
terminal voltage, and (iv) two ODEs modeling the core and surface temperature of the cell.
The average temperature then feeds back into the nonlinear output function, and the solid
and electrolyte dynamics (see Fig. 4.2).

We now introduce the SPMeT equations. The solid diffusion equations (4.1) with bound-
ary conditions (4.2) are

∂c±s
∂t

(r, t) = 1
r2

∂

∂r

[
D±s (Tavg)r2∂c

±
s

∂r
(r, t)

]
, (4.1)

∂c±s
∂r

(0, t) = 0, ∂c±s
∂r

(R±s , t) = ∓ 1
D±s (Tavg)Fa±AL±

I(t). (4.2)

The Neumann boundary conditions at r = R±s signify the flux entering the electrode is
proportional to the input current I(t) (positive for charge). The Neumann boundary condi-
tions at r = 0 are spherical symmetry conditions and required for well-posedness. Next, the
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electrolyte diffusion equations (4.3)-(4.5) with boundary conditions (4.6)-(4.9) are

ε−e
∂c−e
∂t

(x, t) = ∂

∂x

[
Deff
e (c−e , Tavg)

∂c−e
∂x

(x, t)
]
− (1− t0c)

FAL−
I(t), (4.3)

εsepe
∂csepe
∂t

(x, t) = ∂

∂x

[
Deff
e (csepe , Tavg)

∂csepe
∂x

(x, t)
]
, (4.4)

ε+
e

∂c+
e

∂t
(x, t) = ∂

∂x

[
Deff
e (c+

e , Tavg)
∂c+

e

∂x
(x, t)

]
+ (1− t0c)

FAL+ I(t), (4.5)

∂c−e
∂x

(0−, t) = ∂c+
e

∂x
(0+, t) = 0, (4.6)

Deff
e (L−, Tavg)

∂c−e
∂x

(L−, t) = Deff
e (0sep, Tavg)

∂csepe
∂x

(0sep, t), (4.7)

Deff
e (Lsep, Tavg)

∂csepe
∂x

(Lsep, t) = Deff
e (L+, Tavg)

∂c+
e

∂x
(L+, t), (4.8)

ce(L−, t) = ce(0sep, t), ce(Lsep, t) = ce(L+, t). (4.9)

The nonlinear output function for terminal voltage is governed by a combination of electric
overpotential, electrode thermodynamics, Butler-Volmer kinetics, and electrolyte potential
as

V (t) = RTavg(t)
αF

sinh−1
(

I(t)
2a+AL+ī+0 (t)

)

− RTavg(t)
αF

sinh−1
(

−I(t)
2a−AL−ī−0 (t)

)
+ U+(c+

ss(t))− U−(c−ss(t))

+
(

R+
f

a+AL+ +
R−f

a−AL−
+ Rce(Tavg(t))

A

)
I(t)

+
(
L+ + 2Lsep + L−

2Aκeff (Tavg)

)
I(t)

+ kconc(t)
[
ln ce(0+, t)− ln ce(0−, t)

]
, (4.10)

where c±ss(t) = c±s (R±s , t) is the surface concentration in the solid, kconc = 2RTavg(t)
F

(1−t0c)k̄f (t),
and ī±0 (t) is the spatially averaged exchange current density

i±0 (t) = k±(Tavg)
[
c±ss(t)

]αc [
c±e (x, t)

(
c±s,max − c±ss(t)

)]αa
. (4.11)

The temperature dependent electrochemical parameters follow an Arrhenius law

P (Tavg) = Pref exp
(
EaP
R

(
1
Tref

− 1
Tavg

))
. (4.12)
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The core and surface temperature dynamics of the cylindrical cell are governed by
dTc(t)
dt

= Ts(t)− Tc(t)
RcCc

+ Q(t)
Cc

, (4.13)

dTs(t)
dt

= Tf (t)− Ts(t)
RuCs

− Ts(t)− Tc(t)
RcCs

(4.14)

where Q(t) = I(t)|V (t) − (U+(c̄+
s (t)) − U−(c̄−s (t)))| is the heat generation including joule

heating and energy dissipated by electrode over-potentials and c̄±s (t) is the bulk concentration
in the anode/cathode

c̄±s (t) = 3
(R±s )3

∫ R±
s

0
r2c±s (r, t)dr. (4.15)

The heat conduction resistance, convection resistance, core heat capacity, and surface heat
capacity are represented by Rc, Ru, Cc, and Cs, respectively. The two states are the core
Tc and surface Ts temperatures. We assume that the coolant flow rate is constant (which
translates to a constant Ru), and the ambient temperature Tf is nearly constant as done
in [8, 9]. The average cell temperature is

Tavg(t) = Tc(t) + Ts(t)
2 , (4.16)

which is approximately equal to the radial average temperature [69] for the cell considered
in this study. The thermal parameters have been identified in previous work [8, 9]. We
determine Ru using our experimental setup as described in Chapter 4.5.

We define the cell SOC from the bulk anode SOC and the stoichiometric difference in
the anode as

SOC(t) = c̄−s (t)
c−s,max|x100% − x0%|

. (4.17)

This summarizes the SPMeT which maintains accuracy at higher C-rates than that of an
SPM with thermal dynamics alone [68]. The model parameters used in this study originate
from [9,22,65,70–72] and correspond to a lithium iron phosphate cathode / graphite anode
chemistry A123 26650 2.3Ah cell. We determine some parameters based on our experimental
setup and validate the effectiveness of the electrochemical-thermal model for various charging
cases in Chapter 4.5.

Comparison to existing SPMe Models

The models in [65–67] are most similar to the SPMe presented here with a few critical
differences. In [65], bulk solid concentration is used in the voltage output function instead of
the surface concentration we use here (see (26) in [65]). In the case of [66], volume averaging
is performed in the electrolyte phase which partially obscures electrolyte polarization. In [67],
the authors use an approximation of the solid state diffusion equation instead of retaining the
PDE version we use in (4.1)-(4.2) (see Section 2 of [67]). Moreover, we include a temperature
submodel, as does [65].
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4.3 Optimal Charge Control Formulation
Next we formulate a minimum-time/safe optimal charge control problem. The objective
function J is given by

min
I(t),x(t),tf

∫ tf

t0
1 · dt, (4.18)

where (tf − t0) is the charge time to reach a desired target SOC (SOCf ). The optimiza-
tion variables are the input current I(t) and final time tf , with state variables x(t) =
[c+
s (r, t), c−s (r, t), c+

e (x, t), csepe (x, t), c−e (x, t), Tc(t), Ts(t)]T . The constraints include the model
dynamics and boundary conditions (4.1) - (4.9), input, state, event, and time constraints
below:

Imin ≤ I(t) ≤ Imax, (4.19)

θ±min ≤
c±s (r, t)
cs,max

≤ θ±max, (4.20)

ce,min ≤ cle(x, t) ≤ ce,max, l ∈ {−, sep,+} (4.21)
Tmin ≤ Tm(t) ≤ Tmax, m ∈ {c, s} (4.22)
t0 ≤ tf ≤ tmax, (4.23)

c±s (r, t0) = c±s,0, cle(x, t0) = cle,0, l ∈ {−, sep,+} (4.24)
SOC(tf ) = SOCf , SOC(t0) = SOC0, (4.25)
Tm(t0) = T0, m ∈ {c, s}. (4.26)

Constraints (4.20) - (4.21) protect the solid active material and electrolyte from lithium
depletion/oversaturation. Constraint (4.22) protects against excessively cold or hot temper-
atures that accelerate cell aging.

The PDE system (4.1)-(4.9) is discretized in space using a second-order accurate finite
central difference method that conserves lithium [73], resulting in a nonlinear differential
algebraic equation system. Due to this complex mathematical structure, it is difficult to
use conventional optimization techniques, e.g., dynamic programming, Pontryagin’s mini-
mum principle, and indirect methods, due to intractable computational burden or accuracy.
Instead, we pursue pseudo-spectral methods to transcribe this infinite-dimensional optimal
control problem into a finite-dimensional optimization problem with algebraic constraints at
the discretized nodes. Then, the optimization variables at such nodes are solved by off-the-
shelf nonlinear programming (NLP) solvers, like SNOPT or IPOPT [74]. Note that convexity
is not guaranteed, and therefore these solvers yield locally optimal solutions. Pseudo-spectral
methods are an effective tool for complex nonlinear optimal control problems and have been
extensively applied to real-world optimization problems in engineering, including aerospace
and autonomous flight systems [75], road vehicle systems [76], energy storage [62, 63], etc.
There are a myriad of approaches for discretizing integral and differential equations, leading
to a spectrum of pseudo-spectral variants. In this study, we use the Legendre-Gauss-Radau
(LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation, featured by
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Figure 4.3: Minimum time charge results with Imax = {8.5C, 7.25C, 6C}. Left: Current I(t),
Voltage V (t), State of Charge SOC(t), Temperatures Tc(t), Ts(t). Right: Surface Concen-
trations θ−(t), θ+(t), Electrolyte Concentrations c−e (0−, t), c+

e (0+, t).

the general purpose optimal control software (GPOPS-II) [74]. This software incorporates an
orthogonal collocation method to generate the LGR points. Rather than a traditional fixed
global mesh, an adaptive mesh refinement algorithm is employed to iteratively adjust the
number of mesh intervals, the width of each interval, and the polynomial degree (the num-
ber of LGR points). Theoretical and algorithmic properties of this method are elaborated
in [77,78] and in the Appendix.

4.4 Results and Discussion
This section presents optimization results for minimum-time charge and examines solution
sensitivity to perturbations in model parameters.

Minimum Time Charge
The optimal charge trajectories are shown in Fig. 4.3 for Imax = {8.5C, 7.25C, 6C}. It
takes 4.48min to achieve a target SOC of 75% (SOCf = 0.75) from an initial SOC of 25%
(SOC0 = 0.25) when Imax = 8.5C. The charge process follows a constant-current/constant-
electrolyte-concentration/constant-surface-concentration (CC-CCe-CCss) protocol. To mini-
mize charging time, the maximum C-rate is applied initially, causing the minimum electrolyte
concentration constraint to become active at the anode current collector. The surface con-
centration at the anode increases until it reaches its maximum value, which becomes the
dominant inequality constraint. A similar behavior is observed when Imax = 7.25C, with a
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longer initial current at the maximum C-rate. It takes 4.62min to achieve the target SOC
in this case, which is slightly more than the previous case. Note that once the the minimum
electrolyte concentration constraint becomes active at the anode current collector, the pro-
tocol follows almost the same trajectory as the previous case. A slightly different behavior
is observed when Imax = 6C, which just has 2 steps. It takes 5.20min to achieve the target
SOC in this case, which is longer in time than the previous cases. This protocol follows
a constant-current/constant-surface-concentration (CC-CCss) protocol. The maximum C-
rate is applied initially, until the maximum surface concentration at the anode constraint
becomes active. Heuristically, the first two protocols where Imax = {8.5C, 7.25C} are similar
in nature to the CC-CC-CV charge protocol [48] which involves an initial high constant
current period, followed by a lower constant current period, and then by a constant voltage
period. The last protocol where Imax = 6C is similar in nature to the well known CC-CV
protocol [23].

A comparison of the optimized charge protocol vs. the well known CC-CV protocol is
presented in Fig. 4.4 for Imax = 6C. We make two observations. (i) It takes the CC-
CV protocol 5.27min to achieve the target SOC, a 0.07min (1.37%) increase w.r.t. the
optimized charge protocol at Imax = 6C. (ii) The optimized protocol allows safe excursions
beyond the 3.6V upper limit in CC-CV by ensuring the electrochemical state constraints
are satisfied. Although the optimized protocol is not significantly faster than the CC-CV
protocol here, it allows for safe charging since the CC-CV protocol violates the surface
concentration constraints at the anode and cathode chosen in this study.
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Figure 4.5: Influence of a ±2.5% deviation in De(ce, Tavg) on optimization results for min-
imum time charge with Imax = 8.5C. Left: Current I(t), Voltage V (t), State of Charge
SOC(t), Temperatures Tc(t), Ts(t). Right: Surface Concentrations θ−(t), θ+(t), Electrolyte
Concentrations c−e (0−, t), c+

e (0+, t).

Sensitivity Based Battery Design for Fast Charging
Next we examine the solution sensitivity to perturbations in model parameters for fast charg-
ing. In previous results, we noted that the first electrochemical constraint to become active
was the electrolyte concentration at the anode current collector when Imax = {8.5C, 7.25C}.
This observation motivates exploring how alterations to the electrolyte dynamics impact
minimum charge time. We also explore how changes in other model parameters affect the
minimum charge time.

Electrolyte Diffusivity De(ce, Tavg)

A comparison between the optimized charge protocol for a ±2.5% deviation in De(ce, Tavg)
and the solution with nominal parameters is shown in Fig. 4.5 for Imax = 8.5C. The
optimized charge protocol with a +2.5% deviation requires 4.40min to achieve the target
SOC. The cell with greater electrolyte diffusivity requires 0.08min (1.83%) less charge time.
Consequently, increasing De(ce, Tavg) is favorable to obtaining a faster charge time. The
optimized charge protocol with a −2.5% deviation requires 4.57min to achieve the target
SOC. The cell with lower electrolyte diffusivity requires 0.09min (1.87%) more charge time.
Consequently, decreasing De(ce, Tavg) is not favorable to obtaining a faster charge time. Note
that the trajectories are similar to that of the unperturbed solution. The difference is seen
in the electrolyte concentration dynamics which become faster or slower depending on the
increase or decrease in De(ce, Tavg), respectively.
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Other Parameters t0c , D+
s (Tavg), R+

s , Ru

Similarly, we examine the impact of the transference number t0c , solid diffusivity of the
cathode D+

s (Tavg), solid particle radius of the cathode R+
s , and cooling convection coefficient

Ru on the minimum charge time. The results are summarized in Table 4.1. Note that an
increase in the transference number t0c , solid diffusivity of the cathode D+

s (Tavg), and cooling
convection coefficient Ru is favorable to obtaining a faster charge time. However, an increase
in the solid particle radius of the cathode R+

s is not favorable to obtaining a faster charge
time.

An increase in the transference number t0c effectively scales down the input current to the
electrolyte diffusion dynamics which translates to a higher current allowed for fast charging
before the constraint is reached. Increasing the solid diffusivity of the cathode D+

s (Tavg)
speeds up the solid diffusion dynamics, and scales down the input current at the boundary
which allows for a higher current when fast charging before the constraint is reached. Fur-
thermore, increasing the cooling convection coefficient Ru means there is less cooling of the
battery which translates to higher overall temperatures that is favorable for fast charging
(since the dynamics of the solid and electrolyte speed up, and overall resistance of the cell
goes down).

Table 4.1: Minimum Charge Times for Perturbed Solutions.

Parameter Chg. Time (+2.5%) Chg. Time (-2.5%)
t0c 4.43min 4.53min

D+
s (Tavg) 4.48min 4.53min
R+
s 4.58min 4.48min

Ru 4.47min 4.49min

4.5 Experimental Results and Discussion
Various experiments were conducted to validate the electrochemical-thermal model con-
structed in this chapter using parameters from [9, 22, 65, 70–72] for a 2.3Ah A123 26650
LiFePO4 battery in our test facility. The cell was placed on an Arbin High Current Cylin-
drical Cell Holder inside of an ESPEC BTL-433 environmental chamber to regulate the
ambient temperature at 25oC (298.15K). A K-type thermocouple was placed on the surface
of the battery to measure Ts. First, the cell was cycled using a C/20 CC-CV test to identify
open circuit voltage (and open circuit potentials) using a PEC SBT2050 cycler that controls
the input current to the battery. Then a 5C CC-CV charge test was performed to identify
some electrochemical-thermal parameters for our experimental setup. The resulting SPMeT
optimal charge protocols with Imax = {8.5C, 7.25C, 6C} from the optimization results (using
the newly determined open circuit potentials and electrochemical-thermal parameters) are
then applied to the battery for validation of the output voltage and surface temperature of
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Figure 4.6: Experimental Determination of Open Circuit Potentials from Open Circuit Volt-
age: Estimated Open Circuit Voltage (U+(θ+) − (U−(θ−))Est, Experimental Open Circuit
Voltage (U+(θ+)− U−(θ−))Exp, Cathode Open Circuit Potential U+(θ+), and Anode Open
Circuit Potential U−(θ−).

the electrochemical-thermal model. We experimentally compare the SPMeT optimal charge
protocol with Imax = 6C against a 5C CC-CV charge protocol (C-rate chosen based on
higher charge time) on two cells. The two cells undergo several hundred cycles to determine
the changes in capacity fade and charge time.

Electrochemical-Thermal Model Validation
The open circuit voltage is determined from a C/20 CC-CV cycling test (with voltage limits
of 3.6V and 2.0V) by taking the average of the charge and discharge voltage curves, and
is used to determine the open circuit potentials of the cathode and anode (shown in Fig.
4.6). Some electrochemical-thermal parameters were determined from a 5C CC-CV charge
protocol applied to a battery at 25% SOC and 25oC (298.15K). The final conditions of the
applied 5C CC-CV charge protocol are 75% SOC and 31.45oC (304.6K). The current for the
SPMeT optimal charge optimization results with Imax = {8.5C, 7.25C, 6C} are then applied
(open loop) to validate the voltage and surface temperature of the electrochemical-thermal
model, as shown in Fig. 4.7-4.9 which achieves a Voltage RMSE of {25.9mV, 23.9mV,
16.3mV} and a Surface Temperature RMSE of {0.16K, 0.17K, 0.37K}, respectively.
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Figure 4.8: Experimental Validation of Electrochemical-Thermal Model via SPMeT Optimal
Charge Protocol when Imax = 7.25C: Current I(t), Model Voltage V (t)SPMeT , Experimental
Voltage V (t)Exp, Model Temperatures Tc(t)SPMeT , Ts(t)SPMeT , and Experimental Tempera-
ture Ts(t)Exp.
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Figure 4.9: Experimental Validation of Electrochemical-Thermal Model via SPMeT Optimal
Charge Protocol when Imax = 6C: Current I(t), Model Voltage V (t)SPMeT , Experimental
Voltage V (t)Exp, Model Temperatures Tc(t)SPMeT , Ts(t)SPMeT , and Experimental Tempera-
ture Ts(t)Exp.

Charge Protocol Aging
Two cells were used to determine the tradeoffs between capacity fade and charge time for a
fixed 1.15Ah charge throughput (using the SPMeT optimal charge protocol with Imax = 6C
and 5C CC-CV charge protocols). Both cells are discharged with a 1C CC-CV protocol
to the open circuit voltage corresponding to 25% SOC. The charge and discharge protocol
of each cell is then repeated for hundreds of cycles. The current from the SPMeT optimal
charge protocol with Imax = 6C is applied to the first battery cell (open loop). The 5C
CC-CV charge protocol is applied to the second battery cell (closed loop), using the built-
in controller of the battery cycler to maintain the 3.6V limit under the 5C CC-CV charge
operation. That is, the same current is applied each time for the SPMeT optimal charge
protocol with Imax = 6C (regardless of what voltage is measured) while the current for the
CC-CV protocol is adjusted in real-time once the voltage constraint becomes active. The
discharge capacity is determined using a 1C CC-CV cycling test at cycles {0, 10, 60, 110,
160, 210} and is shown (normalized against initial capacity) in the first subplot of Fig. 4.10.
The normalized capacity of the SPMeT optimal charge protocol with Imax = 6C is 81.18%
while that of the 5C CC-CV charge protocol is 97.67% at cycle 210. The higher capacity fade
experienced by the SPMeT optimal charge protocol with Imax = 6C is expected since it is
applied in a pure open loop fashion and has a faster charge time than that of the 5C CC-CV
protocol. The charge time of the SPMeT optimal charge protocol with Imax = 6C stays
the same each time while that of the 5C CC-CV protocol increases as shown in the bottom
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Figure 4.10: SPMeT Optimal Charge with Imax = 6C (Open Loop) and 5C CC-CV Charge
Protocol (Closed Loop) Aging: Capacity Fade, and Charge Time.

subplot of Fig. 4.10. The charge time of the SPMeT optimal charge protocol with Imax = 6C
is 5.20 minutes while that of the 5C CC-CV charge protocol is initially 6.01 minutes. The
charge time of the 5C CC-CV charge protocol increases to 6.23 minutes at cycle 210. There
is a clear tradeoff between degradation and charge time between the SPMeT optimal charge
protocol with Imax = 6C and 5C CC-CV charge protocol. These results provide motivation
and justification for closed loop control to alleviate aging that occurs with time.

4.6 Conclusions
An optimal control framework for a PDE system has been developed to explore model-
based fast-safe charging protocols. In this framework, a coupled Single Particle Model with
Electrolyte and Thermal Dynamics is incorporated to account for solid and electrolyte phase
concentration constraints, as well as thermal constraints. The Legendre-Gauss-Radau (LGR)
pseudo-spectral method with adaptive multi-mesh-interval collocation is leveraged to solve
the infinite dimensional nonlinear optimal control problem. Charge time is examined sub-
ject to both electrochemical and thermal constraints. The resulting minimum time charge
regimes with varying input current limits are analyzed in detail, with the following key
findings: (i) The protocol is constant-current/constant-electrolyte-concentration/constant-
surface-concentration (CC-CCe-CCss) when Imax = {8.5C, 7.25C}, requiring 4.48 minutes
and 4.62 minutes to charge the battery from 25% to 75% SOC, respectively. This op-
timized protocol is similar to the heuristic high constant current-low constant current-
constant voltage (CC-CC-CV) protocol. (ii) The protocol is constant-current/constant-
surface-concentration (CC-CCss) when Imax = 6C, requiring 5.20 minutes to charge the
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battery and is similar to the well known constant-current/constant-voltage (CC-CV) proto-
col. (iii) The protocol solutions yield physical insight on which battery design parameters to
optimize for fast charging applications. Increasing electrolyte diffusivity coefficient De(ce),
transference number t0c , solid diffusivity of the cathode D+

s (Tavg) and cooling convection co-
efficient Ru results in faster charge time when Imax = 8.5C. However, an increase in the
solid particle radius of the cathode R+

s results in slower charge time when Imax = 8.5C. Fi-
nally, experimental validation results of the SPMeT optimal charge protocol with Imax = 6C
(open loop) versus a 5C CC-CV charge protocol (closed loop) are presented with respect to
capacity fade and charge time.
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Chapter 5

Optimal Charging of Li-Ion Batteries
with Coupled Electro-Thermal-Aging
Dynamics

5.1 Introduction
This chapter develops an approach to solve for optimal charge control schemes using an
equivalent circuit based model with thermal dynamics. The goal is to systematically ob-
tain optimal charge schemes that result in minimum-time/health-conscious protocols, while
understanding their nature to gain an insight on battery system optimization for optimal
charging.

Batteries are widely used in mobile handsets, electric vehicles (EVs), and electric grid
energy storage [46, 79]. They are an enabling technology for diversifying and securing our
future energy supplies. In contrast to simple and rapid refueling of gasoline or diesel, battery
recharge requires meticulous control and management, owing to complex electrochemical
reactions, immeasurable internal states, and serious safety concerns [47]. Fast charging is a
thriving area of research, as it increases the practicality and consumer acceptance of battery-
powered devices (e.g., EVs). Nevertheless, it can also impair battery longevity depending on
the charging method used, particularly due to heating. It is thus crucial to systematically
study the tradeoffs between charging time and health degradation, which is the focus of this
chapter.

The traditional charging protocol for Li-ion batteries is constant-current/constant-voltage
(CCCV) [23]. In the CC stage, the charging current is constant until a pre-specified voltage
threshold is reached; in the CV stage the voltage threshold is maintained until the current
relaxes below a pre-specified threshold value. This technique is simple and easily imple-
mented. The current rate and voltage threshold are, however, almost universally selected in
an ad-hoc manner.

Various methods were proposed to reduce charge times. Examples include multi-stage CC
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(high CC followed by low CC) plus CV (MCC-CV) [48], fuzzy logic [50,51], neural networks
[52], grey system theory [53], and an ant colony system algorithm [54]. Alternative protocols
were reported to prolong the battery lifetime as well, such as MCC-CV (low CC followed by
high CC plus CV) [24] and CCCV with negative pulse (CCCV-NP) [55]. These protocols
are almost always heuristic. That is, they employ basic knowledge or empirical observations
of electrical properties of batteries to devise a charging strategy. Their implementation and
performance are subject to cumbersome meta-parameter tuning. Furthermore, there are no
mathematical guarantees for fast charge optimality or safe constraint satisfaction.

Recently, some researchers have given first insights into model-based optimal charge con-
trol [56–61]. A significant challenge for model-based charge control is numerically solving a
multi-state nonlinear calculus of variations optimal control problem. These previous studies
side-step this difficulty using linear-quadratic formulations [56], state-independent electrical
parameters [57], piecewise constant time discretization [58], linear input-output models [59],
a one-step model predictive control formulation [60], or a reference governor formulation [61].
To directly face the nonlinear variational calculus problem, orthogonal collocation enabled
pseudo-spectral methods were employed in [62] to optimize charging time and efficiency of
lithium-ion batteries. However, all of the foregoing studies merely consider the electrical
behavior of batteries, without simultaneously accounting for thermal and aging dynamics.
Consequently, the optimized protocols may markedly deviate from reality, as batteries in-
variably work at varying thermal and aging conditions. Moreover, one cannot explore aging
minimization and temperature-related safety considerations (e.g., thermal runaway).

This chapter pursues a different approach to developing optimally health-conscious fast-
safe charging protocols. Mathematically, we formulate a multi-objective optimal control
problem via a coupled electro-thermal-aging model. In the full model, a two-state thermal
subsystem captures both core and surface temperature dynamics. The core temperature
feeds into parameters within the electrical and aging subsystems [9]. Due to the bi-directional
coupling between subsystems, the optimization problem is highly nonlinear. Consequently,
there are no analytic solutions and numerical solutions have been previously considered
intractable. We challenge this entrenched mindset by leveraging the Legendre-Gauss-Radau
(LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation. To the best
of our knowledge, it is the first multi-objective optimization framework for optimally trading
off charging time and battery capacity fade, subject to both electrical and thermal limits.
It is also worth highlighting that incorporating a two-state temperature model in lieu of
the commonly-used single lumped temperature yields more accurate predictions and safer
charging protocols. This article extends our previous work [63] with: (i) an experimental
validation of the electro-thermal model dynamics for charging, (ii) analysis of optimal charge
protocols using the aging model coupled to the validated electro-thermal model, and (iii)
experimental comparison and tradeoff analysis of capacity fade and charging time for a
balanced charge and traditional CCCV protocol.

The remainder of this chapter is structured as follows. In Chapter 5.2, the coupled
electro-thermal-aging model is described. In Chapter 5.3, the multi-objective optimal control
problem is formulated, and the LGR pseudo-spectral method is briefly introduced. Opti-



CHAPTER 5. OPTIMAL CHARGING OF LI-ION BATTERIES WITH COUPLED
ELECTRO-THERMAL-AGING DYNAMICS 64

Voc

R1

C1

+

-

R0

V1

R2

C2
V2

Vt

Figure 5.1: Schematic of the Electrical Model.

mization results are discussed in Chapter 5.4, followed by experimental results in Chapter
5.5. Finally, Chapter 5.6 summarizes the key findings.

5.2 Coupled Electro-Thermal-Aging Model
In this section, a coupled electro-thermal-aging model is described for cylindrical lithium-
iron-phosphate batteries (A123 ANR26650M1). It consists of a second-order equivalent
circuit model for emulating voltage behavior, a two-state thermal model for predicting the
core and surface temperatures, and a semi-empirical capacity-fade model. The electrical
parameters depend upon core temperature, SOC, and current direction. The thermal pa-
rameters are constant. The parameters of the aging model depend upon current rate and
core temperature. None of the individual subsystem models are new, yet their integration
into optimal charging control is novel.

Electrical Model
The electrical model in Fig. 5.1 comprises an open-circuit voltage (OCV, Voc), two resistor-
capacitor (RC) pairs (R1, C1, R2, C2), and an ohmic resistor (R0). The state-space model
is given by:

dSOC

dt
(t) = I(t)

Cbat
, (5.1)

dV1

dt
(t) = − V1(t)

R1C1
+ I(t)

C1
, (5.2)

dV2

dt
(t) = − V2(t)

R2C2
+ I(t)

C2
, (5.3)

Vt(t) = Voc(SOC) + V1(t) + V2(t) +R0I(t), (5.4)

where Cbat is the nominal capacity, I(t) is the current (positive for charge), and Vt(t) denotes
the terminal voltage. The three states include SOC and voltages (V1, V2) across the two RC
pairs. Through proper experimental design, the electrical parameters have been successfully
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Figure 5.2: Electrical Parameters for Charge identified in [8, 9]: (a) Voc, (b) R0, (c) C1, (d)
R1, (e) C2, and (f) R2.

identified in [8, 9], and those for charge are displayed in Fig. 5.2. We determine Voc using
our experimental setup as described in Chapter 5.5.

Thermal Model
The thermal model sketched in Fig. 5.3 describes the radial heat transfer dynamics of a
cylindrical battery by considering core and surface temperatures Tc and Ts as follows:

dTc(t)
dt

= Ts(t)− Tc(t)
RcCc

+ Q(t)
Cc

, (5.5)

dTs(t)
dt

= Tf (t)− Ts(t)
RuCs

− Ts(t)− Tc(t)
RcCs

, (5.6)

where Q(t) = |I(Voc−Vt)| is heat generation including joule heating and energy dissipated by
electrode over-potentials. The heat conduction resistance, convection resistance, core heat
capacity, and surface heat capacity are represented by Rc, Ru, Cc, and Cs, respectively. The
two states are the core Tc and surface Ts temperatures. As treated in [8,9], we herein assume
that the coolant flow rate is constant, and the ambient temperature Tf is nearly constant.
The thermal parameters have been calibrated in previous work and are summarized in Table
5.1 [8, 9]. We determine Ru using our experimental setup as described in Chapter 5.5.

We remark that the electro-thermal model has been validated over a broad range of
loading conditions covering a maximum current rate up to 22C. More details are furnished
in [9] regarding the model topology, parameterization, experimental design for identification,
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Figure 5.3: Schematic of the Thermal Model (adopted from [9]).

Table 5.1: Thermal Parameters.

Rc(KW−1) Ru(KW−1) Cc(JK−1) Cs(JK−1)
1.94 3.08 62.7 4.5

and validations. We validate the effectiveness of the electro-thermal model for a charging
case in Chapter 5.5.

Aging Model
We adopt an aging model from [80] that is based upon a matrix of cycling tests. This
matrix spans different C-rates1 (C/2 to 10C), temperatures (-30◦C to +60◦C), and depths-
of-discharge (10% to 90%) for lithium iron phosphate cells (A123 ANR26650M1) in [80].
The experimental data demonstrates that capacity fade depends strongly on C-rate and
temperature in these cells, whereas the sensitivity to depth-of-discharge is negligible. A
correlation between the capacity loss and the discharged ampere-hour (Ah) throughput has
been calibrated by the following semi-empirical model:

∆Qb = M(c) exp
(
−Ea(c)
RTc

)
A(c)z, (5.7)

where ∆Qb is the percentage of capacity loss in [%], c is the C-rate, and M(c) is the pre-
exponential factor as a function of the C-rate, as shown in Table 5.2 (from Table 3 of [80]).
Symbol R is the ideal gas constant and A is the discharged Ah throughput depending on
C-rate. The activation energy Ea in [Jmol−1] and the power-law factor z are given by

Ea(c) = 31700− 370.3c, z = 0.55. (5.8)
1C-rate is a normalized measure of electric current, defined as the ratio of current I(t) in Amperes, to a

cell’s nominal capacity Cbat in Ampere-hours.
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Figure 5.4: Battery SOH Model: (a) EOL Cycle N(c, Tc), and (b) SOH Decay Rate as
Functions of C-rate.

A capacity loss of 20% (∆Qb = 20%) is often indicative of the end-of-life (EOL) for an
automotive battery, and the corresponding total discharged Ah throughput Atol and number
of cycles until EOL, N are algebraically calculated from (5.7) as

Atol(c, Tc) =
 20
M(c) exp

(
−Ea(c)
RTc

)
 1
z

, (5.9)

N(c, Tc) = 3600Atol(c, Tc)
Cbat

, (5.10)

where each cycle corresponds to 2Cbat charge throughput. Note that Atol is the discharged
Ah throughput used by the aging model in [80], and thus the total throughput should be
2Atol including both charged and discharged Ah. Based on (5.9) and (5.10), the battery
State-of-Health (SOH) can be defined below:

SOH(t) = SOH(t0)−
∫ t
t0
|I(τ)|dτ

2N(c, Tc)Cbat
, (5.11)

where t0 denotes the initial time. Consequently, SOH = 1 corresponds to a fresh battery
and SOH = 0 corresponds to 20% capacity loss. The time derivative of (5.11) yields the
battery aging model

dSOH

dt
(t) = − |I(t)|

2N(c, Tc)Cbat
. (5.12)

The EOL cycle and SOH decay rate, as a function of the C-rate and core temperature, are
visualized in Fig. 5.4. As the C-rate or core temperature increases, the SOH decay rate
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Table 5.2: Pre-Exponential Factor as a Function of the C-Rate.

C-rate c 0.5 2 6 10
M 31630 21681 12934 15512

increases. It is worth pointing out that more EOL cycles can be sustained by the battery at
medium C-rates (2-5C) than at low C-rates, as the aging model includes calendar-life effects
as well (one cycle at a very low C-rate has a dramatically increased duration). The aging
model validated in [80] has been similarly applied to health-conscious component sizing and
energy management in hybrid electric vehicles [81,82].

Full Model
Combining the above three sub-models produces the coupled electro-thermal-aging model
(block diagram in Fig. 5.5) used for the subsequent charging protocol optimization. The
model dynamics are summarized in (5.13)-(5.18), with output equation (5.4).

dSOC

dt
(t) = I(t)

Cbat
, (5.13)

dV1

dt
(t) = − V1(t)

R1C1
+ I(t)

C1
, (5.14)

dV2

dt
(t) = − V2(t)

R2C2
+ I(t)

C2
, (5.15)

dTc
dt

(t) = Ts(t)− Tc(t)
RcCc

(5.16)

+I(t)(V1(t) + V2(t) +R0I(t))
Cc

,

dTs
dt

(t) = Tf (t)− Ts(t)
RuCs

− Ts(t)− Tc(t)
RcCs

, (5.17)

dSOH

dt
(t) = − |I(t)|

2N(c, Tc)Cbat
. (5.18)

5.3 Formulation of Optimal Charge Control
The objective function J combines charge time with capacity loss (i.e. SOH decay) as follows:

min
I(t),x(t),tf

J = β · tf − t0
tmax − t0

+ (1− β) · (SOH(t0)− SOH(tf )), (5.19)
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where tf is the final time of charge and 0 ≤ β ≤ 1 weights the relative importance between
the two objectives. The optimization variables are the input current I(t), state variables
x(t) = [SOC(t), V1(t), V2(t), Tc(t), Ts(t), SOH(t)]T , and final time tf . The constraints include
the model dynamics (5.13)-(5.18) and the electrical, thermal, health, and time limits below:

SOCmin ≤ SOC ≤ SOCmax, Imin ≤ I ≤ Imax, (5.20)
SOC(t0) = SOC0, Vt,min ≤ Vt ≤ Vt,max, (5.21)
SOC(tf ) = SOCf , Tc,min ≤ Tc ≤ Tc,max, (5.22)
SOHmin ≤ SOH ≤ SOHmax, SOH(t0) = SOH0, (5.23)
Tc(t0) = Tc,0, Ts(t0) = Ts,0, t0 ≤ t ≤ tmax. (5.24)

Since the optimal control problem has six states and is highly nonlinear, it is difficult
to use conventional optimization techniques, e.g., dynamic programming, Pontryagin’s mini-
mum principle, and indirect methods, due to intractable computational burden or complexity.
Instead, we pursue pseudo-spectral methods to transcribe this infinite-dimensional optimal
control problem into a finite-dimensional optimization problem with algebraic constraints at
the discretized nodes. Then, the optimization variables at such nodes are solved by existing
nonlinear programming (NLP) solvers, like SNOPT or IPOPT [74]. Note that convexity is
not guaranteed, and therefore these solvers yield locally optimal solutions.

Pseudo-spectral methods are an effective tool for complex nonlinear optimal control prob-
lems and have been extensively applied to real-world optimization problems in engineering.
Examples include aerospace and autonomous flight systems [75], road vehicle systems [76],
energy storage [62], etc. There are a myriad of approaches for discretizing integral and differ-
ential equations, leading to a spectrum of pseudo-spectral variants. In this study, we use the
Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval
collocation, featured by the general purpose optimal control software (GPOPS-II) [74]. This
software incorporates an orthogonal collocation method to generate the LGR points. Rather
than a traditional fixed global mesh, an adaptive mesh refinement algorithm is employed to
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iteratively adjust the number of mesh intervals, the width of each interval, and the poly-
nomial degree (the number of LGR points). More theoretical and algorithmic properties of
this method and GPOPS-II are elaborated in [77,78] and in the Appendix.

5.4 Optimization Results and Discussion
This section presents optimization results for three illustrative charge paradigms: minimum-
time charge, minimum-aging charge, and balanced charge. The physical bounds in (5.20)-
(5.24) and ambient temperature Tf are specified as follows:

SOCmin = SOC0 = 0.25, SOCmax = SOCf = 0.75, (5.25)
Imin = 0A = 0C, Imax = 46A = 20C, (5.26)
Vt,min = 2V, Vt,max = 3.6V, (5.27)
Tc,min = 5◦C, Tc,max = 45◦C, (5.28)
Tc,0 = Tf,0 = 25◦C, Tf (t) = 25◦C, ∀t ≥ t0, (5.29)

SOHmin = 0, SOHmax = SOH0 = 1, (5.30)
t0 = 0sec, tmax = 36000sec. (5.31)

Here, the voltage limits are selected according to the manufacturer’s specification sheet, and
the temperature and current limits are chosen based on the validated range in [9].

Minimum-Time Charge
By setting β = 1, the optimization produces a minimum-time charge protocol. The optimal
trajectories are shown in Fig. 5.6. It takes 5.20 minutes to achieve the target SOC. Heuris-
tically, the charge process follows a constant-voltage (CV) protocol. To minimize charging
time, the maximum C-rate is applied initially, causing the maximum voltage constraint to
become active instantaneously. The core temperature increases but does not reach its max-
imum value.

A comparison is made with CCCV charges with varying C-rates (see Fig. 5.7). It is
clear that 5C and 10C CCCV are sub-optimal with respect to minimum time charging. The
5C CCCV case yields a 6.04 minute charge time, while the 10C CCCV case yields a 5.24
minute charge time. We note that the 15C CCCV case is exactly the optimal solution. In
other words, this analysis yields the insight that CCCV with 15C is optimal in the sense of
minimizing charge time.

Minimum-Aging Charge
By setting β = 0, we can investigate the other extreme – a minimum aging charge protocol.
The optimization result is illustrated in Fig. 5.8. Interestingly, the protocol is pulse-like,
while maintaining relatively low core temperature. The resulting SOH decay is approximately
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Figure 5.7: Comparison with CCCV Charge: (a) C-rate, (b) Core Temperature, and (c)
SOC.

0.0027%, one order of magnitude less than the SOH decay from minimum-time charging
(SOH decay of approximately 0.0180%). As shown in Fig. 5.9, a comparison is performed
with a C/10 CCCV charge that is widely perceived as a minimum-aging choice. Under the
models considered here, the relatively slow C/10 CCCV charge is in fact non-optimal, since
the long charge duration significantly contributes to calendar-life decay.
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Figure 5.8: Optimization Result for the Minimum-Aging Charge: (a) C-rate, (b) Terminal
Voltage, (c) Core and Surface Temperatures, and (d) SOC/SOH.
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Balanced Charge
By sweeping β values between 0 and 1, we compute a Pareto frontier of balanced charge
protocols, i.e., the optimal tradeoffs between fast charge time and SOH decay displayed in
Fig. 5.10. Not surprisingly, the two objectives conflict. Consider the region between the
left two data labels in Fig. 5.10. Battery SOH decay can be substantially mitigated with
a negligible increase in charge time. Therefore, one may sacrifice a trivial amount of fast



CHAPTER 5. OPTIMAL CHARGING OF LI-ION BATTERIES WITH COUPLED
ELECTRO-THERMAL-AGING DYNAMICS 73

4 6 8 10 12 14 16
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

SO
H

 D
ec

ay
 [%

]

Charge Time [min]

β=1
Time=5.20 min 
SOH Decay=0.0180%

β=0.94
Time=5.23 min 
SOH Decay=0.0075%

β=0.34
Time=5.42 min 
SOH Decay=0.0045%

β=0
Time=15.27 min 
SOH Decay=0.0027%

β=0.04
Time=7.12 min 
SOH Decay=0.0031%

Figure 5.10: Pareto Curve, Charge Time Versus SOH Decay.

charge time to circumvent rapid SOH decay.
A “balanced” protocol (β = 0.34) is exemplified in Fig. 5.11, which can be interpreted

as the smallest-aging solution in the case of 5.42-minute charge duration. Note the highly
non-intuitive nature of this charging protocol. The current is carefully regulated to limit
the increase of core temperature (a dominant accelerating factor of capacity fade). That is,
the current reduces in the first minute to slow down the temperature rise until the voltage
constraint becomes active. Next the current decreases at a lower rate since the resistance
has decreased (see Fig. 5.12), and then increases as the resistance continues to decrease in
the vicinity of the smallest resistance (due to the increase in temperature). Ultimately the
current reduces with the growing resistance towards the higher SOC region. The optimal
solution exploits nonlinear model dependencies between resistance and SOC to improve
charge time and SOH decay.

Sensitivity of Pareto Curve
Next we examine solution sensitivity to perturbations in the constraint parameters.

Upper Voltage Bound Vt,max

The impact of the upper voltage bound Vt,max on the Pareto curve is shown in Fig. 5.13. As
Vt,max decreases, the Pareto curve moves to the upper-right and shrinks, resulting in reduced
control flexibility. Diminishing Vt,max is therefore unfavorable to the control objective of
charge time reduction. For example, compared to Vt,max = 3.6V , the minimum charge time
increases to 5.86 minutes (12.73% increase) and 6.69 minutes (28.55% increase) in the cases



CHAPTER 5. OPTIMAL CHARGING OF LI-ION BATTERIES WITH COUPLED
ELECTRO-THERMAL-AGING DYNAMICS 74

0 2 4 6
4.5

5

5.5

6

6.5

7

C
ur

re
nt

 [C
−R

at
e]

Time [min]
0 2 4 6

3.2

3.3

3.4

3.5

3.6

V
ol

ta
ge

 [V
]

Time [min]

0 2 4 6
25

30

35

40

Te
m

pe
ra

tu
re

 [o C
]

Time [min]

Core
Surface

0 2 4 6
25

50

75

Time [min]
S

O
C

 [%
]

0 2 4 6
99.9955

100

S
O

H
 [%

]

(d)

(b)

(c)

(a)

Figure 5.11: Optimization Result for the Balanced Charge (β = 0.34): (a) C-rate, (b)
Terminal Voltage, (c) Core and Surface Temperatures, and (d) SOC/SOH.
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of Vt,max = 3.575V and Vt,max = 3.55V , respectively. Not surprisingly, decreasing Vt,max does
lead to toward reduced aging.
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Ambient Temperature Tf

The impact of the ambient temperature Tf is shown in Fig. 5.14. At low ambient temperature
(Tf = 15◦C), the battery SOH decays slower, whereas the minimum charge time increases
due to greater internal resistance. That is, the maximum voltage is reached sooner, because
of higher ohmic overpotential. At high ambient temperature (Tf = 35◦C), the battery SOH
decays faster, and the minimum charge time decreases because the resistance is decreased
due to the higher temperature which allows for higher currents to be applied, compared to
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Figure 5.15: Influence of Ru on Pareto Curve.

the ambient temperature. To summarize, higher ambient temperature favors charging time
but also accelerates aging.

Cooling Convection Resistance Ru

The impact of cooling convection resistance Ru is shown in Fig. 5.15. Given a relatively
large Ru (representing natural convection), the battery SOH decays faster, and the minimum
charge time decreases due to decreased resistance at higher temperature, thus allowing for
higher currents. In the case of Ru = 1.20KW−1(forced convection), the battery SOH decay
is alleviated, but the minimum charge time increases because internal resistance increases as
the core temperature decreases, compared to the case of Ru = 3.08KW−1. Therefore, we find
that increasing the cooling convection resistance decelerates aging yet increases charge time.
These sensitivity analyses demonstrate that optimal charging protocols critically depend on
the coupled temperature-aging dynamics.

Further Discussion
The influence of battery aging on the electrical parameters is not addressed in this work,
as it has a substantially longer time scale than the SOC and thermal dynamics. While
a fresh battery (SOH0 = 1) is herein considered before charge, the proposed optimization
framework applies to different aging levels, provided that the associated SOH0 and electrical
parameters are available via recalibration or estimation [83,84].
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Figure 5.16: Experimental Validation of Electro-Thermal Model via Balanced Charge Pro-
tocol: (a) Terminal Voltage, and (b) Temperature.

5.5 Experimental Results and Discussion
Various experiments were conducted to validate the electro-thermal model from [9] for a
2.3Ah A123 26650 LiFePO4 battery in our test facility. The cell was placed on an Arbin
High Current Cylindrical Cell Holder inside of an ESPEC BTL-433 environmental chamber
to regulate the ambient temperature at 25◦C. A K-type thermocouple was placed on the
surface of the battery to measure Ts. First, the cell was cycled using a C/20 CCCV test
to identify Voc using a PEC SBT2050 cycler that controls the input current to the battery.
Then a scaled US06 drive cycle [25] test was performed to identify the convection resistance
Ru for our experimental setup. The resulting balanced charge protocol from the optimization
results (using the newly determined Voc and Ru) is then applied to the battery for validation
of the electro-thermal model. We experimentally compare the optimal model-based balanced
protocol against a 5C CCCV charge protocol (C-rate chosen based on higher charge time
and lower SOH decay than the balanced protocol) on two cells. The two cells undergo several
hundred cycles to determine the changes in capacity fade and charge time.

Electro-Thermal Model Validation
The open circuit voltage Voc is determined from a C/20 CCCV cycling test (with voltage
limits of 3.6V and 2.0V) by taking the average of the charge and discharge voltage curves.
The convection resistance Ru is determined from a scaled US06 drive cycle applied to a
battery at 90% SOC and 25◦C. The final conditions of the drive cycle test are 25% SOC and
32.6◦C with a maximum C-rate of 13.61C. The current for the balanced charge optimization
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Figure 5.17: Balanced and 5C CCCV Charge Protocol Aging: (a) Capacity Fade, and (b)
Charge Time.

result is then applied (open loop) to validate the electro-thermal model, as shown in Fig. 5.16
which achieves a Voltage RMSE of 23.6mV and a Surface Temperature RMSE of 0.3204◦C.

Charge Protocol Aging
Two cells were used to determine the tradeoffs between capacity fade and charge time for a
fixed 1.15Ah charge throughput (using the Balanced and 5C CCCV charge protocols). Both
cells are discharged with a 1C CCCV protocol to the open circuit voltage Voc corresponding
to 25% SOC. The charge and discharge protocol of each cell is then repeated for hundreds
of cycles. The current from the balanced charge protocol is applied to the first battery cell
(open loop). The 5C CCCV charge protocol is applied to the second battery cell (closed
loop), using the built-in controller of the battery cycler to maintain the 3.6V limit under the
5C CCCV charge operation. That is, the same current is applied each time for the balanced
charge protocol (regardless of what voltage is measured) while the current for the CCCV
protocol is adjusted in real-time once the voltage constraint becomes active.

The discharge capacity is determined using a 1C CCCV cycling test at cycles {0, 10, 60,
110, 160, 210, 260, 310, 360} and is shown (normalized against initial capacity) in the first
subplot of Fig. 5.17. The normalized capacity of the balanced charge protocol is 81.64%
while that of the 5C CCCV charge protocol is 97.1% at cycle 360. The higher capacity fade
experienced by the balanced charge protocol is expected since it is applied in a pure open
loop fashion. The charge time of the balanced charge protocol stays the same each time
while that of the 5C CCCV protocol increases as shown in the bottom subplot of Fig. 5.17.
The charge time of the balanced charge protocol is 5.42 minutes while that of the 5C CCCV
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charge protocol is initially 6.01 minutes. The charge time of the 5C CCCV charge protocol
increases to 6.38 minutes at cycle 360. There is a clear tradeoff between degradation and
charge time between the balanced and 5C CCCV charge protocols. These results provide
motivation and justification for closed loop control to alleviate aging that occurs with time.

5.6 Conclusions
A multi-objective optimal control framework has been developed to explore model-based
fast-safe charging protocols. In this framework, a coupled electro-thermal-aging model is
incorporated to account for thermal constraints and aging effects. The Legendre-Gauss-
Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is lever-
aged to solve the infinite dimensional nonlinear optimal control problem. Charge time and
battery capacity fade is optimally traded off, subject to both electrical and thermal con-
straints, a first to our knowledge. Three charging regimes are analyzed in detail, with the
following key findings: (i) Minimum-time charge: the protocol is exactly 15C constant-
current/constant-voltage (CCCV), requiring 5.20 minutes to replenish the SOC from 25%
to 75%. (ii) Minimum-aging charge: the protocol is pulse-like rather than a slow constant
current charge such as C/10 CCCV. The associated SOH decay is 0.0027%, one order of
magnitude smaller than that in the minimum-time case. (iii) Balanced charge: the Pareto
chart demonstrates that a fundamental tradeoff exists between charge time and SOH decay.
A slight (even negligible) time increase, relative to the minimum-time case, can significantly
alleviate SOH decay. We examine solution sensitivity to variations in several constraint
parameters, including maximum voltage, ambient temperature, and cooling convection re-
sistance. This analysis exposes the importance of considering both temperature and aging
dynamics for optimal charging. Finally, experimental validation results of the balanced
charge protocol (open loop) versus a 5C CCCV charge protocol (closed loop) are presented
with respect to capacity fade and charge time.



80

Chapter 6

Conclusion

This dissertation presents model based control techniques for lithium-ion batteries using
electrochemical and equivalent circuit models. It also presents model based estimation tech-
niques for mapping parametric uncertainty of electrochemical battery models to intervals
of state estimates. The main contributions of this dissertation and opportunities for future
work are discussed in this chapter.

6.1 Contributions

Chapter 2
This chapter presented the design of optimal control schemes for full order electrochemi-
cal battery models, and the demonstration of the potential performance enhancements of
electrochemical model-based control schemes over traditional battery control methods.

Chapter 3
This chapter presented the mapping of parametric uncertainty in reduced order electro-
chemical battery models to interval estimates of model states using sensitivity analysis, a
ranking of the uncertain parameters for model identification purposes, and a verification of
the effectiveness of the interval estimates.

Chapter 4
This chapter presented the framework for obtaining optimal battery charge control schemes
that result in lowest charge times using reduced order electrochemical-thermal models, an
insight on battery design optimization for fast charging, an experimental validation of the
reduced order electrochemical-thermal model, and an experimental aging verification of the
fast charge protocol derived.
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Chapter 5
This chapter presented the framework for obtaining optimal battery charge control schemes
that result in minimum-time and health-conscious protocols using equivalent circuit-thermal-
aging models, the tradeoffs between charge time and battery health degradation, an insight
on battery system optimization, an experimental validation of the electrical-thermal model,
and an experimental aging verification of the balanced charge protocol derived.

6.2 Future Work Opportunities
This dissertation has demonstrated the possible benefits of using model based control tech-
niques versus traditional control techniques in an open loop fashion assuming full state
measurements, and known parameters (Chapter 2) or experimentally identified parameters
(Chapter 4 and 5). It has also derived techniques to map parametric uncertainty of electro-
chemical models to intervals of the estimated states assuming known parameters (Chapter
3). A summary of future work to further advance this research is divided into two areas:
1. electrochemical model based control, and 2. equivalent circuit model based control. The
following subsections include an overview of the steps required to integrate and demonstrate
closed loop control systems for both model based control techniques which: 1) guard against
harmful operating regimes, 2) increase energy capacity, power capacity, and charging speed,
and 3) monitor state-of-charge, all from measurements of voltage, current, and temperature.

Electrochemical Model Based Control - Closed Loop
The electrochemical and thermal sub-models [8, 9, 68] have been re-identified using our bat-
tery in the loop test system. The optimal charge protocol obtained in Chapter 4 has been
tested in an open loop fashion along with a traditional CCCV protocol with respect to their
performance in charge time and capacity fade (over multiple cycles). To advance this re-
search, the following step is to apply the optimal charge protocol as the reference signal for a
modified RG [21,61] combined with the Single Particle Model with Electrolyte and Thermal
Dynamics and a sensitivity based interval observer (as illustrated in Fig. 6.1) for quantifying
the benefits of this control scheme in a closed loop fashion using the battery in the loop test
system. Various drive cycles should also be applied as the reference signal to quantify the
power, energy, and life benefits of this model based control scheme under electric vehicle
type operation. Once the cell reaches an end of life capacity as in Chapter 4, a postmortem
analysis should be performed to understand the degradation mechanisms occur.

Equivalent Circuit Model Based Control - Closed Loop
The electrical and thermal sub-models [8,9] have been re-identified using our battery in the
loop test system. The optimal charge protocol obtained in Chapter 5 has been tested in an
open loop fashion along with a traditional CCCV protocol to compare their performance with
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respect to charge time and capacity fade (over multiple cycles). To advance this research, the
following step is to apply the optimal charge protocol as the reference signal for a modified
RG [21, 61] combined with the electro-thermal-aging model and an observer (as illustrated
in Fig. 6.2) for quantifying the benefits of this control scheme in a closed loop fashion
using the battery in the loop test system. Various drive cycles should also be applied as the
reference signal to quantify the power, energy, and life benefits of this model based control
scheme under electric vehicle type operation. Once the cell reaches an end of life capacity
as in Chapter 5, a postmortem analysis should be performed to understand the degradation
mechanisms occur.

EChem-based

PDE Observer

EChem-based

Reference

Governor

Figure 6.1: Electrochemical Model Based Control Diagram - Closed Loop

ECM-based

ODE Observer

ECM-based

Reference

Governor

Figure 6.2: Equivalent Circuit Model Based Control Diagram - Closed Loop
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Table A.1: Nomenclature: Chapter 2

Description [unit]
L± Thickness of Cathode/Anode [m]
Lsep Thickness of Separator [m]
R±s Radius of Solid Particles in Cathode/Anode [m]
εe Volume Fraction of Electrolyte
ε±s Volume Fraction of Solid in Cathode/Anode
brug Bruggeman Coefficient
as Specific Interfacial Surface Area [m2/m3]
D±s Diffusion Coefficient for Solid in Cathode/Anode [m2/s]
De Diffusion Coefficient for Electrolyte [m2/s]
σ± Conductivity of Solid in Cathode/Anode [1/Ω-m]
t0c Transference Number
F Faraday’s Constant [C/mol]
R Gas Constant [J/mol-K]
αa Charge Transfer Coefficient for Anode
αc Charge Transfer Coefficient for Cathode
R±f Film Resistance [Ωm2]
k± Reaction Rate in Cathode/Anode [(A/m2)(mol3/mol)(1+α)]
c±s,max Max Concentration in Cathode/Anode [mol/m3]
fc/a Mean Molar Activity Coefficient in Electrolyte
cp Heat Capacity [J/kg-K]
hcell Heat Transfer Coefficient [W/K-m2]
Tamb Ambient Temperature [K]
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Description [unit]
ρavg Lumped Cell Density [kg/m3]
θ±min Minimum Normalized Concentration in Cathode/Anode
θ±max Maximum Normalized Concentration in Cathode/Anode
cemin Minimum Electrolyte Concentration [mol/m3]
cemax Maximum Electrolyte Concentration [mol/m3]
Tmin Minimum Bulk Cell Temperature [K]
Tmax Maximum Bulk Cell Temperature [K]
Us Side Reaction Equilibrium Potential [V]
c±s Lithium Concentration in the Solid [mol/m3]
ce Lithium Concentration in the Electrolyte [mol/m3]
c±ss Concentration at Particle Surf. in Cathode/Anode [mol/m3]
U± Equilibrium Potential in Cathode/Anode [V]
η± Overpotential [V]
ηs Side Reaction Overpotential [V]
φ±s Solid Electric Potential [V]
φe Electrolyte Electric Potential [V]
i±e Ionic Current [A/m2]
j±n Molar Ion Fluxes [mol/m2-s]
T Bulk Cell Temperature [K]
I Applied Current [A/m2]
Ir Reference Current [A/m2]
β MRG Reference Current Scaling Factor
i±0 Exchange Current Density [A/m2]
c̄±s Particle Vol. Avg. Concentration in Cathode/Anode [mol/m3]
θ± Normalized Concentration in Cathode/Anode
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Table A.2: Nomenclature: Chapter 3

Description [unit]
L± Thickness of Cathode/Anode [m]
A Electrode Area [m2]
R±s Radius of Solid Particles in Cathode/Anode [m]
ε±s Volume Fraction of Solid in Cathode/Anode
as Specific Interfacial Surface Area [m2/m3]
D±s Diffusion Coefficient for Solid in Cathode/Anode [m2/s]
F Faraday’s Constant [C/mol]
R Gas Constant [J/mol-K]
α± Charge Transfer Coefficient
Rf Film Resistance [Ωm2]
k± Reaction Rate in Cathode/Anode [(A/m2)(mol3/mol)(1+α)]
c±s,max Max Concentration in Cathode/Anode [mol/m3]
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Description [unit]
c±s Lithium Concentration in the Solid [mol/m3]
c±ss Concentration at Particle Surf. in Cathode/Anode [mol/m3]
U± Equilibrium Potential in Cathode/Anode [V]
T Cell Temperature [K]
I Applied Current [A/m2]
V Voltage [V]
i±0 Exchange Current Density [A/m2]

SOC Bulk Anode State of Charge
ηLi Total Number of Lithium Ions
α Cathode State Factor
β Cathode State Factor
ĉ±s Concentration Estimate in Cathode/Anode [mol/m3]
ĉ±s Upper Conc. Estimate in Cathode/Anode [mol/m3]
ĉ±s Lower Conc. Estimate in Cathode/Anode [mol/m3]
ˆSOC Bulk Anode State of Charge Estimate
ˆSOC Upper Bulk Anode St. of Charge Estimate
ˆSOC Lower Bulk Anode St. of Charge Estimate
V̂ Voltage Estimate [V]
V̂ Upper Voltage Estimate [V]
V̂ Lower Voltage Estimate [V]
S Sensitivity
θ Uncertain Parameters
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Table A.3: Nomenclature: Chapter 4

Description [unit]
L± Thickness of Cathode/Anode [m]
Lsep Thickness of Separator [m]
A Electrode Area [m2]
R±s Radius of Solid Particles in Cathode/Anode [m]
εe Volume Fraction of Electrolyte
ε±s Volume Fraction of Solid in Cathode/Anode
brug Bruggeman Coefficient
as Specific Interfacial Surface Area [m2/m3]
D±s Diffusion Coefficient for Solid in Cathode/Anode [m2/s]
De Diffusion Coefficient for Electrolyte [m2/s]
t0c Transference Number
F Faraday’s Constant [C/mol]
R Gas Constant [J/mol-K]
αa Charge Transfer Coefficient for Anode
αc Charge Transfer Coefficient for Cathode
R±f Film Resistance [Ωm2]
Rce Current Collector/External Resistance [Ωm2]
k± Reaction Rate in Cathode/Anode [(A/m2)(mol3/mol)(1+α)]
c±s,max Max Concentration in Cathode/Anode [mol/m3]
Ea Activation Energy [J/mol]
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Description [unit]
Q Heat Generation [W]
Cc Lumped Heat Capacity of Core [J/K]
Cs Lumped Heat Capacity of Surface [J/K]
Rc Conduction Resistance [K/W]
Ru Convection Resistance [K/W]
Tf Ambient Temperature [K]
Tc Core Temperature [K]
Ts Surface Temperature [K]
Tavg Average Temperature [K]
Tref Reference Temperature [K]
θ±min Minimum Normalized Concentration in Cathode/Anode
θ±max Maximum Normalized Concentration in Cathode/Anode
cemin Minimum Electrolyte Concentration [mol/m3]
cemax Maximum Electrolyte Concentration [mol/m3]
Tmin Minimum Cell Temperature [K]
Tmax Maximum Cell Temperature [K]
c±s Lithium Concentration in the Solid [mol/m3]
ce Lithium Concentration in the Electrolyte [mol/m3]
c±ss Concentration at Particle Surf. in Cathode/Anode [mol/m3]
i±0 Exchange Current Density [A/m2]
V Voltage [V]
I Applied Current [A]
i±0 Exchange Current Density [A/m2]
c̄±s Particle Vol. Avg. Concentration in Cathode/Anode [mol/m3]
θ± Normalized Concentration in Cathode/Anode
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Table A.4: Nomenclature: Chapter 5

Description [unit]
SOC State of Charge
V1,2 Capacitor Voltage [V]
C1,2 Capacitor Capacitance [F]
R1,2 Capacitor Resistance [Ohm]
R0 Ohmic Resistance [Ohm]
Voc Open Circuit Voltage [V]
Q Heat Generation [W]
Cc Lumped Heat Capacity of Core [J/K]
Cs Lumped Heat Capacity of Surface [J/K]
Rc Conduction Resistance [K/W]
Ru Convection Resistance [K/W]
Tf Ambient Temperature [K]
Tc Core Temperature [K]
Ts Surface Temperature [K]
Ea Activation Energy [J/mol]
SOH State of Health
β Objective Tradeoff Parameter

Tc,min Minimum Cell Temperature [K]
Tc,max Maximum Cell Temperature [K]
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Appendix B

Pseudo-Spectral Optimal Control

We summarize the LGR pseudo-spectral method for solving optimal control problems [74,
78,85,86]. Consider a general optimal control problem formulated in Bolza form,

min
x(t),u(t),p

J = φ(t0, x(t0), tf , x(tf ), p) (B.1)

+
∫ tf

to
f(t, x(t), u(t), p)dt,

s. to: dx(t)
dt
− g(t, x(t), u(t), p) = 0, (B.2)

l(t, x(t), u(t), p) = 0, (B.3)
h(t, x(t), u(t), p) ≤ 0, (B.4)
lb(x(t0), x(tf ), u(t0), u(tf ), p) = 0, (B.5)

where t0 ≤ t ≤ tf is the optimization horizon. Variables t0 and tf can be fixed or free
optimization variables. The vector p contains either fixed parameters, free parameters to
be optimized, or both. Obtaining the numerical solution of the optimal control problem
involves three steps: (1) the transcription of the optimal control problem into a nonlinear
programming problem (NLP); (2) the solution of the (sparse) NLP; and (3) an examination
of the solution accuracy, discretization grid refinement, and then repeating these three steps.

The accuracy and efficiency of this numerical process depends on various factors within
the three steps, particularly the first step. Before the three steps, the time interval t0 ≤
t ≤ tf in the original problem is normalized to −1 ≤ τ ≤ 1, by the change of variable
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t = tf−t0
2 τ + tf+t0

2 , which yields

min
x(τ),u(τ),p

J = φ(t0, x(−1), tf , x(1), p) (B.6)

+ tf − t0
2

∫ 1

−1
f(τ, x(τ), u(τ), p)dτ,

s. to: dx(t)
dτ
− tf − t0

2 g(τ, x(τ), u(τ), t0, tf , p) = 0, (B.7)

l(τ, x(τ), u(τ), t0, tf , p) = 0, (B.8)
h(τ, x(τ), u(τ), t0, tf , p) ≤ 0, (B.9)
lb(x(−1), x(1), u(−1), u(1), t0, tf , p) = 0. (B.10)

The discretization principle of LGR pseudo-spectral method is illustrated as follows. The
N-th order Legendre polynomial is

PN(τ) = 1
2NN !

dN

dτN
(τ 2 − 1)N . (B.11)

The collocation points are the roots of PN(τ) + PN−1(τ), denoted by τi for i = 1, 2, ..., N ,
and τN+1 = 1. The Lagrange interpolating polynomial is defined as

Li(τ) =
N+1∏

j=1,j 6=i

τ − τj
τi − τj

. (B.12)

Then the state vector is approximated by

x(τi) ≈
N+1∑
j=1

Lj(τi)x(τj), (B.13)

dx(τi)
dτ

≈
N+1∑
j=1

dLj(τi)
dτ

x(τj) =
N+1∑
j=1

Di,j x(τj), (B.14)

where Di,j represents the (i, j) element of the difference matrix D ∈ RN×(N+1). The system
dynamics (B.7) are approximated by

N+1∑
j=1

Di,jx(τj)−
tf − t0

2 g(τi, x(τi), u(τi), t0, tf , p) = 0. (B.15)

The integral term in the objective function (B.6) is approximated by Gaussian quadrature,∫ 1

−1
f(τ, x(τ), u(τ), t0, tf , p)dτ ≈ (B.16)
N∑
i=1

ωif(τi, x(τi), u(τi), t0, tf , p),

where ωi =
∫ 1

−1
Li(τ)dτ. (B.17)
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The optimal control problem can now be transcribed into the following NLP,

min
x(τi),u(τi),p,tf

J = φ(t0, x(−1), tf , x(1), p) (B.18)

+
N∑
i=1

ωif(τi, x(τi), u(τi), t0, tf , p),

s. to:
N+1∑
j=1

Di,jx(τj) (B.19)

− tf − t0
2 g(τi, x(τi), u(τi), t0, tf , p) = 0,

l(τi, x(τi), u(τ), t0, tf , p) = 0, (B.20)
h(τi, x(τi), u(τi), t0, tf , p) ≤ 0, (B.21)
lb(x(−1), x(1), u(−1), u(1), t0, tf , p) = 0, (B.22)

which can be efficiently solved by SNOPT or IPOPT (the co-state vector can also be esti-
mated by the KKT conditions of NLP and the co-state mapping theorem [74,78,85,86].)

The multi-mesh-interval collocation segments the optimal control problem first, and then
employs the aforementioned orthogonal collocation technique within each segment. GPOPS-
II uses a two-tiered (hp) adaptive grid refinement strategy that refines both the integration
segmentation (h) and the orthogonal polynomial order (p). If the integration error across a
particular segment is uniform, the order of polynomial collocation points may be increased.
If the error at an isolated point within the segment is significantly larger than those at other
points within the segment, it may be subdivided (at these large-error points). See [74, 86]
for additional details.
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Appendix C

Battery in the Loop Test System

The battery in the loop test system was procured, installed, setup, fully integrated, main-
tained, and operated throughout the years that it took to complete this dissertation. It
is composed of a dSPACE MicroAutoBox II 1511 microcontroller, PEC SBT2050 battery
cycler, and an ESPEC BTL-433 environmental chamber as shown in Fig. C.1. The A123
26650 M1A LFP battery cells are held in place by Arbin high current cylindrical cell holders
with OMEGA Type K surface thermocouples inside of the environmental chamber as shown
in Fig. C.2-C.3. A fault inducing setup with an OMEGA Heating Pad at the surface of
a cylindrical cell is shown in Fig. C.4, used to induce heat generation faults for the de-
velopment and validation of fault diagnostic algorithms not presented in this dissertation.Hellman Fellows Fund PI: Scott Moura

Battery Tester Li-ion Cells 
in Chamber 

Microcontroller 
w/ Algorithms 

CAN bus 

Measurements: 
I , V , T  

Optimized 
Charge Cycle 

Estimates: concentrations, 
overpotentials, etc. 

Figure 2: Battery-in-the-loop test facility at UCB has the unique ability to test real-time closed-loop algo-
rithms in real-time. Tests will be performed in chamber (to be purchased) for safety and thermal regulation.

Figure 3: Preliminary results for minimum time fast charging [left] and tradeoffs between charging time
and state-of-health (i.e. capacity) decay [right].
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Figure C.1: Battery in the Loop Test System Diagram

This system is a crucial element for the validation of the model based control techniques
that are developed. It was used for the model identification, validation, open loop control
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testing, and degradation studies presented in this dissertation. It also served as a testbed
for other projects in our laboratory, and is ready for real time closed loop control testing.

Figure C.2: Battery Cell Setup in Environmental Chamber
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Figure C.3: Battery Cell Setup in Cell Holder
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Figure C.4: Fault Inducing Battery Cell Setup in Cell Holder


