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Abstract—This paper studies a nonlinear predictive energy
management strategy for a residential building with a rooftop
photovoltaic (PV) system and second-life lithium-ion battery
energy storage. A key novelty of this manuscript is closing
the gap between building energy management formulations,
advanced load forecasting techniques, and nonlinear battery/PV
models. Additionally, we focus on the fundamental trade-off
between lithium-ion battery aging and economic performance
in energy management. The energy management problem is
formulated as a model predictive controller (MPC). Simulation
results demonstrate that the proposed control scheme achieves
96%-98% of the optimal performance given perfect forecasts
over a long-term horizon. Moreover, the rate of battery capacity
loss can be reduced by 25% with negligible losses in economic
performance, through an appropriate cost function formulation.

I. INTRODUCTION

A. Background

Residential buildings equipped with photovoltaics and bat-
teries (RBPB) have attracted significant interest for integrating
distributed and renewable power generation into the smart grid
[1]. The potential benefits include increased power flexibility,
reduced emissions, and reduced operating costs. In these
systems the photovoltaics (PVs) operate as a local electric
generator, the batteries store energy, the building consumes
electric energy, and the entire system interfaces with the elec-
tric grid. Economic viability and reliability depend critically
on the energy management system, which governs power flow
between generation, loads, and storage [2]. Optimized energy
management is complicated by uncertain environmental con-
ditions, load, and battery aging. In this paper, we develop a
nonlinear predictive energy management scheme for a home
with PV and second life battery energy storage, using data-
based forecasting of environmental conditions, load, electricity
prices, and grid emissions.

B. Relevant Literature

Energy management for RBPB applications is a rapidly
growing research area. Rule-based energy management ap-
proaches have been widely studied, see e.g. [3], [4]. The
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drawback of such schemes is that they lack a systematic de-
sign methodology and optimality. Consequently, model-based
optimal energy management strategies are gaining interest
[5], [6]. Linear programming (LP) and mixed-integer linear
programming (MILP) are the most common formulations to
compute optimal energy management control policies [7], [8],
[9]. In reality, however, the photovoltaics and battery exhibit
important nonlinear characteristics. For example, the mapping
from solar irradiance and temperature to power output is non-
linear, motivating the maximum power point tracking problem
[10]. Similarly, the mapping from battery state-of-charge and
current to output voltage is nonlinear. Interestingly, nonlinear
energy management for RBPB systems has not been well
studied. The model predictive control (MPC) framework is
ideally suited for RBPB energy management [11], since it
incorporates potentially nonlinear mathematical models and
explicitly enforces constraints.

Uncertain PV power generation and building load is a
second critical challenge. PV power can be predicted by com-
bining internet-based forecasts of environmental conditions
(e.g. solar irradiation and air temperature) with photovoltaic
models [12]. Building load forecasting is an extremely rich
topic within itself (c.f. review article [13]). However, the
relationship between forecasting error and energy management
performance is less well understood. Most previous studies on
RBPB energy management assume loads are known a priori,
e.g. [9], [14], [15], [16], or consider average load models with
Gaussian noise, e.g. [7], [8]. This provides an opportunity
to close the gap between advancements in the building load
forecasting literature and RBPB energy management.

A third challenge is battery life. That is, one expects that
leveraging battery energy storage enhances economic perfor-
mance metrics, at the sacrifice of long-term battery cycle life.
The nature of this trade off is not well-understood. References
[14], [15] have considered battery aging using a simple linear
capacity fade model for lead-acid batteries. To the best of the
authors’ knowledge, no existing studies have considered aging
for the lithium-ion chemistry in RBPB systems.

C. Contributions

This article’s main contribution is a comprehensive frame-
work for predictive home energy management that includes lo-
cal generation, storage, and demand. Specific novelties within
this framework include:

• Nonlinear MPC formulation of the energy management
problem for RBPB systems, with a Liu-Jordan solar irra-
diation model, equivalent circuit PV and battery models,



and a Li-ion cycle-life battery degradation model.
• Introducing load forecasting into the RBPB energy man-

agement via artificial neural networks (ANNs), motivated
by [13]. We specifically study economic performance loss
as a function of increasing load forecast error.

• Incorporating an empirical lithium-ion battery capacity
loss model into the optimization formulation. This en-
ables us to study the fundamental tradeoffs between cost
and battery aging in the energy management design [17].

The remainder of the paper is organized as follows. In Sec-
tion II, the RBPB configuration and system model is presented.
Section III develops and validates a data-driven load forecast
model. Section IV details the model predictive controller.
Simulation results and sensitivity studies are illustrated in
Section V, followed by key conclusions in Section VI.

II. RESIDENTIAL BUILDING-PV-BATTERY SYSTEM

In Fig. 1(a) the RBPB is composed of a PV array, a second-
life1 lithium-ion battery pack, the building’s electrical loads,
the utility grid, various power converters, real-time Internet-
based data feeds, and the energy management algorithm. The
battery reconciles imbalance between available PV power and
load. The power flow topology is detailed in Fig. 1(b). The PV
and battery are coupled to a DC bus connected to a DC/AC
inverter to power AC loads and interact with the grid. Note
that we assume energy cannot be exported to the grid, although
it is trivial to extend this framework to allow energy exports.
Other generators, such as wind turbines or fuel cells, can also
be integrated into the network with appropriate models.

The controller’s role is to manage power flow between
these components to optimize objectives such as electricity
cost, grid power plant emissions, or battery health, subject to
safe operating constraints. Specifically, a predictive scheme is
applied that leverages real-time Internet-based data to forecast
home load and PV power. Next we detail sub-models for the
RBPB components.

A. Mathematical Subsystem Models

1) Solar Irradiation: A Liu-Jordan model is adopted to
determine the solar flux and PV panel temperature [18]. The
solar irradiation includes the global horizontal irradiance Sgh,
the direct beam irradiance Sdb, and the diffuse irradiance Sdi.
The effective solar irradiance is given by

Spv = Sdb(cos θs cosβp + sin θs sinβp cos(αs − αp))

+Sdi(1 + cosβp)/2 + Sghρg(1− cosβp)/2, (1)

where θs, αs are the zenith angle and azimuth angle of the
sun, respectively; αp, βp are the azimuth angle and altitude
tilt angle of the PV panel, respectively; ρg is the diffuse
reflectance rate of the ground. The panel temperature is

Tpv = Spve
(a+bvw) + Ta, (2)

1“Second-life” means the battery pack is reused from an automotive
application, such as a hybrid electric vehicle.
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Fig. 1. The residential building with photovoltaics and battery energy storage:
(a) the system configuration; (b) the power flow and topology.

where Ta, vw are ambient temperature and wind speed, and
a, b are empirical parameters. In the case studies examined
here, all climatological data is collected from [19].

2) Photovoltaic Array: The PV cell is modeled as an
equivalent circuit [20]. This model consists of an ideal current
source Ics in parallel with a diode and resistance Rp all in
series with resistor Rs. The diode models the semiconductor
material, and Rs models the resistance between the contactor
and semiconductor material. The governing equations are

Vd = Vcell + IpvRs, (3)

Ipv = Ics − Is
[
e

(
qVd

AkTpv
) − 1

]
− Vd
Rp

, (4)

Is = Is,r

(
Tpv
Tr

)3

e
qEbg
Ak ( 1

Tr
− 1

Tpv
)
, (5)

Ics = [Ics,r +KI(Tpv − Tr)]
Spv

1000
, (6)

where Vd and Vcell are the diode voltage and PV cell voltage,
respectively; Ipv is the PV cell output current, and Is is the
cell saturation current; q, A and k are an electron charge, an
ideal factor, and the Boltzmann’s constant, respectively; Is,r
is the cell’s reverse saturation current at reference temperature
Tr; Ebg is the band-gap energy of the semiconductor; Ics,r is
the reference short-circuit current of the PV cell at 25◦C and
1kW/m2; KI is the cell’s short-circuit current temperature
coefficient. The cell model is scaled to an PV array by
considering npv cells in series [10], thus the array power is

Ppv = npvVcellIpv. (7)

For brevity, we only summarize the PV model equations



here from (3) to (7). Further details can be found in [10].
Note that a maximum power point tracking (MPPT) algorithm
is usually employed to improve PV efficiency.

3) Second-life Battery: Second-life batteries are included
in the RBPB. The battery pack is modeled as an equivalent
circuit [21]. The electrical power at the battery terminals is
denoted by Pbatt, and the battery state-of-charge is denoted
by SOC. The governing equations are,

Pbatt(t) = VocIbatt(t)− I2
batt(t)Rin, (8)

˙SOC(t) = −Ibatt(t)
Q

, (9)

where Ibatt is the battery current; Voc, Rin and Q are the open
circuit voltage, the internal resistance and the battery capacity,
respectively. Pbatt > 0 corresponds to discharging, whereas
Pbatt < 0 corresponds to charging. In practice, the model
parameters need to be characterized through experiments, and
additional efforts are required to eliminate inconsistencies
between different cells [22].

A cycle-life model developed in [23] for LiFePO4-C cells is
considered to account for Li-ion battery degradation. Denote
the percentage of battery capacity loss by Qloss. The capacity
loss model is given by

Qloss = Bexpe
(
−31700+370.3×Crate

RTbatt
)
(Ah)0.55, (10)

where Bexp is the pre-exponential factor, which decreases with
increasing C-rate; R is the gas constant; Tbatt is the absolute
temperature of the battery; Ah is the processed energy capacity
in Ah. We shall use this model to explore the trade off between
cost minimization and battery aging. Indeed, other degradation
models can be considered as well (see models within [17]).

4) Conservation of Power: The home power demand Pdem

and grid utility power Pgrd satisfy the power conservation law,

Pdem(t) = Pgrd(t) + ηddηdaPpv(t) + η
sign(Pbatt)
da Pbatt(t), (11)

where ηdd is the efficiency of the DC/DC converter; ηda is the
efficiency of the DC/AC inverter. In this case study, we assume
constant values for ηdd, ηda, but these can be power-dependent
with appropriate model extensions.

Equations (1)-(11) summarize the subsystem models used
for the MPC (see Section IV). Next we study a data-driven
load forecasting algorithm.

III. DATA ENABLED LOAD FORECASTING

A. Load Data Analysis

We analyze load data from a single family home in Los
Angeles to investigate correlations between load and season,
temperature, day of week, and time of day. The objective is
to determine inputs for a data-driven load forecast model. The
collected data corresponds to date range 2013-04-01 to 2014-
03-31. Figure 2 plots the hourly, daily, monthly and yearly av-
erage electricity consumption. The hourly load varies between
0.5 kW to 4 kW. The yearly average load is about 1 kW. This
house consumed more energy in August-September (hottest
months), and December-January (coldest months) relative to
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Fig. 2. Electricity consumption of a single family home in Los Angeles from
2013-04-01 to 2014-03-31.

Fig. 3. Electric load from Monday to Sunday of the sampled LA data. Blue:
load of particular week days; red: hourly average load across all weeks; green:
daily average load over all weeks; yellow rectangle: peak load periods.

the other months. The correlation between the weekly average
load and the weekly average temperature of this geographical
area is also investigated. The results indicate that more energy
is consumed when the weekly average temperature is higher
than 21◦C or lower than 14◦C. That is, the relationship
between weekly average temperature and load is nonlinear.

In Fig. 3, the load data is classified according to the day of
week. From Monday to Thursday, the daily pattern of elec-
tricity consumption is similar. Peak loads consistently occur
from 7:00 to 8:30 AM, and 6:00 to 10:00 PM. On Fridays,
the pattern changes. There are two peak loads observed in the
morning, which is clearly different from the Monday-Thursday
pattern. During weekends, the electricity consumption pattern
exhibits higher variance. The peak loads on Saturday and
Sunday are generally broader. The daytime off-peak load is
also higher compared with the weekdays.

From this analysis, we determined temperature, day-of-
week, and time-of-day to be appropriate exogenous inputs for
the data-driven model (see Section III-B). Other information,
such as holidays and personal habits, could potentially be in-
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Fig. 4. Artificial Neural Network (ANN) model structure for forecasting
residential building electric loads. Symbols Ta, Dw, Td, Lh are the ambient
temperature, day-of-week, time-of-day, and historical loads, respectively.

corporated into the forecast model. However, we demonstrate
in Section V-A that a simple load forecasting method achieves
96%-98% performance relative to perfect forecasts.

B. Load Demand Forecast

We consider a radial basis function neural network (RBF-
NN) forecast algorithm to forecast short-term loads. RBF-NN
is selected because it captures the nonlinear input-output rela-
tions of home load and achieves reasonable forecast accuracy.
Other forecasting methods may be considered as well [13].
Generally, the RBF-NN model contains three layers: the input
layer, the hidden layer, and the output layer, shown in Fig.
4. The hidden layer performs nonlinear transforms for feature
extraction, and the output layer is a linear combination of the
basis functions. The Gaussian function is used as the radial
basis function in the hidden layer [13]. Mathematically,

Y = fANN (X) =

N∑
i=1

ai ·Hi (‖X − Ci‖) (12)

Hi (‖X − Ci‖) = exp

[
− 1

2σ2
i

‖X − Ci‖2
]

(13)

where ai is the neuron weight, Ci is the basis function
center, and σi is the spread width. Parameters ai, Ci, σi for
i = 1, · · · , N are fit on training data using the Levenberg-
Marquardt algorithm.

Based on the data analysis in Section III-A, the air temper-
ature, day of week, and time of day are selected as exogenous
inputs to the RBF-NN model. Short-term historical load is an
endogenous input. Thus, the input vector X is defined as

X = [T̂a Dw Td Lh], Y =
[
P̂dem,k+1, · · · , P̂dem,k+m

]
(14)

where T̂a is the forecasted air temperature obtained via
Internet-based weather services. Symbol Ta is the true air tem-
perature and used only during training; Dw is the day of week;
Td is the time of day; Lh is the historical load. The output
of the forecast algorithm Y is the future m−dimensional load
vector, denoted as P̂dem. The model is trained and validated
on collected load data, as described next.
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Fig. 5. Forecast examples and corresponding air temperature for the LA load
data: (a) 2013-09-15 Tuesday; (b) 2013-12-06 Friday. The prediction length
is 24-hour in these examples.

C. Load Demand Forecast Validation

The RBF-NN forecast model is validated in this subsection.
The validation data is one-year of measured electricity con-
sumption data (2013-04-01 to 2014-03-31) collected from two
houses located in Los Angeles (LA) and Berkeley, California
USA. The first half year is used for neural network training,
and the second half year is used for cross validation. The
sampling period is one hour. The length of the historical load
(in the input vector) and the length of the prediction horizon
(output vector) are both set as 24 hours.

Fig. 5(a) and (b) demonstrate two forecast examples in the
LA data test on 2013-09-15 Tuesday and 2013-12-06 Friday,
respectively. The former corresponds to a warm autumn day,
and the latter corresponds to a chilly winter day. Fig. 5(a)
exemplifies the RNF-NN’s ability to forecast a typical week-
day. The characteristic morning and evening peaks are both
predicted. In Fig. 5(b), the lowest air temperature is 5◦C,
resulting a relatively high loads due to heating. The two-
morning-peaks on Friday are also predicted.

An empirical cumulative distribution function (CDF) of all
the root mean square errors (RMSEs) are demonstrated in Fig.
6(a). Note that 80% of the RMSEs are below 0.45 kW and
0.55 kW in the LA and Berkeley data, respectively. Indeed,
higher accuracy forecasting algorithms exist [13]. However,
we show that this RBF-NN model is sufficiently accurate for
predictive energy management - a claim that is quantified and
verified in Section V-A.

Sensitivity to the input historical load length is also in-
vestigated. The average RMSE of the LA and Berkeley data
with different historical load lengths is illustrated in Fig. 6(b).
As expected, longer historical load vectors produce increased
forecast accuracy. Interestingly, the marginal accuracy im-
provement decreases dramatically for historical load vectors
greater than six hours. Conversely, the most recent five hours
of load significantly impact forecasting accuracy.

D. Weather, Cost, and Emission Forecasts

Internet-based meteorological forecast services are now
ubiquitous. Namely, solar irradiance and air temperature data
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streams are easily accessible via application programming
interfaces (APIs). The acquired irradiation and temperature
information is injected into the solar irradiation model (see
Section II-A1) to estimate the PV solar flux and PV temper-
ature, denoted as Ŝpv and T̂pv , respectively.

In addition, the electric cost and power plant carbon emis-
sions are incorporated into the objective function (see Section
IV). This information is also assumed to be available from the
Internet2. The observed electric rate and unit carbon emission
are notated as Re and Ce, respectively.

IV. MODEL PREDICTIVE CONTROL

The proposed predictive energy management strategy de-
termines the optimal power flow, given real-time forecasted
load, weather conditions, and electricity cost obtained from
the Internet. Given the system model (1)-(11), we require one
control input to render a casual system, and select grid power
u(t) = Pgrd(t). Denoting x(t) as the state variable, u(t) as
the control variable, d(t) as the system disturbance, and y(t)
as the output, the system model is

ẋ(t) = f(x(t), u(t), d(t)), y(t) = g(x(t), u(t), d(t)), (15)

with x(t) = SOC(t), u(t) = Pgrd(t), y(t) = Pbatt(t).
The disturbance d(t) = [P̂dem(t), Ŝpv(t), T̂pv(t)]T , where
P̂dem(t), Ŝpv(t), and T̂pv(t) are the forecasted load, solar
irradiation and PV temperature, respectively. The electricity
cost and carbon emission can be calculated by

Er(u, t) = Re(t) · u(t), Ec(u, t) = Ce(t) · u(t), (16)

2See, e.g. Pacific Gas & Electric http://www.pge.com/tariffs/electric.shtml
for electricity price tariffs and WattTime http://www.watttime.org for marginal
carbon emissions

where Re(t) and Ce(t) are time-varying electric rate and unit
carbon emission, respectively. The objective function is

E(u, t) = λ1 ·
Er(u, t)

Er,max
+ λ2 ·

Ec(u, t)

Ec,max
, (17)

where λ1, λ2 ∈ [0, 1] are weighting parameters and Er,max =
maxu maxtEr(u, t),Ec,max = maxu maxtEc(u, t). For sim-
plicity, we fix the prediction horizon length equal to the control
horizon, namely Lp. Assume the time step is ∆t. At time k∆t,
the cost function Jk is formulated as

Jk =

∫ (k+Lp)∆t

k∆t

E(u, t)2 dt. (18)

Additionally, the following inequality constraints must hold:

SOCmin ≤ SOC ≤ SOCmax, Imin
batt ≤ Ibatt ≤ Imax

batt ,
Pmin
batt ≤ Pbatt ≤ Pmax

batt , P
min
grd ≤ Pgrd ≤ Pmax

grd .
(19)

Note that inequality constraint Pgrd ≤ Pmax
grd enforces peak

shaving and regulates any peak load magnitude charges. Spe-
cial consideration is also given to the battery terminal SOC
constraint during each receding horizon of the MPC to restrict
battery charge depletion. That is, the terminal SOC must be
within a small neighborhood of the reference value,(

SOC((k + Lp)∆t)− SOCref)2 ≤ ε, (20)

where SOCref is a pre-defined constant. Consequently, the
MPC algorithm steps are:

1) Acquire the forecasted load, weather conditions, electric
rate and unit carbon emission from the Internet;

2) Compute optimal control policy via MPC;
3) Apply the first time-step of the optimal control policy

to the RBPB;
4) Measure the system states, update system constraints,

and repeat the procedure at the next time step.

Due to the nonlinearities in the PV model (3)-(7) and battery
model (8)-(9), dynamic programming (DP) is employed in step
two to solve the constrained nonlinear optimization problem
at each time step [24]. Alternative nonlinear formulations that
admit special structure, e.g. linear or convex programs, can
utilize corresponding solvers [7], [8], [9]. DP is used here for
its generality and provable optimality.

V. SIMULATION AND ANALYSIS

A. Energy Management for Economics & Emissions

Parameters for the case study RBPB are listed in Table I.
The battery pack parameters are adopted from a Toyota Prius
hybrid electric vehicle, and we assume the second-life pack
has already degraded to 80% of its original energy capacity.
We consider 6 PV panels in series per pack and 5 packs in
parallel. The energy management control time step is selected
as 1 hour. In practice, faster dynamics are governed by lower
level controllers.
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TABLE I
GENERAL PARAMETERS OF THE RBPB SYSTEM

Cell Type Monocrystalline
PV Panel Cell Area 156×156 mm

(Renogy Monocrystalline 250D) Cell Number 60 per panel
Max Power 250 W

Cell Chemistry C-LiFePO4

Battery Pack Energy Capacity 1.3 kWh for pack
(Nominal) Charge Capacity 6.5 Ah per Cell

Cell Number 168

1) Cost versus Carbon: The control and prediction horizon
is 24 hours. The electricity load data is collected data from
single family homes in LA and Berkeley. The demand during
each control horizon is predicted by the RBF-NN forecast
model. The temperature, irradiance, electricity price and car-
bon emission data are obtained from the National Climatic
Data Center [19], PG&E and WattTime.org, respectively. The
controller accesses this data in real-time via APIs.

First, we consider λ1 = 1, λ2 = 0 in the cost function (17)
to investigate the optimal behavior with respect to electric cost
only. A week-long energy management result is shown in Fig.
7. The PV power follows a diurnal cycle. During the day,
the solar energy is directly used to power the house. Surplus
energy is stored in the battery for future use. When solar en-
ergy is insufficient to satisfy load, the battery or grid provides
support. The bottom figure shows a two-tiered cost structure,
including higher-cost “on-peak” rates and lower-cost “off-
peak” rates. To reduce the electricity cost, the controller avoids
on-peak grid power as much as possible, as demonstrated in
Fig. 7. Consequently the battery generally charges during off-
peak periods, and discharges during on-peak periods.

A similar simulation result is shown in Fig. 8, where the
objective is to minimize carbon emissions Ec only, i.e. λ1 =
0, λ2 = 1. One can visually observe the grid power trajectory
is anti-correlated with marginal carbon emissions.

2) Horizon Length Determination: Next we examine con-
trol horizon length. Figure 9 depicts the MPC performance
(MPC with PB, in solid blue) for control horizons ranging
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solution with a one-week time horizon and perfect forecasts.

from 1 hr. to 24 hrs. The cost is normalized to the electric cost
without a PV and battery (Without PB, in dashed red). For a
1 hr. horizon, the MPC is short-sighted and normalized cost is
about 85%. As the control length increases, the performance
converges toward the lower bound (green dashed). This lower
bound differs from MPC in two ways: (i) the load forecasts
are perfect and (ii) the optimization is performed over one
week without a rolling horizon. When the control length
is 7 hours, the cost is 2% greater than the lower bound
(approximately 64%). Consequently, one can reach within
2% of the lower cost bound with a 7 hr. control horizon
and imperfect meteorological/load forecasts. Improvements are
negligible with increased control horizons beyond 7 hrs.

3) Performance Assessment: Ten weeks are randomly se-
lected from the LA and Berkeley data sets for a compre-
hensive assessment of the controller. Summarized results are
listed in Table II. The cost and carbon (subscripts ‘$’ and
‘cb’ respectively) are reported by symbols C, P and σ in
respective quantities of USD/kg, percentage, and the standard
deviation. We can see that both the electricity cost and carbon
emission can be reduced by over 35% compared to homes



TABLE II
PERFORMANCE COMPARISON W.R.T. COST ($) & CARBON (CB)

Type C$ P$ σ$ Ccb Pcb σcb

Without PB 27.32 100% – 8.03 100% –
MPC with PB 17.54 64.2% +/-0.8% 5.07 63.1% +/-1.2%

Lower Bound 16.97 62.1% +/-0.3% 4.93 61.4% +/-0.7%
(rt indicated for the electric rate, and cb means the carbon emission.)

without PV/battery. Moreover, the nonlinear predictive energy
management is only 2% worse than the lower bound. This
suggests moderately accurate forecasts of load are sufficient
for near-optimal cost/carbon reductions.

4) Forecast Error Sensitivity Study: Next we investigate
how demand forecasting error impacts energy management
performance. To conduct this sensitivity study, we append
additive uniformly distributed random errors to the real load
data. The RMSE of the contaminated demand forecast is
increased from 0 to 1 (kW) in Fig. 10.

Over 200 tests with uniformly distributed errors are con-
ducted, along with 20 tests with our proposed RBF-NN
forecasting model, shown in Fig. 10. When the RMSE is
below 0.3 kW, the controller performs near the lower bound,
with normalized costs between 62% and 64% relative to the
no PV/battery scenario. As forecast RMSE increases, the
normalized cost increases linearly. Note that the average load
for the LA home is 1 kW. Consequently, an RMSE of 0.5 kW
represents a 50% normalized RMSE. Nevertheless, the MPC
scheme is only 4% worse than the lower bound.

Additionally, we note the RMSE of the RBF-NN forecaster
is near 0.38 kW. The normalized cost is 63.4%, which equals
the performance of contaminated forecasts with 0.25 kW
RMSE. This result is unexpectedly good – only 1.5-2% higher
than the lower bound. After comparison, we found the RMSE
produced by the RBF-NN has a tighter distribution (i.e. smaller
variance) compared to uniformly distributed errors. This indi-
cates the RBF-NN forecast model captures the nonlinear load
data characteristics and provides useful predictions for MPC,
relative to the performance achieved with perfect forecasts.

B. Battery Health Conscious Control

In this part, we incorporate a battery capacity loss model
into the objective function (18), as described in Section II-A3.
The MPC cost function is reformulated from (18) as

Jk =

∫ (k+Lp)∆t

k∆t

(λE2
r (u, t) + (1− λ)Q2

loss(u)) dt, (21)

where λ is a weighting parameter, Er and Qloss are normal-
ized into the same scale.

A comparison of the controller behavior on the November
2013 LA data with different λ values is shown in Fig. 11.
Figure 11(a) shows the battery cell C-rate3 distribution over
SOC. When λ = 1, the cost function emphasizes electric cost
only and the C-rate spreads to as high as 0.5C for charging,
and as low as -0.5C for discharging. Charging C-rates greater

3C-rate is a normalized measure of current, useful for comparing batteries
of different sizes. C-rate = I(t)/Q.
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Fig. 10. Normalized energy management performance of the artificially
formulated load with uniformly distributed RMSEs from 0 to 1, compared
with the RBF-NN energy management results.
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Fig. 11. Cell C-rate and grid power usage comparison for November 2013
LA data, when λ ∈ {1, 0.83, 0} in cost function (21).

than 0.1C occur more frequently when SOC < 0.65. When
λ = 0.83, the solution reserves some battery power to mitigate
battery aging. The maximum charge and discharge C-rates are
restricted within 0.1C and -0.2C, respectively. When λ = 0,
the cost function emphasizes battery health only. In this
case, C-rate is limited between 0.02C and -0.02C and the
battery SOC changes negligibly. Consequently, the battery is
effectively unused to avoid degradation.

The corresponding cumulative grid power is visualized in
Fig. 11(b). As elaborated above, when λ = 0 the battery is
inactive. Therefore, more power is required from both the off-
peak and on-peak periods to satisfy load. On the contrary,
when λ increases, the battery stores excess PV power and
reduces grid power. As λ continues to increase, the controller
becomes more aggressive about exploiting price arbitrage. This
‘buffering’ behavior is evident from the grid power comparison
between λ = 1 and 0.83 in Fig. 11(b). It is notable that
cumulative on-peak power is reduced by nearly 50% between
λ = 0.83 and 1. This reduction is partially compensated by a
17% increase in off-peak power for λ = 1.

Six arbitrarily selected months from the LA data and
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Fig. 12. Average electric cost and battery degradation for one month, with
different λ inserted into cost function (21).

Berkeley data set are used for the battery health conscious
control study, by varying λ from 1 to 0 in 0.01 increments.
Costs and capacity loss per month are illustrated in Fig. 12.
When λ = 1, the controller minimizes electric cost only, and
battery capacity degrades by 1.2% per month. The absolute
minimum electricity cost is 72 USD/month. As λ decreases to
0.89, the battery capacity loss is reduced from 1.2% to 0.9%
with nearly negligible increase in electric cost. When λ is less
than 0.89, the battery degradation continues decreasing, but
with smaller gradient. The rate-payer must pay 2 USD/month
for reducing monthly battery capacity loss by 0.1% when the
λ exists between 0.89 and 0.45. For λ < 0.45, the battery
degradation can hardly be attenuated further. The user would
pay over 11 USD/month to save 0.1% battery capacity, which
is 5 times higher than before the λ = 0.45 point. The minimal
battery capacity loss is 0.2% per month when λ = 0. The
electric cost reaches a maximum of 107 USD/month – 49%
higher than the minimum.

VI. CONCLUSIONS

This paper presents a nonlinear data-enabled predictive
energy management strategy for a residential building with
photovoltaics (PV) and battery energy storage. A model pre-
dictive controller (MPC) is formulated with nonlinear PV and
battery models, and a RBF-NN load forecasting algorithm.
Future weather conditions are acquired from meteorologi-
cal data steams and integrated into the MPC formulation.
Numerical experiments demonstrate the proposed predictive
energy management system achieves 96%-98% optimality of
the perfect forecast lower bound, with respect to electric cost
and carbon emissions. In addition, we study the trade off
between battery aging and cost minimization. The controller’s
sensitivity to control horizon length, load forecast accuracy,
and battery health are investigated to explore the fundamental
tradeoffs.
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