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Abstract

A fundamental requirement of the electric power system is to maintain a continuous and instantaneous
balance between generation and load. The intermittency and uncertainty introduced by renewable energy
generation requires expanded ancillary services to maintain this balance. In this paper, we examine the
potential of thermostatically controlled loads (TCLs), such as refrigerators and electric water heaters, to
provide generation following services in real-time energy markets (1 to 5 minutes). Previous research in this
area has primarily focused on the development of centralized control schemes with an aggregate TCL model.
An objective of our approach is to enable each TCL to model and control its dynamics independently and
to use distributed convex optimization techniques to allow a central aggregator to influence, but not directly
control, the behavior of the population. To control the non-linear dynamics of hysteretic dead-band systems
in a manner suitable for convex optimization, we introduce an alternative control trajectory representation
of the TCLs and their discrete input signals. This approach allows us to approximate the control of a TCL
as a convex program and to produce a solution that can be interpreted stochastically for implementation. To
perform distributed optimization across large populations of TCLs, we apply a variation of the alternating
direction method of multipliers (ADMM) algorithm. The objective of the distributed optimization algorithm
is to enable an aggregator to coordinate with a population of TCLs and to increase or decrease the total
power demand according to a control signal. We include experimental results in which different populations
of TCLs with varying levels heterogeneity are optimized to provide 5-minute ahead generation following
services. We numerically demonstrate the algorithm’s potential for controlling a TCL population’s power
demand within a definable error tolerance.

Keywords: Smart grid, Distributed optimization, Alternating Direction Method of Multipliers (ADMM),
Ancillary services, Generation following, Thermostatically Controlled Loads (TCL)

1. Introduction1

1.1. Background and Motivation2

The variability of renewable energy resources,3

particularly wind and solar, poses a challenge for4

power system operators. Namely, as renewable5

penetration increases it will be necessary for op-6

erators to procure more ancillary services, such7
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as regulation and load following, to maintain bal-8

ance between generation and load [1][2][3][4][5]. Re-9

searchers have proposed a number of solutions for10

employing residential demand response to shift flex-11

ible loads based on a price signal, helping to re-12

duce the need for load following [6][7][8]. In the13

long-term, grid-scale storage technologies (e.g. fly-14

wheels, batteries, etc.) are sure to play a major15

role in providing these ancillary services [9][10][11].16

In the near-term, responsive thermostatically con-17

trolled loads (TCLs) have a high potential for pro-18

viding such ancillary services [12][13].19

This paper investigates the challenge of control-20

ling a heterogeneous TCL population to perform an21

ancillary service, specifically 5-minute ahead gener-22
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ation following. For experimental purposes, we de-23

fine generation following as the complement of load24

following whereby loads are employed to smooth the25

power generation from renewable energy sources.26

The advantages of responsive TCLs over large27

storage technologies include: 1) they are well-28

established technologies; 2) they are distributed29

throughout the power system thus providing spa-30

tially and temporally distributed actuation; 3) they31

employ simple and fast local actuation well-suited32

for real-time control; 4) they are robust to outages33

of individuals in the population; and 5) they, on the34

aggregate, can produce a quasi-continuous response35

despite the discrete nature of the individual controls36

[13][14][15]. These characteristics make TCLs suit-37

able for both direct load management programs, in38

which a utility can actuate TCLs to meet objectives39

like peak demand reduction or emergency situation40

handling, and indirect load management programs,41

in which utilities use price signals, rebates, and sub-42

sidies to incentivize the shifting or reduction of TCL43

power demands [3]. We refer the reader to [3] for a44

comprehensive study of utility-scale load manage-45

ment, to [13] for a discussion of the advantages and46

disadvantages of TCLs compared to grid-scale stor-47

age technologies, and to [14] for a look into the po-48

tential costs and revenues of demand response with49

TCLs.50

Additionally, because TCLs are controlled ac-51

cording to a temperature setpoint, customers are52

generally indifferent to precisely when energy is53

consumed as long as the temperatures are main-54

tained within a dead-band range. This natural flex-55

ibility makes TCLs a promising candidate for par-56

ticipating in power system services.57

1.2. Contributions58

Novel contributions of this work include:59

• The alternative control trajectory representa-60

tion – a novel approach for representing the61

control of agents with non-convex constraints62

as a convex program. The resulting convex63

program provides a solution that can be in-64

terpreted stochastically for implementation.65

• The application of an alternating direction66

method of multipliers (ADMM) sharing algo-67

rithm for the distributed convex optimization68

of TCLs. Each TCL agent optimizes a pri-69

vate objective function, while the central ag-70

gregator iteratively updates an incentive vari-71

able to drive the population towards a global72

objective, such as generation following. By dis-73

tributing the computation using ADMM, each74

TCL is able to optimize its objective in parallel75

and the population can efficiently converge to76

a global solution.77

• By applying the alternative control trajec-78

tory representation and alternating direction79

method of multipliers sharing algorithm, this80

paper demonstrates the control of a population81

of systems with integer states using a convex82

algorithm. This is a fundamental gap that we83

bridge.84

1.3. Literature Review85

1.3.1. Early TCL Modeling and Cold Load Pickup86

Research into the modeling and control of TCLs87

began with applications to peak shaving and cold88

load pickup in power systems. Cold load pickup is a89

phenomenon which occurs in a distribution network90

due to the restoration of power after an extended91

outage. Normally, the power demand of thermo-92

statically controlled loads is desynchronized. How-93

ever, following outages, TCLs will simultaneously94

demand full power, contributing to the cold load95

pickup peak. To address this problem, researchers96

focused on methods for modeling and reducing TCL97

demand during cold load pickup events as well as98

peak demand hours.99

The earliest examples of such work include the100

Ihara and Scwheppe paper on space condition-101

ing during cold load pickup [16] and the Chong102

and Debs paper on individual and aggregation103

load models [17], both of which used individual104

TCL models to describe load dynamics. In [18],105

Mortensen and Haggerty develop a discrete-time106

TCL model, which was later adapted by Ucak to107

model heterogeneous TCL populations [19]. In [20],108

Pahwa and Brice describe the modeling and param-109

eter estimation of residential air conditioning loads110

as well as a basic aggregation method. Malhame111

and Chong’s study [21] is among the first reports112

to use stochastic analysis to develop an aggregate113

model of a TCL population. The resulting coupled114

Fokker-Planck equations, derived in [21], define the115

aggregate behavior of a homogeneous population.116

While efforts were made in these early works to117

model the aggregate demand of a TCL popula-118

tion and to propose control schemes for reducing119

demand during peak hours and cold load pickup120

events, the most meaningful contributions focused121
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on the modeling and parameter estimation of indi-122

vidual TCLs.123

1.3.2. Aggregate TCL Modeling and Centralized124

Control125

Recent research efforts have focused on the mod-126

eling of TCL populations using aggregation meth-127

ods. A key objective of this research is to develop128

and evaluate methods for characterizing the tem-129

perature density evolution of a TCL population. By130

incorporating centralized control strategies, aggre-131

gated TCL populations are able to provide ancil-132

lary power system services like load following and133

regulation rather than just load reduction. In [15],134

one of the first papers to develop a modeling and135

control strategy that allows TCLs to perform an-136

cillary services, Callaway uses a linearized Fokker-137

Planck model to describe the aggregated behav-138

ior of a TCL population. Direct load control is139

achieved by broadcasting a single time-varying set-140

point temperature offset signal to every agent. Nu-141

merical results demonstrate how small perturba-142

tions to the setpoint can enable TCLs to perform143

wind generation following. Later work builds upon144

concepts in [15] by considering sliding mode con-145

trol [22], proportional-integral control [23], linear146

quadratic regulators [24], and switching rate broad-147

cast actuation [25].148

In [14] and [26], Mathieu, Koch, and Callaway149

propose a proportional controller which, at each150

time step, broadcasts a switching probability, η, to151

all the TCLs in the population. If η < 0, all TCLs152

that are on must switch off with a probability of η153

and if η > 0, TCLs that are off switch on with a154

probability of η. In [27], Koch et al. employ a linear155

time-invariant (LTI) representation of a TCL pop-156

ulation. As in [22], a “state bin” modeling frame-157

work is used and the aggregate probability mass158

is allowed to move through these bins. A Markov159

Chain-based approach is used to predict the evolu-160

tion of the heterogeneous TCL population.161

Similar work can be found in [28], [29], and [30]162

where Zhang et al. use a state bin concept to rep-163

resent the evolution of the TCLs and introduce164

clustering to better account for heterogeneity. In165

[28], a second-order aggregate model for a heteroge-166

neous population of TCLs is developed. To address167

the high state-space dimensionality of this model,168

a complexity reduction method and reduced-order169

model is proposed in [29]. In [30], the second-order170

aggregate model is used to simulate a population of171

heating, ventilation, and air-conditioning (HVAC)172

systems and a novel method for incorporating min-173

imum dwell time is proposed. Specifically, Zhang174

et al. define a state which represents the number175

of off TCLs that are “locked” and will not turn on176

in response to the central control signal. Thus, the177

individual TCLs are able to locally enforce dwell178

times and the aggregator is able to adjust the con-179

trol signal to account for locked TCLs.180

A significant body of research has grown out181

of the above literature in response to open chal-182

lenges around aggregate model efficacy and effi-183

ciency, modeling and control framework limitations,184

and unaddressed system constraints. In [31], Moura185

et al. develop a diffusion-advection partial differen-186

tial equation (PDE) model and a parameter iden-187

tification scheme for an aggregated population of188

heterogeneous TCLs, alleviating the need for prior189

knowledge of TCL parameters. In [32], Ghaffari190

et al. develop a deterministic hybrid PDE-based191

model capable of representing a heterogeneous TCL192

population and apply a uniform dead-band shifting193

strategy for control. In [33], Vrettos and Anderson194

research the aggregation of TCLs to simultaneously195

provide frequency and voltage regulation services,196

recognizing that solving these problems separately197

can produce suboptimal solutions. Iacovella et al.198

introduce the use of tracer TCLs in [34]. These vir-199

tual tracer devices represent the state density distri-200

bution of a cluster of heterogeneous TCLs. The ap-201

proach enables the use of reduced-order aggregate202

models with control achieved via a single broad-203

casted signal.204

In [35] and [36], Mathieu et al. build upon pre-205

vious work in [14][26] to employ a state bin model-206

ing framework with a “non-disruptive” approach in207

which the TCL’s temperature is maintained within208

the existing dead-band. Hao et al. also consider209

a non-disruptive approach in [37] using a battery210

model of the TCL population and a priority stack211

strategy to determine which TCLs to control at a212

given time step.213

1.3.3. Decentralized TCL Control for Frequency214

Services215

Recognizing that system frequency is a univer-216

sally available indicator of supply-demand imbal-217

ance, a number of researchers have developed fully218

decentralized techniques for performing frequency219

services with TCLs. In [38], Short et al. show the220

suitability of TCLs to perform frequency services221

using system frequency as a control signal and the222

potential for a population of TCLs to respond to223
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a sudden loss of generation. This demand response224

capability reduces the dependence of grid operators225

on rapidly deployable backup generation.226

In [2], Xu et al. develop a TCL model in which227

devices adjust their setpoints linearly according228

to the system frequency, allowing the population229

to act as a fast frequency controlled reserve. To230

address problems of long-term instability, Angeli231

and Kountouriotis develop a decentralized stochas-232

tic controller in [39] that is capable of maintaining233

desynchronization among the TCLs while regulat-234

ing overall power consumption. In [40], Tindemans235

et al. present a stochastic controller whereby each236

TCL in the population independently targets a ref-237

erence power profile. The result is a stable and fully238

decentralized system that requires only the locally239

available control signals of frequency and time.240

1.4. A Distributed Approach241

There are a number of advantages to the mod-242

eling and control approaches described above.243

Firstly, the aggregated models are based upon lin-244

ear representations of TCL dynamics. This makes245

the aggregated models well suited for a variety246

of established control and optimization techniques.247

Moreover, these models are good at prediction and248

control over small time scales (i.e. seconds and mil-249

liseconds), making them ideal for producing fast250

short-term responses (e.g. frequency regulation)251

[26][35].252

A limitation of these aggregate models is low253

model fidelity and the inability to incorporate de-254

vice specific dynamics. Note the literature is rich255

with techniques for multi-state thermal modeling of256

heating, ventilation, and air-conditioning (HVAC)257

systems in buildings including solar gain estimation258

and multi-zone state estimation [41][42][43][44][45].259

Because aggregate models are not amenable to the260

incorporation of device specific, nonlinear, or non-261

parametric models, they are incapable of leveraging262

the work of these and other researchers. At larger263

time scales (i.e. minutes and hours), higher model264

fidelity becomes very important for the accurate265

forecasting of TCL power demand. By employing266

basic linear models, particularly when modeling the267

complex dynamics of HVAC systems in buildings,268

aggregated TCL modeling approaches are poorly269

suited for producing accurate long-term responses270

(e.g. load-shifting) [42][43][44]. Hao et al. [37], for271

example, derive a “generalized battery model” to272

predict aggregate TCL flexibility. Even with a sim-273

ple single-state TCL model, summing the set of flex-274

ible trajectories involves an arduous Minkowski sum275

that they approximate through bounding sets. Re-276

cent work by Tindemans et. al. pursues a stochas-277

tic single TCL model that can be distributed [40].278

However, this model is mathematically formulated279

as a partial differential equation that fundamentally280

relies on a single state to represent temperature. In281

this manuscript, we pursue a method extendible to282

the multi-state models that characterize data col-283

lected from real-world TCLs [42][43][44].284

An additional limitation of linear models is that285

they permit the TCLs to short-cycle. Short-cycling286

is a behavior in which a TCL turns on and/or off287

for a short amount of time. This behavior is pro-288

duced by linear controllers and optimization tech-289

niques when it is optimal for the temperature to290

oscillate around a point, such as the edge of the291

dead-band or the temperature setpoint. Over time,292

this short-cycling will reduce the efficiency and op-293

erational life of the hardware within a TCL. Efforts294

to prevent short-cycling, such as preferential bin-295

ning, priority/preferential switching, and lockout296

estimation, are made in [35][36][30][37]. However,297

the preferential techniques employed in [35][36] can-298

not guaranteed the prevention of short cycling and299

the lockout estimation in [30][37] requires central-300

ized knowledge of the minimum dwell times of every301

agent in the population.302

A key advantage of decentralized TCL control303

methods is the reduced or eliminated need for com-304

munication infrastructure. However, by relying on305

system frequency as the control signal, applications306

are limited to frequency regulation and real-time307

load shaping. To produce long-term responses (e.g.308

load-shifting), it is necessary for a grid entity to de-309

fine the service objective, to forecast network states,310

and to coordinate or otherwise control the TCL311

population to meet the objective. Thus, the control312

paradigm shifts from decentralized to centralized or313

distributed control.314

To control a TCL population to produce long-315

term responses in a manner that is agnostic of the316

individual TCL models (e.g. device specific, non-317

linear, nonparametric) and that enables the incor-318

poration of locally defined constraints (e.g. short-319

cycling), this manuscript presents a novel TCL320

modeling technique and distributed control ap-321

proach. This work diverges from the above liter-322

ature in the following respects:323

• This paper presents a distributed control324

scheme with a centralized aggregator via325
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ADMM. Related distributed control schemes326

use consensus coordination [46], distributed327

model predictive control [47][48], iterative load328

profile aggregation [49], multi-agent systems329

[6], and game-theory [8][50].330

• In this paper, all TCL parameters, objectives,331

and constraints remain private. Each TCL332

is simulated locally and independently of the333

population. The only information that a TCL334

communicates with the central aggregator is335

its predicted power trajectory. Therefore, if336

necessary, TCL parameter identification can be337

performed locally [51].338

• We do not employ an aggregate model of the339

TCL population. Thus, rather than modeling340

the entire population, the central aggregator341

is only responsible for updating an incentive342

variable that drives the population towards a343

desired behavior.344

• There is no requirement that each TCL in the345

population employs the same model structure346

or local control scheme. The only requirement347

is that the TCL is able to produce predictions348

of its power demand under multiple alterna-349

tive control scenarios. While we employ a hy-350

brid state TCL model in this manuscript, this351

is not restrictive and the distributed optimiza-352

tion technique is compatible with a variety of353

different TCL modeling approaches.354

• We do not use continuous setpoint control.355

In this paper, all temperature setpoint offsets356

are integer valued and therefore easily imple-357

mentable.358

• Individual TCLs are not required to partici-359

pate at every time step. Because the TCL360

population is not centrally modeled, the dis-361

tributed scheme is robust to an arbitrarily362

large loss or acquisition of agents.363

• Our proposed modeling and control approach364

is capable of honoring non-convex constraints,365

such as minimum dwell time - a critically366

important practical constraint that eliminates367

compressor short-cycling.368

• Our proposed modeling and control approach369

is directly extendible to multi-state and nonlin-370

ear TCL models that characterize many TCLs371

in practice, as shown by the system identifica-372

tion studies in [42][43][44].373

For the distributed optimization of a TCL pop-374

ulation, we present a variant of the alternating di-375

rection method of multipliers (ADMM) algorithm376

known as sharing ADMM [52]. Due to its par-377

allelizability and convergence characteristics, the378

sharing ADMM algorithm is generally applicable379

to the minimization of distributed agents. Further-380

more, past research on the application of ADMM to381

the balancing of generators, fixed loads, deferrable382

loads, and storage devices has demonstrated the383

suitability of ADMM to efficiently solve large con-384

vex optimization problems in parallel [53]. In this385

paper, we develop a formulation of the ADMM al-386

gorithm to enable a TCL population to perform387

5-minute power generation following. Under our388

proposed control scheme, each TCL optimizes its389

behavior according to both a private objective func-390

tion (which primarily enforces feasibility) and a391

shared objective function (which follows a genera-392

tion signal). Optimization is achieved by iteratively393

updating a shared incentive variable, which is cal-394

culated and broadcast by a central aggregator, until395

the population converges to a feasible solution.396

1.5. Paper Outline397

This paper is organized as follows. Section 2 dis-398

cusses the TCL model and the alternative control399

trajectory representation. Section 3 overviews the400

sharing ADMM algorithm. Section 4 formulates401

sharing ADMM for distributed TCL control. Sec-402

tion 5 provides numerical examples of our proposed403

algorithms and highlights its applicability to highly404

heterogeneous populations. Finally, Section 6 sum-405

marizes key results. Nomenclatures and notation406

used in this paper are defined in the Appendix.407

2. TCL Model and Optimization408

2.1. Hybrid State Model409

Each TCL is modeled using the hybrid state dis-410

crete time model [15][16][18]411

Tn+1 = θ1T
n + (1− θ1)(Tn∞ + θ2m

n) + θ3

mn+1 =


1 if Tn+1 < Tset − δ

2

0 if Tn+1 > Tset + δ
2

mn otherwise

(1)

where state variables Tn ∈ R and mn ∈ {0, 1} de-412

note the temperature of the conditioned mass and413
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the discrete state (on or off) of the mechanical sys-414

tem, respectively. Additionally, n = 1, 2, . . . , Nt415

denotes the integer-valued time step, Tn∞ ∈ R the416

ambient temperature (◦C), Tset ∈ R the temper-417

ature setpoint (◦C), and δ ∈ R the temperature418

dead-band width (◦C).419

In this paper, we define the time elapsed between420

each time step as h = 1/60 (hours). The parame-421

ter θ1 represents the thermal characteristics of the422

conditioned mass as defined by θ1 = exp(−h/RC)423

where C is the thermal capacitance (kWh/◦C) and424

R is the thermal resistance (◦C/kW), θ2 the energy425

transfer to or from the mass due to the systems426

operation as defined by θ2 = RP where P is the427

rate of energy transfer (kW), and θ3 is an additive428

process noise accounting for energy gain or loss not429

directly modeled. We assume that θ3 is normally430

distributed with variance hσ2 (bulk units of ◦C2).431

In this paper, we assume a noise standard deviation432

σ of 0.01◦C/
√
sec or 0.6◦C/

√
hr [13].433

The power demand of a TCL at each time step
is defined by

pn =
|P |
COP

mn (2)

where pn ∈ R is the electric power demand (kW)434

and COP the coefficient of performance.435

The sign conventions in (1) assume that the TCL436

is providing a heating load and that P (and thus437

θ2) is positive. Therefore, we expand the m-update438

statement to account for both heating and cool-439

ing loads. Additionally, in this paper, the optimal440

control of each TCL is based on setpoint manipu-441

lation. In other words, at each time step n, a TCL442

will either enforce Tset or move the setpoint by un.443

While we define un such that the setpoint may be444

adjusted at each time step, in practice, we employ445

a single adjustment over multiple consecutive time446

steps. The TCL model can now be expressed as447

Tn+1 = θ1T
n + (1− θ1)(Tn∞ + θ2m

n) + θ3

mn+1 =



1 if θ2 > 0 and

Tn+1 < Tset − δ
2 + un

0 if θ2 > 0 and

Tn+1 > Tset + δ
2 + un

1 if θ2 < 0 and

Tn+1 > Tset + δ
2 + un

0 if θ2 < 0 and

Tn+1 < Tset − δ
2 + un

mn otherwise

(3)

where un ∈ R is the setpoint change at time step448

n. While un may, by definition, take on any value449

in R, in this paper we will only consider integer450

changes to the temperature setpoint (i.e. un ∈ Z).451

As noted in [15][18], the discrete time model im-452

plicitly assumes that all changes in mechanical state453

occur on the time steps of the simulation. In this454

paper, we will assume that this behavior reflects455

the programming of the systems being modeled. In456

other words, we will assume that the TCLs have a457

thermostat sampling frequency of 1/h Hz or once458

per minute.459

Finally, in this paper, we will emphasize hetero-460

geneous TCLs populations and thus vary R, C, P ,461

and COP for each agent in the population, as dis-462

cussed in Section 4. Because R, C, and P define463

the thermal mass and rate of heat transfer, the pa-464

rameters govern the system dynamics. The COP465

parameter does not impact the system dynamics466

but rather scales the magnitude of the electricity467

power demand.468

2.2. Alternative Control Trajectory Representation469

In this section, we consider the optimization of a470

TCL represented by the hybrid state model above.471

While the model presents an intuitive representa-472

tion of a dead-band control system, the discrete473

and piece-wise nature of the m-update statement474

poses a numerical challenge for optimal control. In475

particular, if the TCL’s temperature is near the set-476

point (i.e. away from the upper and lower bound),477

then the mechanical state mn+1 is dependent upon478

the previous state mn.479

This dependency, as well as the binary on/off480

state, makes the system combinatorial and there-481

fore non-convex. There are optimization ap-482

proaches, such as dynamic programming and ge-483

netic algorithms, that are well suited for solving484

such a non-convex problem to identify an optimal485

control strategy. However, these approaches are486

poorly suited for distributed optimization problems487

because the number of optimization variables is in-488

tractable for real-time control.489

Therefore, we introduce a novel approach for490

representing the control of non-linear systems in491

a manner suitable for linear/convex programming.492

Put simply, we simulate the system under mul-493

tiple feasible alternative control inputs in order494

to generate a discrete set of output trajectories.495

These alternative control trajectories can be in-496

corporated into a convex program as a linear con-497

straint, thereby enforcing feasibility.498
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To begin, we define Na alternative control inputs499

for Nt time steps500

uj = (u1
j , u

2
j , . . . , u

Nt
j )

∀ j = 1, . . . , Na
(4)

with variable uj ∈ RNt and unj ∈ Su for n =501

1, ..., Nt, where Su ⊂ Z is the constraint set of fea-502

sible/allowed setpoint changes. Note that the num-503

ber of alternative control inputs and the method for504

generating each uj will depend on the application505

(see Section 4.1 for the method used in this paper).506

Next, for each control input uj , we simulate the507

TCL model defined in (3) while imposing any ad-508

ditional physical, mechanical, or numerical con-509

straints, such as a minimal dwell time. Given the510

simulation results, we generate Na feasible alterna-511

tive trajectories as defined by the state variables T512

and m. Since the power demand pn is linearly re-513

lated to the mechanical state mn, we can also define514

the set of alternative power demand trajectories.515

Tj = (T 2
j , T

3
j , . . . , T

Nt+1
j )

mj = (m2
j ,m

3
j , . . . ,m

Nt+1
j )

pj = (p2
j , p

3
j , . . . , p

Nt+1
j )

∀ j = 1, . . . , Na

(5)

The input and output variables can be expressed516

compactly as517

U = (u1, u2, . . . , uNa
)

T = (T1, T2, . . . , TNa
)

M = (m1,m2, . . . ,mNa
)

P = (p1, p2, . . . , pNa
)

(6)

with variables U, T, M, and P representing the518

set of all uj , Tj , mj , and pj sets for j = 1, . . . , Na.519

Naturally, we can also view U, T, M, and P as ma-520

trices ∈ RNa×Nt such that the rows represent the521

alternative trajectories and the columns represent522

the time step n. It should be noted that the func-523

tion defined by (3) is not one-to-one (i.e. a function524

f such that f(uj) = mj is not injective). In other525

words, the distinctness of uj does not guarantee526

the distinctness of Tj , mj , and pj . Thus, for com-527

putational efficiency, if Tj , mj , or pj are equal to528

any previously generated output for j = 2, . . . , Na,529

then each set uj , Tj , mj , and pj should be excluded530

from U, T, M, and P. We define the number of531

distinct alternative control trajectories as Nd such532

that Nd ∈ {1, . . . , Na}.533

Figure 1: Examples of alternative temperature t1 and power
p1 trajectories given input u1

Figure 2: Examples of alternative temperature t2 and power
p2 trajectories given input u2

Figure 3: Examples of alternative temperature t3 and power
p3 trajectories given input u3

Figures 1, 2, and 3 illustrate an example of a TCL534

(specifically, a refrigerator) with Na = 3 alternative535

trajectories. In the example, each alternative input536

uj for j = 1, 2, 3 is ∈ {0,−1, 1}20. For trajectory537

j = 1, un1 = 0 for n = 1, . . . , 20. For trajectory538

j = 2, un2 = 0 for n = 1, . . . , 10 and un2 = −1 for539

n = 11, . . . , 20. For trajectory j = 3, un3 = 0 for540

n = 1, . . . , 10 and un3 = 1 for n = 11, . . . , 20.541

The TCL has been simulated using (3) with a542

default setpoint Tset of 2.5◦C, a dead-band width δ543

of 2◦C, an initial temperature T 1 of 3.3◦C, and an544

initial mechanical state m1 of 0. Figures 1, 2, and545

3 present the Tj and pj trajectories corresponding546

to each input uj for j = 1, 2, 3. The mechanical547

state trajectories mj can be inferred from the Tj548

and pj trajectories. As illustrated by the figures,549
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each distinct input uj produces a distinct Tj , mj ,550

and pj . Therefore, in this example, Nd = Na = 3.551

In summary, we have produced a representation552

of the system’s dynamics under multiple alternative553

control trajectories. This representation can be in-554

corporated into a convex program, as described in555

the next section. To the authors’ knowledge, this556

is the first paper to introduce such an approach.557

While we have developed the method with the in-558

tention of enforcing non-linear system constraints in559

TCLs (such as minimum compressor on/off dwell560

times), we have found that the approach is well561

suited for the aggregated control of energy systems562

in general. By abstracting the system inputs, dy-563

namics, and constraints into the U and P matri-564

ces, we can also model the aggregated optimization565

of heterogeneous energy systems such as residential566

solar panels, battery storage, and electrified vehi-567

cles.568

2.3. Convex Optimization569

In this section, we detail how the alternative con-570

trol trajectory representation described above can571

be introduced into a convex program. To begin, we572

will introduce a variable w ∈ {0, 1}Nd such that573

wj =

{
1 if trajectory j is selected

0 otherwise

∀ j = 1, . . . , Nd

(7)

Thus, if j = 1 is the selected trajectory (i.e. w1 = 1)

UTw = u1

TTw = T1

MTw = m1

PTw = p1

The integer program below demonstrates how P,574

T, and w can be introduced to solve for the optimal575

trajectory576

minimize
w

F (PTw) +G(TTw)

subject to
∑
wj = 1

w ∈ {0, 1}Nd

(8)

where F : RNt → (−∞,∞] and G : RNt →577

(−∞,∞] are closed convex functions. Function F578

represents the utility of a power demand trajec-579

tory. This could be a cost function for electricity,580

a penalty function for deviating from a predefined581

profile, or a regularization function that flattens the582

power demand. Function G represents the utility of583

a temperature trajectory. For heating and air con-584

ditioning systems, G could represent the thermal585

comfort/discomfort of occupants. For TCLs like586

refrigerators or water heaters, G could quantify the587

willingness of a customer to allow deviations from588

the setpoint.589

The above program is an example of the gener-590

alized assignment problem (GAP). If feasible, the591

integer program (8) guarantees that only one com-592

ponent of minimizer w∗ is non-zero. However, be-593

cause the integer program (8) is combinatorial and594

potentially intractable for large scale problems, it is595

unsuitable for many applications. In particular, dis-596

tributed convex optimization methods require lin-597

earity or convexity in the agents [52]. By relaxing598

the binary constraint such that ŵ ∈ RNd , we can599

express the convex program as600

minimize
ŵ

F (PT ŵ) +G(TT ŵ)

subject to
∑
ŵj = 1

ŵ ≥ 0

ŵ ∈ RNd

(9)

Due to the linear constraints, minimizer ŵ∗j ∈601

[0, 1] for j = 1, . . . , Nd and in practice, can be inter-602

preted as the probability of selecting control trajec-603

tory j. In other words, we allow the convex program604

to form linear combinations of the alternative con-605

trol trajectories. Once the program has converged606

to an optimal solution, we implement a single tra-607

jectory based on the discrete probability distribu-608

tion ŵ∗. Expressed mathematically, we can gen-609

erate a discrete random variable X ∈ {1, . . . , Nd}610

such that ŵ∗j = Pr(X = j) for j = 1, . . . , Nd. The611

value of X represents the index of the probabilisti-612

cally selected control trajectory. Thus, we can de-613

fine a variable w̃ ∈ {0, 1}Nd , representing the prob-614

abilistic solution of (9), as615

w̃j =

{
1 if X = j

0 otherwise

∀ j = 1, . . . , Nd

(10)

To reiterate, the optimal solution to (8) is phys-616

ically realizable (i.e. only one component of w∗ is617

non-zero) but not solvable using convex optimiza-618

tion. By contrast, (9) is convex but the optimal619

solution is not realizable (i.e. all components of ŵ∗620

may be non-zero). Using (10), we can transform621
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ŵ∗ into w̃, which is realizable (i.e. only one com-622

ponent of w̃ is non-zero). Additionally, w∗ and ŵ∗623

are guaranteed to be optimal solutions to (8) and624

(9), respectively. However, w̃ may be an optimal or625

sub-optimal solution to both (8) and (9).626

It should be noted that w∗ is only optimal with627

respect to the Nd alternative control trajectories as628

represented by U, T, M, and P. If U, T, M, and P629

define the set of all feasible trajectories which sat-630

isfy the constraints of the system, then w∗ is glob-631

ally optimal. Otherwise, if U, T, M, and P define632

a subset of the feasible trajectories, then there is no633

guarantee of global optimality.634

Figure 4: Example Solution to Convex Program

By way of example, we again refer to the alterna-635

tive trajectories illustrated by Figures 1, 2, and 3. If636

we assemble the trajectories into the T and P ma-637

trices and solve (8), we might produce the solution638

w∗ = (1, 0, 0). In other words, the program selects639

trajectory j = 1. If we solve (9), we might produce640

the solution ŵ∗ = (0.8, 0.15, 0.05). In this case, the641

program selects a linear combination of the 3 tra-642

jectories. The resulting power demand trajectory643

x = PT ŵ∗ is illustrated in Figure 4. Finally, if we644

apply (10), there are 3 possible outcomes for w̃,645

Pr(w̃ = (1, 0, 0)) = 80%

Pr(w̃ = (0, 1, 0)) = 15%

Pr(w̃ = (0, 0, 1)) = 5%

Throughout this paper, we refer to the optimal646

power demand profile (p = PTw) produced by (8)647

as the discrete solution (w∗ ∈ {0, 1}Nd), by (9) as648

the continuous solution (ŵ∗ ∈ RNd), and by (9) and649

(10) as the probabilistic solution (w̃ ∈ {0, 1}Nd).650

3. Alternating Direction651

Method of Multipliers652

In this section, we briefly cover the alternating653

direction method of multipliers (ADMM) algorithm654

for convex optimization. We refer the reader to655

[52][54] for a more complete description of the al-656

gorithm. Next, we discuss a special case of block657

separable problems referred to as sharing ADMM658

[52]. We derive a formulation of the sharing ADMM659

algorithm suitable for the distributed optimization660

of TCLs and present primal and dual residual equa-661

tions and stopping criteria not found in [52].662

3.1. ADMM663

The alternating direction method of multipliers is664

a common splitting method for solving problems of665

the form666

minimize f(x) + g(z)

subject to Ax+Bz = c
(11)

with variables x ∈ RNx and z ∈ RNz , where667

f : RNx → (−∞,∞] and g : RNz → (−∞,∞]668

are closed convex functions, A ∈ RNc×Nx and669

B ∈ RNc×Nz are linear operators, and c ∈ RNc
670

is a vector. ADMM is a variant of the augmented671

Lagrangian approach which uses partial updates of672

the dual variables at each iteration. The algorithm673

optimizes the coupled problem (11) by solving the674

uncoupled unscaled steps675

xk+1 = argmin
x

f(x) + 〈λk, Ax〉 (12a)

+
ρ

2
‖Ax+Bzk − c‖22

zk+1 = argmin
z

g(z) + 〈λk, Bz〉 (12b)

+
ρ

2
‖Axk+1 +Bz − c‖22

λk+1 = λk + ρ(Axk+1 +Bzk+1 − c) (12c)

where variable λ ∈ RNc is the dual variable, con-676

stant ρ > 0 is the augmented Lagrangian parame-677

ter, also referred to as the penalty parameter, and678

k is the integer valued iteration of the ADMM al-679

gorithm.680

The necessary and sufficient optimality condi-
tions for the ADMM problem (12) are given by the
primal feasibility,

Ax∗ +Bz∗ − c = 0 (13)

and dual feasibility,

0 = ∇f(x∗) +ATλ∗ (14)

0 = ∇g(z∗) +BTλ∗ (15)

assuming f and g are differentiable.681

The convergence of (12) can be summarized by682
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• Objective Convergence: f(xk)+g(zk)→ J∗ as683

k →∞ where J∗ denotes the optimal value of684

(11)685

• Primal Residual Convergence: Residual rk →686

0 as k →∞ where rk = Axk +Bzk − c687

• Dual Variable Convergence: Variable λk → λ∗688

as k →∞689

We refer the reader to [52][54] for a discussion690

of the augmented Lagrangian, scaled form, primal691

and dual residuals, and convergence rates.692

3.2. Sharing ADMM693

In this paper, we consider an ADMM-based694

method for solving the generic sharing problem us-695

ing distributed optimization, as presented in [52].696

In this section, we demonstrate how the sharing697

problem can be represented as a special case of (11)698

where f and A have a separable structure that we699

can exploit. The method is well suited for solving700

problems of the form701

minimize
∑
fi(xi) + g(

∑
xi) (16)

with variables xi ∈ FNx
i , the decision variable of702

agent i for i = 1, . . . , N , where Fi represents the703

convex constraint set of agent i, N the number of704

agents in the network, Nx is the length of xi, fi is705

the cost function for agent i, and g is the shared706

objective function of the network. The function g707

takes as input the sum of the individual agent’s de-708

cision variables, xi. The sharing problem allows709

each agent in the network to minimize its individ-710

ual/private cost fi(xi) as well as the shared objec-711

tive g(
∑
xi).712

By introducing variable zi ∈ RNx , a term that713

copies the xi decision variable of each agent, the714

sharing problem can be written in an ADMM-715

compatible form716

minimize
x

∑
fi(xi) + g(

∑
zi)

subject to xi − zi = 0, i = 1, . . . , N
(17)

with variables xi ∈ FNx
i , zi ∈ RNx ,

∑
zi ∈ GNx

717

for i = 1, . . . , N where GNx represents the convex718

constraint set of the shared objective. Therefore,719

the unscaled form of sharing ADMM is720

xk+1
i = argmin

xi

fi(xi) (18a)

+ 〈λki , xi〉+
ρ

2
‖xi − zki ‖22

zk+1 = argmin
z

g(
∑
zi) (18b)

+
∑

(〈λki ,−zi〉+
ρ

2
‖xk+1

i − zi‖22)

λk+1
i = λki + ρ(xk+1

i − zk+1
i ) (18c)

with variable z = (z1, . . . , zN ) and augmented La-721

grangian parameter ρ > 0. Unlike (12), where there722

is a single globally defined dual variable λ, in (18),723

each agent has its own λi. Thus, the xi-update724

and λi-update steps can be executed by each agent725

i = 1, . . . , N independently and in parallel. The z-726

update step is executed by a collector or aggregator727

with knowledge of each agent’s decision variable xi.728

3.3. Sharing ADMM Residuals729

Next, we define the sharing ADMM residuals.
The necessary and sufficient optimality conditions
for the sharing ADMM algorithm and derivation of
the residuals are presented in the Appendix. The
primal residual is defined as

rk+1
i = xk+1

i − zk+1
i (19)

and the dual residual as

sk+1
i = −ρ(zk+1

i − zki ) (20)

3.4. Stopping Criteria730

We define the stopping criteria as presented in
[52] by

‖rk‖2 ≤ εprimal and ‖sk‖2 ≤ εdual (21)

where rk = (rk1 , . . . , r
k
N ), sk = (sk1 , . . . , s

k
N ), and731

εprimal > 0 and εdual > 0 are feasibility tolerances732

for the primal and dual conditions (44) and (45).733

In this paper, we set εprimal = εdual = 1.734

3.5. Averaged Sharing ADMM735

As written, the sharing ADMM algorithm (18)736

requires the local calculation of a zki , λki , and rki737

term for each agent i = 1, . . . , N in the network.738

Next, we will simplify the algorithm by introduc-739

ing global variables x̄k, z̄k, and λ̄k representing the740

arithmetic mean of all xki , zki , and λki , respectively.741

The unscaled form of the averaged sharing ADMM742
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algorithm is given below. The derivation of the av-743

eraged sharing ADMM algorithm is presented in744

the Appendix.745

xk+1
i = argmin

xi

fi(xi) + 〈λ̄k, xi〉 (22a)

+
ρ

2
‖xi − xki + x̄k − z̄k‖22

z̄k+1 = argmin
z̄

g(Nz̄) + 〈λ̄k,−Nz̄〉 (22b)

+
Nρ

2
‖x̄k+1 − z̄‖22

λ̄k+1 = λ̄k + ρ(x̄k+1 − z̄k+1) (22c)

With this averaged sharing ADMM form, the in-746

dividual agents no longer update their own λi vari-747

able. Instead, a single aggregator updates λ̄, along748

with x̄ and z̄, and reports these global variables to749

every agent in the network. We refer the reader750

to [52][54] for a further discussion of the averaged751

sharing ADMM algorithm and convergence charac-752

teristics.753

3.6. Averaged Sharing ADMM Residuals754

In order to apply the stopping criteria (21), we755

must redefine the primal and dual residuals for756

the averaged form. The derivation of the averaged757

residuals is presented in the Appendix. The aver-758

aged primal residual is defined as759

rk+1
i = x̄k+1 − z̄k+1 (23)

and the averaged dual residual as

sk+1
i = ρ((x̄k+1 − x̄k)

− (xk+1
i − xki )

− (z̄k+1 − z̄k))

(24)

The corresponding `2-norms of the stopping criteria760

are therefore761

‖rk‖2 = N‖x̄k − z̄k‖2
‖sk‖2 =

∑
‖ski ‖2

(25)

762

4. Distributed TCL Optimization For763

Generation Following764

In this section, we describe the application of the765

sharing ADMM algorithm to the distributed opti-766

mization of TCLs with the objective of providing767

5-minute ahead generation following ancillary ser-768

vices. Specifically, we define the optimization pro-769

gram for the individual TCLs and the aggregator.770

Then, we describe the sharing ADMM algorithm771

for the TCL population. Finally, we detail the in-772

frastructure required for communication, computa-773

tion, and control as well as the execution of the774

ADMM-based control method. Results from mul-775

tiple studies are described in the next section. Our776

formulation is based on the following assumptions:777

• Each TCL is capable of (i) manipulating its778

setpoint by a discrete/integer amount, (ii) ac-779

curately monitoring and forecasting its power780

demand, (iii) solving convex programs, and781

(iv) communicating with a central aggregator782

(representing a load-serving entity such as an783

electric utility).784

• The consumer is indifferent to the relative en-785

ergy costs of the alternative control trajecto-786

ries. In other words, either the consumer does787

not pay for energy used by the TCL or the788

compensation for participating in the demand789

response program is such that the change in790

energy cost is negligible. This does not imply791

that each alternative trajectory is of equal util-792

ity.793

• At each ADMM iteration and time step, a794

TCL’s decision variable and selected power de-795

mand trajectory is shared with only the aggre-796

gator. The TCL’s characteristics and decision797

making, including the P matrix, remain pri-798

vate to that TCL.799

4.1. TCL Optimization800

In this paper, we consider four types of ther-801

mostatically controlled loads: refrigerators, electric802

water heaters, heat pumps, and electric baseboard803

heaters. Each TCL is simulated using model (3)804

with published parameter ranges, given in Table 1805

and adopted from [14]. To generate a population,806

parameters are randomly drawn from a uniform dis-807

tribution between the maximum and minimum val-808

ues shown in the table. For heat pumps and base-809

board heaters, the C parameter is multiplied by810

the number of zones, an integer randomly drawn811

from the range given. Additionally, for the ambient812

temperature Tn∞ of the heat pumps and baseboard813

heaters, we utilize weather data for Berkeley, Cal-814

ifornia from the morning of 3/19/2015, shown in815
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Figure 5: Ambient Temperature Data for Berkeley, CA, on
the Morning of 3/19/2015

Figure 5 [55]. The electric power demand of the816

TCL at each time step is given by (2).817

TCL control takes the form of setpoint manipula-818

tion. Rather than considering the full set of feasible819

control inputs, we only consider a small subset of820

the feasible set. Specifically, we define Na = 3 con-821

trol inputs for each TCL in a population. The first822

control input applies no change to the temperature823

setpoint and corresponds to the default or normal824

operation of the TCL. The second input applies a825

setpoint change that will cause the system to turn826

on or stay on and is therefore expected to increase827

the average power demand of the TCL relative to828

normal operation. Conversely, the third input ap-829

plies a setpoint change that will cause the system830

to turn off or stay off and is expected to decrease831

the average power demand of the TCL relative to832

normal operation.833

To generate these control inputs, we define a dis-834

crete set of feasible/allowed setpoint changes, rep-835

resented by Su. Though we simulate the TCLs836

using a one minute time scale (h = 1/60 hours),837

we apply all setpoint changes over 5 consecutive838

time steps (Nt = 5). Thus, for a refrigerator with839

Su = {0,−2, 1},840

u1 = (0, 0, 0, 0, 0)

u2 = (−2,−2,−2,−2,−2)

u3 = (1, 1, 1, 1, 1)

Therefore, the refrigerator has a maximum of841

Na = 3 alternative control trajectories. As stated842

previously, each distinct input uj is not guaran-843

teed to produce a distinct output Tj , mj , or pj .844

For a given TCL, the number of distinct alterna-845

tive control trajectories, Nd, is in the discrete set846

{1, . . . , Na}.847

The zero input u1 represents the default TCL in-848

put and is always first in the set of alternative con-849

trol trajectories. If Nd = 1, we describe the TCL850

as fixed or inflexible. In other words, the TCL is851

at a point in its cycle such that setpoint manipu-852

lation does not impact the temperature trajectory.853

If Nd = 2 and the mean of p2 is greater than the854

mean of p1, then the TCL is only capable of in-855

creasing demand; if Nd = 2 and the mean of p2 is856

less than or equal to the mean of p1, then the TCL857

is only capable of decreasing demand. If Nd = 3,858

then the TCL is flexible and capable of increasing859

or decreasing demand. This classification is used to860

interpret results in Section 5.861

Using the alternative control trajectory represen-862

tation, we can simulate a TCL using U and (3) to863

output T, M, and P matrices such that U, T, M,864

and P ∈ RNd×Nt . Now, the individual TCL’s op-865

timization problem can be defined as a constrained866

least-squares fit.867

minimize
ŵ

αx‖TT ŵ − Tset‖22

subject to
∑
ŵj = 1

ŵ ≥ 0

(26)

with variables T ∈ RNd×Nt , representing the set868

of distinct temperature trajectories, ŵ ∈ RNd , rep-869

resenting the optimal linear combination of trajec-870

tories and/or the discrete probability distribution871

of selecting control trajectory j for j = 1, . . . , Nd,872

Tset ∈ RNt the TCL’s temperature setpoint, Nt the873

number of time steps simulated, Nd the number of874

control trajectories, and αx a weighting term for875

the TCL’s objective. As previously described, the876

continuous solution for the power demand profile is877

determined by x∗ = PT ŵ∗. Given ŵ∗ and (10), we878

denote the probabilistic solution as p̃ = PT w̃. Be-879

cause w̃ ∈ {0, 1}Nd , p̃ is in the feasible set of power880

trajectories defined by P. As previously stated, ŵ∗881

and x∗ are guaranteed to be optimal, but w̃ and p̃882

may be sub-optimal.883

It should be noted that the TCLs could be sim-884

ulated and controlled with time steps of less than885

one minute without impacting the computational886

requirements of the distributed optimization algo-887

rithm. For example, we could simulate a TCL with888

a time scale of one second. To produce the alter-889

native temperature and power trajectories required890

for the optimization, we would use the minute-wise891

averages of the simulated temperature and power892

demand of the TCL. In this way, the time scale893

used for optimization is uniform over the popula-894

tion while the time scale used for simulation and895

control is determined by the individual TCLs.896
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Parameter Refrigerator Water Heater Heat Pump Baseboard Heater

Thermal resistance, R (◦C/kW) [80, 100] [100, 140] [1.5, 2.5] [1.5, 2.5]

Thermal capacitance, C (kWh/◦C) [0.4, 0.8] [0.2, 0.6] [0.15, 0.25] [0.15, 0.25]

Energy transfer rate, P (kW) [-1, -0.2] [4, 5] [14, 25.2] [0.5, 1.5]

Coefficient of performance, COP 2 1 3.5 1

Temperature setpoint, Tset (◦C) [1.7, 3.3] [43, 54] [15, 24] [15, 24]

Dead-band width, δ (◦C) [1, 2] [2, 4] [0.25, 1] [0.25, 1]

Ambient temperature, T∞ (◦C) 20 20 variable variable

Number of zones 1 1 [5,10] [1,2]

Number of trajectories, Na 3 3 3 3

Allowed setpoint changes, Su (◦C) {0, -2, 1} {0, 5, -5} {0, 1, -2} {0, 1, -2}

Table 1: TCL parameter ranges adopted from [14]

4.2. Aggregator Objective897

In this paper, the aggregator, representing a load-898

serving entity, will influence the behavior of the899

TCLs so as to perform 5-minute power generation900

following. To demonstrate this potential, we con-901

sider 5 minute ahead forecasts of wind and solar902

generation retrieved from the California Indepen-903

dent System Operator (ISO) [56]. Figure 6 presents904

the wind and solar power generation for the morn-905

ing of 3/19/2015. The center plot shows a smooth906

polynomial fit of the total renewable generation.907

The error between the actual generation and the908

smooth fit will serve as our exemplary 5-minute gen-909

eration following signal in this paper, shown in the910

bottom plot.911

Ideally, 5-minute generation following is a zero912

net energy service. Accordingly, the mean of the913

control signal is 1.229×10−7 MW. Considering that914

the signal is on the order of 10 MW and that TCLs915

are on the order of 1 kW loads, in this paper, we916

will utilize the TCLs to respond to 1% of the signal917

shown in Figure 6. Additionally, we are simulating918

the TCL’s using a one minute time scale but the919

signal is on a five minute time scale. Thus, we will920

treat the signal as a piecewise constant function.921

It is possible to interpolate between the current922

and previous control signal to produce a smooth or923

piecewise linear signal. Nonetheless, we are electing924

to use a piecewise constant interpretation.925

To perform generation following, the aggrega-926

tor’s objective function can be defined as an un-927

Figure 6: California ISO Wind and Solar Generation 5-Min
Forecasts for 3/19/2015 (Top), Smooth Polynomial Fit of
Total Generation (Center), and exemplary 5-minute Gener-
ation Following Signal (Bottom)

constrained least-squares fit.928

minimize αz‖
∑
xi − d‖22 (27)

with variables d ∈ RNt , the aggregator’s desired929

power demand given the generation following signal930

y ∈ RNt , and xi ∈ RNt , the power demand of TCL931

i for i = 1, . . . , N , where N represents the number932

of TCLs in the network and Nt = 5 is the number933

of time steps in d and xi. Lastly, αz is a weighting934

term for the aggregator’s objective.935

We calculate the desired power demand d by936
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adding the current generation following signal y937

to the power demand of the population in the938

previous time step (i.e. dn =
∑
i p̃
n−1
i + yn for939

n = 1, . . . , Nt). Since the value of the signal only940

changes once every 5 minutes, we optimize the ag-941

gregated power demand over a horizon of Nt = 5942

time steps and thus,943

dn =

{∑
i p̃
n−1
i + yn if n = 1

dn−1 otherwise

∀ n = 1, . . . , Nt

(28)

4.3. TCL Sharing ADMM944

Given the TCL and aggregator optimization pro-
grams (26) and (27), we can now define the sharing
ADMM algorithm for power generation following
using a population of TCLs.

ŵk+1
i = argmin

ŵi

αx,i‖TT
i ŵi − Tset,i‖22 (29a)

+ 〈λ̄k,PTi ŵi〉+
ρ

2
‖PTi ŵi − xki + r̄k‖22

s. to
∑
ŵj = 1, ŵ ≥ 0

xk+1
i = PTi ŵ

k+1
i (29b)

z̄k+1 = argmin
z̄

αz‖Nz̄ − d‖22 + 〈λ̄k,−Nz̄〉 (29c)

+
Nρ

2
‖x̄k+1 − z̄‖22

r̄k+1 = x̄k+1 − z̄k+1 (29d)

λ̄k+1 = λ̄k + ρ(r̄k+1) (29e)

In our implementation, the ADMM algorithm is945

run once every 5 minutes to determine the optimal946

power demand of the TCL population over the next947

5 minutes at a 1 minute time scale. For simplicity,948

we report the power demand of the TCLs as a 5949

minute average. For fixed TCLs (i.e. Nd = 1), the950

power demand profile is reported to the aggregator951

before the first ADMM iteration. The N and d pa-952

rameters are adjusted accordingly and the ADMM953

algorithm run on the remaining population.954

4.4. Generation Following Algorithm, Distributed955

Network Structure, and Communication956

To achieve distributed control of a TCL popu-957

lation, we assume a certain amount of existing in-958

frastructure for communication, computation, and959

control. Our assumptions are comparable to those960

made in [33][36][48] and include:961

• Bi-directional communication between the in-962

dividual TCLs and the aggregator via wired or963

wireless links.964

• Sufficient local computation and hardware for965

solving convex programs and measuring TCL966

states.967

• A local TCL model whose parameters are ei-968

ther known a priori or identified using a pa-969

rameter estimation technique [44][45][51].970

Figure 7: TCL Model and Optimization Structure. Each
TCL i in the population will simulate its dynamics to pro-
duce the alternative control trajectories, coordinate with an
aggregator using the ADMM algorithm to produce a contin-
uous solution, and finally interpret the discrete probability
distribution to produce a probabilistic solution.

In this manuscript, we assume a simple net-971

work structure with bi-directional communication972

between the aggregator and each TCL. The inputs973

required by our ADMM algorithm are presented in974

Table 2 and the outputs of the optimization in Ta-975

ble 3. The internal ADMM variables are listed in976

Table 4 and the parameters in Table 5.977

The execution of the generation following algo-978

rithm can be summarized by the follow 4 steps:979

1. Aggregator Preparation: Every 5 minutes, the980

aggregator receives the signal y and produces981

the desired power profile d.982

2. TCL Simulation: Each TCL i in the popula-983

tion simulates its dynamics to produces a set984

of alternative temperature trajectories Ti and985

power trajectories Pi.986

3. Optimization via ADMM: For each iteration k987

until the stopping criteria are met:988

(a) Broadcast Signal: The aggregator reports989

the mean primal residual r̄k (i.e. the dif-990

ference between x̄k and z̄k) and the mean991

dual incentive variable λ̄k to each TCL i992

in the population.993
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Figure 8: Aggregator Preparation Step. The aggregator re-
ceives the signal y and produces the desired power profile
d.

Figure 9: TCL Simulation Step. Each TCL i in the pop-
ulation simulates its dynamics to produce the alternative
control trajectories.

(b) Local Optimization: Each TCL i opti-994

mizes (29a) and reports xk+1
i (29b) to the995

aggregator.996

(c) Aggregator Optimization: Given the997

mean TCL power profile x̄k+1, the ag-998

gregator optimizes (29c) and updates the999

mean primal residual r̄k+1 (29d) and the1000

mean dual incentive variable λ̄k+1 (29e).1001

4. Interpretation: Each TCL i interprets the dis-1002

crete probability distribution ŵ∗i to select a1003

power trajectory p̃i from the set Pi and reports1004

the probabilistic solution p̃i to the aggregator.1005

Figure 7 outlines the steps performed by each1006

TCL i in the population. At each time step, the1007

TCL simulates its dynamics to produce the alter-1008

native control trajectories as represented by Ti and1009

Pi, coordinates with an aggregator via ADMM to1010

produce a continuous solution x∗i , and finally in-1011

terprets the discrete probability distribution ŵ∗i to1012

produce a probabilistic solution p̃i ∈ Pi.1013

The 4 steps of the generation following algorithm,1014

as well as the structure of the distributed system,1015

are illustrated in Figures 8, 9, 10, and 11. In partic-1016

ular, the figures indicate for each step of the algo-1017

rithm which variables are defined locally and which1018

are communicated between the aggregator and the1019

TCLs in the population.1020

In our algorithm, each TCL i reports the power1021

demand profile xk+1
i to the aggregator but not to1022

the other TCLs in the network. Each TCL’s T,1023

P, and ŵk remain private. In addition to the stop-1024

ping criteria (21), we impose a limit on the absolute1025

value of λ̄ (i.e. stop if |λ̄n| ≥ λ+ for n = 1, . . . , Nt).1026

This limit is empirically selected and serves as a1027

means of detecting if the population of TCL’s is1028

able to match the signal within a certain tolerance.1029

Figure 10: Optimization Step. For each iteration k of the
ADMM algorithm, the aggregator reports the mean primal
residual r̄k and the mean dual incentive variable λ̄k to each
TCL i in the population. Each TCL i then reports its up-
dated xk+1

i to the aggregator.

Figure 11: Interpretation Step. Each TCL i interprets the
discrete probability distribution ŵ∗

i to select a power trajec-
tory p̃i from the set Pi and reports the probabilistic solution
p̃i to the aggregator.

As defined by (27), any power demand is feasible,1030

but in practice, we only want to perform genera-1031

tion following if the aggregate continuous solution1032

Nx̄∗ is within a certain error tolerance, εerror, of1033

the control signal d (i.e. max(|Nx̄∗ − d|) < εerror).1034

Therefore, if the ADMM algorithm does not con-1035

verge to a solution within this tolerance, the pop-1036

ulation has failed to perform generation following1037

and each TCL implements some default behavior.1038

In this paper, the default behavior is to return to1039

the original temperature setpoint by implementing1040

the control trajectory u1 = (0, 0, 0, 0, 0).1041

At optimality, the power demand profile x∗i rep-1042

resents the TCL’s continuous solution and is not1043

directly implementable. While it is conceptually1044

possible to cluster complementary TCLs or to in-1045

corporate energy storage so as to directly achieve1046

the continuous solution, we assume no such coordi-1047

nation in this paper. Instead, each TCL in the pop-1048

ulation will implement a single control trajectory1049

given the discrete probability distribution ŵ∗i . The1050

TCLs’ states are updated and the resulting power1051
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demand profile, referred to as the probabilistic solu-1052

tion p̃i, is reported to the aggregator. The potential1053

for error between the continuous and probabilistic1054

solution is addressed in Section 4.6 below.1055

4.5. ADMM Parameter Selection1056

The parameters of the ADMM algorithm are pre-1057

sented in Table 5. These parameters have been1058

empirically selected to fit the characteristics of our1059

application. Specifically, because the behavior of1060

each TCL in the population is constrained by its1061

alternative control trajectories, the goal of the gen-1062

eration following algorithm is primarily to shape1063

the aggregate load in response to a signal. This1064

is expressed in the ADMM parameters by select-1065

ing an aggregator coefficient αz that is larger than1066

the TCL coefficient αx for each TCL in the pop-1067

ulation. Decreasing αz or increasing αx will cause1068

less emphasis to be placed on the global objective.1069

Therefore, the TCLs will choose to optimize their1070

local objectives rather than optimizing the aggre-1071

gate power demand (a further discussion of this be-1072

havior is presented in Section 5.7).1073

The primal and dual feasibility tolerances are1074

positive values which define the stopping criteria of1075

the ADMM algorithm. In our application, the mean1076

primal residual r̄k is the difference between x̄k, the1077

mean power demand based on the continuous solu-1078

tions reported by the TCL population, and z̄k, the1079

mean power demand based on the solution to the1080

aggregator’s objective function. The primal feasi-1081

bility tolerance εprimal is a measure of the primal1082

residual that we are willing to accept. Based on the1083

relative weighting of the aggregator and TCL objec-1084

tives and the error tolerance εerror = 10kW, εprimal1085

can effectively be any positive value less than
√

10.1086

We have selected εprimal = 1 based on empirical ob-1087

servations that the value produces aggregate con-1088

tinuous solutions within the error tolerance εerror1089

within a modest number of ADMM iterations (i.e.1090

<50).1091

The dual residual ski of each TCL i is a measure1092

of the change in the continuous solution xki and in1093

the primal residual r̄k between ADMM iteration k1094

and k + 1. Thus, ‖sk‖ is a measure of the rate1095

of change in the solutions of the aggregator and1096

TCL population. A large dual feasibility tolerance1097

εdual will cause the ADMM algorithm to stop once1098

the primal feasibility criterion is met while a small1099

tolerance will cause the algorithm to continue until1100

the solutions of the aggregator and TCLs no longer1101

change from one iteration to the next. We have1102

empirically chosen a dual feasibility tolerance εdual1103

of 1 such that the dual feasibility criterion is met a1104

few iterations (i.e. <10) after the primal feasibility1105

criterion.1106

The Lagrangian penalty has been tuned to be1107

sufficiently large such that the ADMM algorithm1108

converges relatively quickly but sufficiently small so1109

as to avoid oscillatory behaviors in the ADMM up-1110

dates as the algorithm begins to converge. Lastly,1111

we have observed that when the desired power pro-1112

file d is outside the feasible power demand range1113

of the TCL aggregation, the absolute values of λ̄1114

increase dramatically as the ADMM algorithm at-1115

tempts to drive the TCL population toward an in-1116

feasible solution so as to reduce the aggregator’s ob-1117

jective function. To detect this behavior and stop1118

the ADMM algorithm, we impose a limit of λ+ = 501119

on the absolute value of λ̄.1120

4.6. Divide and Conquer1121

At optimality, the solution x∗i represents the con-1122

tinuous solution of the relaxed form of the general1123

assignment problem, as described in (9). While this1124

relaxation is essential for distributed convex op-1125

timization, the continuous solution is not directly1126

implementable. Instead, we employ the probabilis-1127

tic solution p̃i and thereby introduce the poten-1128

tial for error between the solution returned by the1129

ADMM algorithm and the actual power demand of1130

the TCLs. For highly homogeneous populations of1131

TCLs, we have observed that the aggregated con-1132

tinuous and probabilistic solutions are comparable1133

(i.e. have similar errors with respect to the sig-1134

nal). The logical explanation is that due to the1135

homogeneity, many TCLs converge to similar solu-1136

tions. Thus, their probabilistic solutions are com-1137

plementary such that the aggregated power demand1138

is close to the continuous solution returned by the1139

ADMM algorithm. For highly heterogeneous pop-1140

ulations, however, this is not the case.1141

To address this, we investigated the introduction1142

of a sparsity-inducing weighted `1 norm [57] into1143

the TCL’s objective function to drive the probabili-1144

ties towards 0% or 100% (Due to the non-negativity1145

constraint in (9), tradition `1-regularization is inef-1146

fective). However, we found that sparsity came at1147

the cost of slower convergence and higher errors be-1148

tween the continuous solution and the signal.1149

Our solution is a relatively brute force, divide and1150

conquer approach. Stated simply, we run ADMM1151

on the entire population of TCLs. Upon conver-1152

gence, we fix a certain number of the TCLs (10-1153
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Generation following signal y

Desired power demand profile d

Temperature setpoint of TCL i Tset,i

Temperature trajectories of TCL i Ti

Power trajectories of TCL i Pi

Table 2: Optimization Inputs

Final power demand

profile of TCL i

(probabilistic solution)

p̃i

Table 3: Optimization Outputs

20% of the total population) using the probabilistic1154

solution. These TCLs are them removed from the1155

population being optimized and the N and d pa-1156

rameters are adjusted accordingly. Next, we repeat1157

the ADMM algorithm to find the continuous solu-1158

tion of the remaining population using the previous1159

value of λ and adjusted values of x̄ and z̄ as a warm1160

start. This process is repeated until all TCLs are1161

fixed. For successive ADMM runs, we decrease the1162

number of ADMM iterations as the problem be-1163

comes more constrained. Numerical examples are1164

provided next.1165

5. Experimental Results1166

In this section, we present results for 4 experi-1167

mental studies. In each experiment, we model a1168

population of TCLs to follow 1% of the signal de-1169

scribed in Figure 6. This 5-minute generation fol-1170

lowing is achieved by running the sharing ADMM1171

algorithm every 5 minutes between midnight and1172

noon for the morning of 3/19/2015. In the first1173

experiment, we consider a large, highly homoge-1174

neous population of refrigerators. Second, a small,1175

heterogeneous population of refrigerators. Third,1176

a highly heterogeneous population of refrigerators,1177

water heaters, heat pumps, and baseboard heaters.1178

Fourth, a highly heterogeneous population of refrig-1179

erators, water heaters, heat pumps, and baseboard1180

heaters using the divide and conquer approach de-1181

scribed above.1182

For each study, we employ the ADMM parame-1183

ters in Table 5. For refrigerators and water heaters,1184

αx = 0 indicating that the consumer is indiffer-1185

ent to the selection of a control trajectory. Thus,1186

Probability distribution of

TCL i at iteration k
ŵki

Power demand profile of

TCL i at iteration k

(continuous solution)

xki

Mean TCL power demand

profile at iteration k

(continuous solution)

x̄k

Mean aggregator power demand

profile at iteration k

(continuous solution)

z̄k

Mean primal residual r̄k

Mean dual variable λ̄k

Table 4: ADMM Variables

Lagrangian Penalty ρ 10

Aggregator Coefficient αz 20

TCL Coefficient

(Refrigerator)
αx 0

TCL Coefficient

(Water Heater)
αx 0

TCL Coefficient

(Heat Pump)
αx 1

TCL Coefficient

(Baseboard Heater)
αx 1

Primal Feasibility Tolerance εprimal 1

Dual Feasibility Tolerance εdual 1

Error Tolerance εerror 10 kW

λ̄ Limit λ+ 50

Table 5: ADMM Parameters
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the TCL’s objective function (26) is constant and1187

weakly convex. At each iteration, the TCL enforces1188

feasibility and adjusts its power demand accord-1189

ing to the incentive signal λ. For heat pumps and1190

baseboard heaters, αx = 1 indicating that the con-1191

sumer would prefer to keep the temperature near1192

the setpoint. The weight αx is not large enough to1193

prevent the selection of any alternative control tra-1194

jectory, but rather numerically incentives the uti-1195

lization of more cooperative/responsive refrigera-1196

tors and water heaters before heat pumps and base-1197

board heaters. Lastly, Su defines a set of 3 allowed1198

change in setpoint values. Thus, each TCL has a1199

maximum of Na = 3 alternative control trajecto-1200

ries.1201

For each of the experimental studies, we present1202

the aggregated power demand and response of the1203

population for the respective experiment. The ag-1204

gregated continuous and probabilistic power de-1205

mand are presented as the mean of the total power1206

demand over each Nt = 5 minute interval.1207

xkΣ =
1

Nt

Nt∑
n=1

N∑
i=1

(xni )∗ (30)

pkΣ =
1

Nt

Nt∑
n=1

N∑
i=1

p̃ni (31)

where variables xkΣ, p
k
Σ ∈ R, N is the number of1208

TCLs in the population, and k denotes the integer1209

valued time step of each ADMM run (i.e. each Nt =1210

5 minute interval between midnight and noon).1211

The continuous and probabilistic responses of the
population denote the change in power demand,
and are respectively given by

xk∆ = xkΣ − pk−1
Σ (32)

pk∆ = pkΣ − pk−1
Σ (33)

Because x∗i is not directly realizable, xk∆ is calcu-1212

lated relative to the previous probabilistic demand1213

pk−1
Σ .1214

For each time step k, we also present the mini-
mum and maximum power demand that the popu-
lation of TCLs could have achieved given the set of
power trajectories Pi for each TCL. For each TCL
i, we denote the trajectories with the minimum and
maximum mean power demand as pmin

i ∈ Pi and
pmax
i ∈ Pi, respectively. Therefore, the minimum

and maximum mean power demand of the popula-
tion is

pkminΣ =
1

Nt

Nt∑
n=1

N∑
i=1

(pni )min (34)

pkmaxΣ =
1

Nt

Nt∑
n=1

N∑
i=1

(pni )max (35)

Thus, the maximum up or down response of the
population is given by

pkmin∆ = pkminΣ − pk−1
Σ (36)

pkmax∆ = pkmaxΣ − pk−1
Σ (37)

where variable pkmin∆ corresponds to demand de-1215

crease and pkmax∆ to demand increase (from the per-1216

spective of the load). In the case that pkmin∆ > 0 or1217

pkmax∆ < 0, the population is incapable of decreas-1218

ing or increasing its power demand, respectively.1219

5.1. Highly Homogeneous Population1220

To begin, we present the results using a highly1221

homogeneous population of refrigerators. Specifi-1222

cally, we have modeled and controlled a population1223

of N = 20,000 refrigerators with identical parame-1224

ters (the mean of the parameter ranges in Table 1).1225

We have limited the number of ADMM iterations1226

to 10.1227

Figure 12 presents the results from the homoge-1228

neous experiment. The top plot shows how well1229

the continuous responses xk∆ and the probabilistic1230

responses pk∆ compare to the signal yk for each 51231

minute interval between midnight and noon. To1232

reiterate, the continuous response is the difference1233

between the aggregated solution to the ADMM al-1234

gorithm and the power demand in the previous time1235

step. The probabilistic response is the difference be-1236

tween the aggregated probabilistically selected TCL1237

trajectories and the power demand in the previous1238

time step. The RMSEs of the continuous and prob-1239

abilistic responses are 0.11 kW and 14.25 kW, re-1240

spectively. The ADMM algorithm only failed to1241

converge to a continuous solution within the error1242

tolerance of 10 kW during two intervals at 10:001243

and 10:05 AM, resulting in a generation following1244

success rate of 98.6% over the time period studied.1245

The second plot in Figure 12 shows the prob-1246

abilistic pkΣ, the minimum pkminΣ, and the maxi-1247

mum pkmaxΣ power demand of the population at1248

each time interval. The third plot shows the cor-1249

responding minimum pkmin∆ and maximum pkmax∆1250
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Figure 12: Highly Homogeneous Population

potential (i.e. the difference between the minimum1251

or maximum power demand and the demand in the1252

previous time step). While it is possible for the ag-1253

gregator to discern these minimum and maximum1254

values by manipulating λ̄ to drive the TCLs to their1255

extremes, we have assumed no such behavior in our1256

implementation. Thus, the aggregator can only de-1257

termine if the signal and the feasible up or down1258

responses are within the specified error tolerance1259

after the ADMM algorithm converges. The only1260

exception is if λ̄ violates the λ+ limit, indicating1261

that the ADMM algorithm is attempting to drive1262

the population toward an infeasible solution so as to1263

reduce the aggregator’s objective function (though1264

the TCLs will guarantee that the solution at each1265

iteration is feasible).1266

The fourth plot shows the percentage of the pop-1267

ulation that is either fixed, flexible, or capable of1268

only up or down responses. From midnight to 6:00,1269

we observe that the TCLs move between up only1270

and down only conditions, with the percent of fixed1271

and flexible TCLs remaining small. After 6:00, the1272

TCLs in the up only population begin to move to1273

the down only or fixed populations. In the fifth1274

plot, which shows the number of ADMM iterations1275

executed before stopping, we see that the ADMM1276

algorithm has more difficulty finding a solution in1277

these later time intervals and begins hitting the it-1278

erations limit of 10. This trend represents a decline1279

in the capability of the population to perform gen-1280

eration following.1281

5.2. Homogeneous Population with Dwell Time1282

In this study, we demonstrate the suitability of1283

the control framework to honor minimum dwell1284

time constraints. We consider a homogeneous pop-1285

ulation of N = 20,000 refrigerators with identical1286

parameters (the mean of the parameter ranges in1287

Table 1). The TCLs are controlled such that a min-1288

imum dwell time of 5 minutes is enforced (i.e. if a1289

TCL turns on or off, it must remain in the new state1290

for at least 5 minutes). Again, we have limited the1291

number of ADMM iterations to 10.1292

The minimum dwell time constraint is applied at1293

the Simulate TCLs step of the generation following1294

algorithm. Specifically, if a TCL simulation pro-1295

duces a mechanical state trajectory mj such that1296

the minimum dwell time of 5 minutes would be vi-1297

olated if the trajectory was implemented, the tra-1298

jectory is discarded by excluding the corresponding1299

uj , Tj , mj , and pj from U, T, M, and P.1300

The results, presented in Figure 13, show a gener-1301

ation following success rate of 100.0% over the time1302

period studied. The RMSEs of the continuous and1303
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Figure 13: Homogeneous Population with 5 Minute Dwell Time

probabilistic responses are 8.13 kW and 11.80 kW,1304

respectively. Note that this study employs the same1305

number of TCLs with the same parameter values as1306

those in the previous homogeneous study. However,1307

due to the enforcement of the dwell time constraint,1308

we observe a greater percentage of the population in1309

the fixed and down only conditions. In the previous1310

homogeneous study, the means of the fixed, up only,1311

and down only populations over the 12 hours were1312

9.35%, 74.09%, and 16.23%, respectively. With the1313

enforcement of the dwell time, the mean percent-1314

ages are 24.87%, 60.22%, and 14.74%, respectively.1315

Due in part to the increase in the fixed population,1316

more ADMM iterations are required to find a solu-1317

tion.1318

5.3. Heterogeneous Population1319

To begin introducing heterogeneity, we have1320

modeled the control of N = 10,000 refrigerators1321

with parameters randomly drawn from the uniform1322

distributions in Table 1. We have also raised the1323

ADMM iterations limit to 40. The results from1324

this study are presented in Figure 14 and show a1325

success rate of 95.8% over the time period studied.1326

The RMSEs of the continuous and probabilistic re-1327

sponses are 8.81 kW and 17.84 kW, respectively.1328

In this study, we have significantly decreased the1329

population size and thus the potential for increas-1330

ing demand. The second and third plots indicate1331

that as we approach noon, we experience a decline1332

in the maximum feasible power demand pkmaxΣ and1333

the demand increase potential pkmax∆. The fourth1334

plot shows the percentage of the population that is1335

either fixed, flexible, or capable of only up or down1336

responses and presents some insight into the loss of1337

demand increase potential. Between midnight and1338

7:00, we observe that the TCLs generally oscillate1339

between up only and down only, with the percent1340

of fixed and flexible TCLs remaining small. After1341

7:00, the TCLs in the down only population begin1342

to become fixed. Finally, the TCLs begin switching1343

between up only and fixed, making it more difficult1344

to perform generation following and driving up the1345

number of ADMM iterations.1346

5.4. Highly Heterogeneous Population1347

In this study, we consider a highly heteroge-1348

neous population of refrigerators, water heaters,1349

heat pumps, and baseboard heaters with parame-1350

ters randomly drawn from the uniform distributions1351

in Table 1. We model 3,000 refrigerators, 2,000 wa-1352

ter heaters, 1,800 heat pumps, and 1,800 baseboard1353

heaters for a total of N = 8,600 TCLs. We set the1354

ADMM iterations limit to 20.1355
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Figure 14: Heterogeneous Population

The results, presented in Figure 15, show a gener-1356

ation following success rate of 91.0% over the time1357

period studied. Based on the fifth plot, we observe1358

that for 96.5% of the time steps, the stopping cri-1359

teria were not met and the ADMM algorithm hit1360

the iterations limit of 20. However, in 90.3% of1361

these time steps, the error was within the toler-1362

ance of 10 kW. The RMSEs of the continuous and1363

probabilistic responses are 4.39 kW and 81.78 kW,1364

respectively. This increase in the error of the prob-1365

abilistic response can be attributed to the increased1366

heterogeneity of the TCL population.1367

The fourth plot in Figure 15 shows that at each1368

time interval, the percentage of fixed TCLs re-1369

mained over 40%. Nonetheless, the potential for1370

increasing the demand remained near 8 MW, de-1371

clining slightly after 9:00 due to the rise in ambient1372

temperatures (and thus a loss in demand increase1373

potential from heat pumps and baseboard heaters).1374

Overall, the population suffered from an insufficient1375

potential for decreasing demand. This could be ad-1376

dressed by better conditioning the TCLs so that1377

more remain in a flexible or down only condition1378

or by extending the forecasting horizon beyond the1379

next 5 minutes, allowing the aggregator and TCLs1380

to better prepare for future signals.1381

5.5. Heterogeneous Population with Divide and1382

Conquer1383

To address the error between the probabilistic re-1384

sponse pk∆ and the signal yk, we have re-simulated1385

the highly heterogeneous population of N = 8,6001386

TCLs using the divide and conquer approach. In1387

other words, we have run the ADMM algorithm1388

5 times. After each run, we fixed 20% of the to-1389

tal population so that after the final run, all 8,6001390

TCLs are fixed. Additionally, between each run, the1391

N and d parameters are adjusted according to the1392

results of the newly fixed TCLs. Lastly, as a warm1393

start, the previous value of λ and adjusted values of1394

x̄ and z̄ are employed to initialize the next ADMM1395

run. If the error tolerance is violated at the end of1396

an ADMM run, the algorithm is terminated. For1397

the first ADMM run, the iteration limit is set to 20.1398

For successive ADMM runs, the limit is 10.1399

To improve the performance of the algorithm, we1400

have sorted the TCLs such that those with the high-1401

est power demand are fixed first and those with the1402

lowest are fixed last. In other words, the order of1403

consideration is heat pump, electric water heater,1404

electric baseboard heater, and refrigerator.1405

The test results are presented in Figure 16. While1406

we have increased the total number of ADMM it-1407

erations at each time interval, the RMSEs of the1408
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Figure 15: Highly Heterogeneous Population

continuous and probabilistic responses are now sig-1409

nificantly reduced to 7.19 kW and 9.56 kW, respec-1410

tively. This demonstrates that the TCLs can be1411

controlled such that the probabilistic response pk∆1412

is within the error tolerance of 10 kW. The suc-1413

cess rate for the time period simulated is 88.9%.1414

Once again, the population struggles to match the1415

required demand decrease. In the previous stud-1416

ies, the failed attempts terminated at 40 ADMM1417

iterations, the upper limit. In this study, failed at-1418

tempts are terminated after the first ADMM run of1419

20 iterations.1420

Lastly, because we are simulating each TCL with1421

a one minute time step, we can reproduce the power1422

demand for every minute, as shown in Figure 17.1423

Because of the piecewise constant interpretation of1424

the signal and the formulation of the aggregator’s1425

objective function, the electric power demand of the1426

TCL population has step-like appearance.1427

5.6. Increasing Population Size1428

To test the impact of population size on the num-1429

ber of ADMM iterations, we have designed an ex-1430

periment in which TCL populations of varying size1431

are employed to respond to the load following sig-1432

nal. Each population is comprised of homogeneous1433

refrigerators with identical parameters (the mean1434

of the parameter ranges in Table 1).1435

To account for the variation in population size,1436

the percentage of the signal followed by the aggre-1437

gator is scaled such that the per TCL signal remains1438

constant across the different populations. The same1439

is done with the error tolerance of the aggregator.1440

Specifically, the percentage of the signal is defined1441

as 10−4% per TCL and the error tolerance is 10−4
1442

kW or 0.1 W per TCL. Therefore, 100 TCLs are1443

employed to follow 0.01% of the signal with an er-1444

ror tolerance of 0.01 kW and 1,000,000 TCLs are1445

employed to follow 100% of the signal with an error1446

tolerance of 100 kW.1447

In this experiment, we generate populations of1448

100, 500, 1,000, 5,000, 10,000, 50,000, 100,000,1449

500,000, and 1,000,000 TCLs and employ each pop-1450

ulation to follow the first hour (i.e. first 12 time1451

steps) of the signal. Additionally, the ADMM algo-1452

rithm is stopped once the aggregate power demand1453

of the population is within the error tolerance. This1454

can be viewed as a relaxation of the stopping crite-1455

ria in (21).1456

The results of this experiment are presented in1457

Figures 18 and 19. Figure 18 shows the number1458

ADMM iterations at each time step for the 100,1459

1,000, 10,000, 100,000, and 1,000,000 TCL pop-1460

ulations. Note that for the 10,000, 100,000, and1461

1,000,000 TCL populations, the iteration numbers1462
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Figure 16: Highly Heterogeneous Population with Divide and Conquer

Figure 17: Power Demand on 1 Minute Time Scale

at each time step are equal.1463

Figure 19 shows the mean number of iterations1464

in the the first hour of generation following for each1465

of the nine TCL populations. The results suggest1466

that the number of ADMM iterations is indepen-1467

dent of the population size. Therefore, increasing1468

the number of the TCLs in the population does not1469

directly increase the number of ADMM iterations1470

required to perform generation following.1471

5.7. Increasing αx1472

The weighting term αx represents the willingness1473

of a TCL to permit temperature drift away from the1474

setpoint. To test the impact of αx on the number1475

of ADMM iterations, we have designed an exper-1476

iment in which TCL populations with varying αx1477

Figure 18: ADMM iterations at each time step with TCL
populations of varying size

respond to 1% of the load following signal. Each1478

population is comprised of 10,000 homogeneous re-1479

frigerators with identical parameters (the mean of1480

the parameter ranges in Table 1) and is employed to1481

follow the first hour (i.e. first 12 time steps) of the1482

signal. We limit the number of ADMM iterations1483

to 40.1484

The results of this experiment are presented in1485

Figures 20, 21, and 22. Figure 20 shows the number1486

ADMM iterations at each time step for the different1487
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Figure 19: Mean number of ADMM iterations for each TCL
population over first hour of generation following

values of αx and Figure 21 shows the mean number1488

of iterations in the first hour of generation follow-1489

ing. As shown, when αx is small, fewer ADMM1490

iterations are required to find a solution. This can1491

be attributed to the weighting of the aggregator ob-1492

jective function relative to the objective function of1493

the individual TCLs in the population. In other1494

words, the TCLs seek to minimize the global objec-1495

tive of generation following and allow their temper-1496

atures to drift from the setpoint. As αx increases1497

(and thus the relative weighting of the aggregator1498

objective decreases), the TCLs become less coop-1499

erative and more iterations are required to find a1500

solution.1501

Eventually, αx increases to a point where the1502

optimal solution of the distributed ADMM algo-1503

rithm is to minimize the objectives of the indi-1504

vidual TCLs rather than the aggregator objective.1505

In other words, the refrigerators in the population1506

choose to minimize the deviation of their internal1507

temperatures from the setpoint rather than partic-1508

ipating in the generation following aggregation. As1509

a result, the average number of ADMM iterations1510

increases to the limit of 40, as shown in Figures 201511

and 21, and we observe an increase in the RMSE of1512

the continuous response, as shown in Figure 22.1513

6. Conclusions1514

In this paper, we have presented an alternative1515

control trajectory representation. This representa-1516

tion allows for the modeling of a TCL as a gener-1517

alized assignment problem and fully recognizes the1518

non-convex constraints of hysteretic dead-band sys-1519

tems. By relaxing the binary constraint, the prob-1520

lem becomes convex and the optimal solution can1521

be interpreted as both a continuous and probabilis-1522

tic solution.1523

Figure 20: ADMM iterations at each time step with varying
values of αx

Figure 21: Mean number of ADMM iterations for each value
of αx over first hour of generation following

We have also presented a formulation of the shar-1524

ing ADMM algorithm suitable for the distributed1525

optimization of TCLs. The formulation is highly1526

parallelizable and requires the broadcasting of only1527

λk and (x̄k − z̄k). Given the objective function of1528

every agent is convex, the algorithm is guaranteed1529

to converge to an optimal solution.1530

Finally, we have applied the sharing ADMM algo-1531

rithm with TCL alternative control trajectory rep-1532

resentation to the problem of 5-minute ahead re-1533

newable energy generation following. Findings of1534

this paper include:1535

• Using actual wind and solar generation fore-1536

casts, ambient temperature records, and pub-1537

lished TCL parameters, we have demonstrated1538

how populations of TCLs can be optimized to1539

perform power system services.1540

• By applying the alternative control trajectory1541

representation to TCLs, we have shown how a1542

population of systems with integer states can1543
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Figure 22: RMSE of continuous response for each value of
αx over first hour of generation following

be controlled using a convex algorithm.1544

• By distributing the computation using the1545

sharing ADMM algorithm, we have demon-1546

strated that the generation following algorithm1547

can be scaled to large populations of TCLs1548

without increasing the number of ADMM it-1549

erations.1550

• For highly heterogeneous TCL populations, we1551

have shown that a divide and conquer ap-1552

proach can be employed to minimize the er-1553

ror between the probabilistic solution and the1554

signal.1555

There are a number of advantages to the dis-1556

tributed TCL control method presented in this1557

manuscript. Firstly, each TCL models its dynam-1558

ics locally and there is no requirement that TCLs1559

all employ the same model structure or control1560

scheme. Individual TCLs can incorporate higher fi-1561

delity or device specific models and still participate1562

in the distributed optimization. Secondly, TCLs1563

can prevent short-cycling. For example, a TCL1564

could exclude any alternative trajectories that vi-1565

olate a minimum dwell time. Thirdly, due to the1566

bi-directional communication, the aggregator can1567

have perfect knowledge of the population’s future1568

power demand. There is no need to estimate the1569

power demand if the TCLs are capable of commit-1570

ting to the solution of the optimization algorithm.1571

Quantifying and qualifying the advantages of these1572

characteristics will be the focus of future research.1573

A challenge not addressed in this manuscript is1574

that, because we are not centrally modeling the1575

TCL population, the aggregator does not know the1576

current state or generation following potential of1577

the population. Methods for better understanding1578

and maintaining the generation following potential,1579

which is related to the average temperature of each1580

TCL, will be the subject of future work. Similarly,1581

understanding the impact of seasonal and regional1582

weather conditions on the performance of the TCL1583

aggregation will be future work.1584

Using our sharing ADMM algorithm, we have1585

demonstrated the potential for TCLs to help main-1586

tain a continuous and instantaneous balance be-1587

tween generation and load by participating in real-1588

time ancillary service markets. The deployment of1589

such responsive load will be essential for maintain-1590

ing the stability of power systems with high renew-1591

able energy penetration.1592

Appendix1593

6.1. Notation1594

To simplify equations, we employ the following1595

notation and abbreviations throughout the paper.1596

`1-norm:

‖x‖1 =

N∑
i=1

|xi| (38)

`2-norm:

‖x‖2 =

√√√√ N∑
i=1

x2
i (39)

Root Mean Squared Error:

RMSE =

√√√√ 1

N

N∑
i=1

(xi − x̂i)2 (40)

Mean:

x̄ =
1

N

N∑
i=1

xi (41)

Sum: ∑
xi =

N∑
i=1

xi (42)

Inner product:

〈λ, x〉 = λTx (43)

with variable x, λ ∈ RN .1597

25



Temperature, ◦C T

Discrete state, on/off m

Power demand, kW p

Temperature setpoint change, ◦C u

Set of allowed setpoint changes Su
Ambient temperature, ◦C T∞
Temperature setpoint, ◦C Tset

Temperature dead-band width, ◦C δ

Thermal capacitance, kWh/◦C C

Thermal resistance, ◦C/kW R

Energy transfer rate, ◦C/kW P

Coefficient of performance COP

Temperature trajectory Tj
State trajectory mj

Power trajectory pj
Input trajectory uj

Set of temperature trajectories T

Set of state trajectories M

Set of power trajectories P

Set of input trajectories U

Number of control trajectories Na
Number of distinct control trajectories Nd

Discrete solution w∗

Continuous solution ŵ∗

Probabilistic solution w̃

Mean aggregator solution z̄

Mean TCL solution x̄

Continuous power demand solution x∗

Probabilistic power demand solution p̃

Aggregated continuous demand xΣ

Aggregated probabilistic demand pΣ

Aggregated continuous response x∆

Aggregated probabilistic response p∆

Dual variable λ

Augmented Lagrangian parameter ρ

Primal residual r

Dual residual s

Generation following signal y

Desired power demand profile d

Aggregator Coefficient αz
TCL Coefficient αx

Primal Feasibility Tolerance εprimal

Dual Feasibility Tolerance εdual

Error Tolerance εerror

λ̄ Limit λ+

Table 6: Nomenclature: Variables, parameters, and sets used
throughout the paper

6.2. Sharing ADMM Optimality and Residuals1598

In this section, we derive the sharing ADMM
residuals, which are required to define the stop-
ping criteria. The necessary and sufficient optimal-
ity conditions for the sharing ADMM problem (18)
are given by the primal feasibility,

x∗i − z∗i = 0 (44)

and dual feasibility,

0 = ∇fi(x∗) + λ∗i (45)

0 = ∇g(
∑
z∗i )−

∑
λ∗i (46)

for i = 1, . . . , N assuming fi and g are differen-1599

tiable.1600

Since zk+1 minimizes (18b) by definition, we can1601

show that zk+1 and λk+1 always satisfy (46),1602

0 = ∇g(
∑
zk+1
i )− (

∑
λki +

∑
ρ(xk+1

i − zk+1
i ))

= ∇g(
∑
zk+1
i )−

∑
(λki + ρ(xk+1

i − zk+1
i ))

= ∇g(
∑
zk+1
i )−

∑
λk+1
i

Therefore, optimality is achieved by satisfying (44)
and (45). From (44), we can define the primal resid-
ual as

rk+1
i = xk+1

i − zk+1
i (47)

Since xk+1
i minimizes (18a) by definition, we can

show

0 = ∇fi(xk+1
i ) + λki + ρ(xk+1

i − zki )

=∇fi(xk+1
i ) + λki + ρ(xk+1

i − zki + zk+1
i − zk+1

i )

=∇fi(xk+1
i ) + (λki + ρ(xk+1

i − zk+1
i )) + ρ(zk+1

i − zki )

=∇fi(xk+1
i ) + λk+1

i + ρ(zk+1
i − zki )

Thus, we can define the dual residual as

sk+1
i = ∇fi(xk+1

i ) + λk+1
i = −ρ(zk+1

i − zki ) (48)

6.3. Averaged Sharing ADMM1603

In this section, we derive the averaged form of1604

the sharing ADMM algorithm. The sharing ADMM1605

algorithm (18) requires the local calculation of a zki ,1606

λki , and rki term for each agent i = 1, . . . , N in the1607

network. Next, we will show that we can simplify1608

the algorithm by introducing global variables x̄k,1609

z̄k, and λ̄k representing the arithmetic mean of all1610

xki , zki , and λki , respectively.1611

We begin by introducing z̄k into the z-update1612

equation (18b), which can be rewritten as1613
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min
z,z̄

g(Nz̄)

+
∑

(〈λki ,−zi〉+
ρ

2
‖xk+1

i − zi‖22)

s.t. z̄ =
1

N

∑
zi

(49)

or in augmented Lagrangian form1614

L (z, z̄, µ) = g(Nz̄) +
∑
〈λki ,−zi〉

+
∑

(
ρ

2
‖xk+1

i − zi‖22)

+ µT (z̄ − 1

N

∑
zi)

Thus, for every iteration of the sharing ADMM1615

algorithm, the optimal value of each zi is1616

0 =
∂L

∂zi
(z∗i , z̄

∗, µ∗)

= λki + ρ(xk+1
i − z∗i ) +

µ∗

N

=
1

ρ
(λki +

µ∗

N
) + xk+1

i − z∗i

z∗i =
µ∗

Nρ
+
λki
ρ

+ xk+1
i

(50)

Finally, we can calculate the optimal value of z̄

z̄∗ =
1

N

∑
z∗i

=
1

N

∑
(
µ∗

Nρ
+
λki
ρ

+ xk+1
i )

=
1

N
(
µ∗

ρ
+

1

ρ

∑
λki +

∑
xk+1
i )

=
µ∗

Nρ
+
λ̄k

ρ
+ x̄k+1

(51)

Thus, substituting µ∗/Nρ from (51) into (50),

z∗i = z̄∗ − λ̄k

ρ
− x̄k+1 +

λki
ρ

+ xk+1
i

(52)

or equivalently

zk+1
i = z̄k+1 + (xk+1

i − x̄k+1) +
1

ρ
(λki − λ̄k) (53)

Next, we can replace zk+1
i in the λi-update equa-

tion (18c)

λk+1
i = λki + ρ(xk+1

i − zk+1
i )

= λki

+ ρ(xk+1
i − (z̄k+1 + xk+1

i − x̄k+1))

− (λki − λ̄k)

= λ̄k + ρ(x̄k+1 − z̄k+1)

(54)

which shows that the dual variables λki are all equal
to the global λ̄k and thus

zk+1
i = z̄k+1 + (xk+1

i − x̄k+1) (55)

Therefore, we can express the unscaled form of1617

the averaged sharing ADMM algorithm as pre-1618

sented in (22).1619

With this averaged sharing ADMM form, the in-1620

dividual agents no longer update their own λi vari-1621

able. Instead, a single aggregator updates λ̄, along1622

with x̄ and z̄, and reports these global variables to1623

every agent in the network.1624

6.4. Averaged Sharing Residuals1625

In order to apply the stopping criteria, we must1626

redefine the primal and dual residuals for the aver-1627

aged form. We can substitute zk+1
i from (55) into1628

(47) and (48) in order to define the primal resid-1629

ual rki and dual residual ski in terms of z̄, as shown1630

in (23) and (24), respectively. The corresponding1631

`2-norms of the stopping criteria are presented in1632

(25).1633
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