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Abstract—This paper studies the behavior of a strategic ag-
gregator offering regulation capacity on behalf of a group of
distributed energy resources (DERs, e.g., plug-in electric vehicles)
in a power market. Our objective is to maximize the aggregator’s
revenue while controlling the risk of penalties due to poor
service delivery. To achieve this goal, we propose data-driven
risk-averse strategies to effectively handle uncertainties in: 1)
The DER parameters (e.g., load demands and flexibilities) and
2) sub-hourly regulation signals (to the accuracy of every few
seconds). We design both the day-ahead and the hour-ahead
strategies. In the day-ahead model, we develop a two-stage
stochastic program to roughly model the above uncertainties,
which achieves computational efficiency by leveraging novel
aggregate models of both DER parameters and sub-hourly
regulation signals. In the hour-ahead model, we formulate a data-
driven distributionally robust chance-constrained program to
explicitly model the aforementioned uncertainties. This program
can effectively control the quality of regulation service based
on the aggregator’s risk aversion. Furthermore, it learns the
distributions of the uncertain parameters from empirical data
so that it outperforms existing techniques, (e.g. robust optimiza-
tion or traditional chance-constrained programming) in both
modeling accuracy and cost of robustness. Finally, we derive
a conic safe approximation for it which can be efficiently solved
by commercial solvers. Numerical experiments are conducted to
validate the proposed method.

Index Terms—Distributed energy resources, regulation service,
risk-averse, data-driven distributinally robust chance-constraint.

I. INTRODUCTION

This paper proposes a risk-averse regulation capacity offer-

ing strategy for an aggregator of distributed energy resources

(DERs) in power markets. This strategy handles uncertainties

including DER parameters and regulation signals. It balances

the trade-off between the aggregator’s expected revenue for

providing regulation services and its risk of penalty for in-

ability to deliver on promised regulation capacity.

With the rapid development of smart meters and advanced

control technologies, DERs such as battery storage systems
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[1], plug-in electric vehicles (PEVs) [2], and shapeable loads

[3], promise the ability of providing flexibility services to

power systems. These services include filling load valleys

or arbitraging temporal differences in energy market prices

[4]–[6], facilitating integration of renewable energy sources

[7]–[9], providing auxiliary services [10]–[13], etc. Among

these, regulation or load-following services are often the most

lucrative in many power markets, e.g., PJM [14]. However, the

energy and power capacities of DERs are comparatively small,

while most regulation markets require high power capacities

to access the market. Therefore, a large population of DERs

usually have to jointly participate in a regulation market under

the coordination of an aggregator. During market operations,

the aggregator first evaluates its DERs’ available regulation

capacities, and then bundles the services from those DERs as a

bid in the market. During real-time operations, the aggregator

receives regulation signals from the system operator, and is

responsible for adjusting the power consumed by the DERs to

follow these signals while respecting each DER’s parameters,

e.g., load demands and rated power and energy capacities etc.

The aggregator is faced with the difficult challenge of

constructing a profit-maximizing bid, as accurately evaluating

DERs’ regulation capacities ahead-of-time is difficult, and

market participants are penalized for inability to deliver on

promised regulation capacity. This uncertainty arises from a

number of sources:

1) Parameters of the DERs. DERs’ own parameters, e.g.,

rated energy and power capacities, customer demands

of shapeable loads, plug-in time of PEVs etc., directly

constrain their available regulation capacities but are

usually stochastic.

2) Regulation dispatch signals. The limited energy capac-

ities of DERs are easily saturated, e.g., PEVs may be

fully charged or discharged after a period of regulation

operations; thus biased regulation signals may signifi-

cantly affect their regulation performance. Furthermore,

frequently responding to regulation signals may lead to

considerable energy losses due to inefficiency, which can

also affect DERs’ regulation performance.

Both of these are difficult to forecast: DER parameters and

regulation dispatch signals are ultimately shaped by outside

factors such as weather and consumer behavior, making both

of them fundamentally stochastic. Furthermore, regulation

signals have high temporal granularity (e.g. every 2 seconds

in the PJM market [14]) so that explicitly modeling them is

computationally expensive.



2

Although utilizing DERs for regulation services has been an

important research area for years, these difficulties have not

been addressed in a way that effectively balances the revenue

and risk for DERs providing regulation services. The relevant

methodologies proposed in published papers can be generally

divided into four categories:

1) Deterministic programming: These works assume that

uncertain parameters can be accurately forecast, e.g., PEV

driving patterns in [15], or adopt their expected values, e.g.,

regulation signals in [15]–[17]. To avoid forecasting individ-

ual DER parameters, some papers aggregate parameters into

virtual large-scale DERs which are more stable, e.g., PEVs in

[16], [18], or thermostatic loads in [19]. These approaches can

only roughly estimate the regulation capacities, but they may

be too optimistic for regulation capacity offering.

2) Two-stage stochastic programming: In this approach, a

finite number of future scenarios are first generated based on

forecasting or Monte Carlo simulation. Then, the aggregator

uses scenario-based two-stage stochastic programming to esti-

mate the regulation capacities in the future and create a market

offer which has the best expected performance for all the

given scenarios, e.g., [20]–[22]. However, to ensure adequate

accuracy, the number of scenarios has to be large so that the

problem may be computationally inefficient. Therefore, these

works should adopt inaccurate approximation techniques, for

example, references [20]–[22] only consider hourly average

regulation signals.

3) Robust optimization: This approach pursues the optimal

strategy when the “worst-case scenario” happens in the fu-

ture. Yao et. al. [23] and Kazemi et. al. [24] apply robust

optimization to handle hourly regulation signals, which are

assumed to be bounded in predetermined intervals. Vrettos

et. al. [25] utilize robust optimization to describe sub-hourly

regulation signals for commercial buildings. The summation

of the signals during an operation period are assumed to

be bounded by a threshold. Though this approach is usually

computationally efficient, it may be unnecessarily conservative

because the worst scenario rarely happens in practice.

4) Risk-averse approach: To overcome the limitations of

the robust optimization approach, some papers propose to

use risk-averse approaches, e.g., the chance-constrained pro-

gramming or the conditional value at risk (CVaR). Their

constraints are not required to be satisfied under the “worst-

case scenario”, but will be satisfied within certain (tunable)

probability bounds. Vayà et. al. [26] adopt chance-constrained

programming to model uncertain PEV driving behaviors. Yao

et. al. [27] apply the CVaR to describe the regulation rev-

enue considering both uncertainties in PEV behaviors and

in regulation prices. However, references [26], [27] do not

model the risks associated with penalties from poor regulation

service delivery. These papers also both use scenario-based

approximations, introducing the limitations described above.

In this paper we advance this research by developing novel

risk-averse data-driven regulation capacity offering strategies

in both day-ahead and hour-ahead regulation markets for a

DER aggregator. Compared with the aforementioned literature,

the contributions of this paper are threefold:

1) We formulate a two-stage stochastic programming

model for day-ahead regulation capacity offering. This

model adopts a novel hourly aggregate model to de-

scribe the regulation signals’ influence on DERs’ cu-

mulative energy consumption, which is in small scale.

Furthermore, it can accurately model DERs’ charge and

discharge inefficiency which are ignored by published

papers adopting hourly average signals, e.g., [20]–[22].

2) We develop a risk-averse hour-ahead regulation capac-

ity offering strategy based on the chance-constrained

programming. Compared with published robust or risk

averse approaches, e.g., [23]–[27], the uncertainties of

both the resource parameters and the sub-hourly regula-

tion signals are explicitly modeled such that the trade-off

between the revenue from providing regulation services

and the risk of penalty for poor service delivery is

effectively balanced.

3) We utilize historical market data to learn the information

of the uncertain parameters’ distributions. We then refor-

mulate the hour-ahead program into a data-driven dis-

tributionally robust chance-constrained program based

on the φ-divergence. After that, we provide its convex

robust counterpart in the form of second order cone

programming (SOCP) so that it can be efficiently solved

with off-the-shelf solvers.

We validate the proposed strategy with numerical experiments

using PEVs as an example. To the best of our knowledge, this

is the first time that an hourly aggregate model for regulation

signals has been designed and the first time that a data-

driven distributionally robust chance-constrained programming

is used for regulation capacity offering.

The day-ahead two-stage stochastic strategies are introduced

in Section II. Section III describes the risk-averse hour-ahead

strategy, its relaxation, and its solution method. Numerical

experiments are presented in Section IV. Section V concludes

this paper.

Notations: We denote sets and functions by uppercase

calligraphic English letters or uppercase Greek letters, e.g., X ,

parameters by lowercase letters, e.g., x, and decision variables

by uppercase English letters, e.g., X . We use boldface letters to

represent vectors or matrices, e.g., x or X, and mark stochastic

parameters with the tilde sign, e.g., x̃.

II. DAY-AHEAD REGULATION CAPACITY OFFERING

This section describes a day-ahead regulation capacity

offering strategy for an aggregator of DERs, assuming the

aggregator is a price-taker. The market environment is based

on the PJM market [14] but can be adapted to other markets.

The nomenclature of this strategy is summarized in Table I.

The PJM energy market closes at 12:00 the day before the

operating day, and the regulation market closes 60 minutes

prior to the operating hour. Because the aggregator’s power

schedule in the energy market will affect its regulation capac-

ities, we assume that the aggregator jointly schedules its day-

ahead power profile and regulation capacities before the energy

market closes. During the operating hours, the aggregator’s

actual power profile may deviate from its day-ahead offers, but
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the imbalances will be paid for based on real-time electricity

prices. Its regulation capacity offers can also be reduced (but

not increased) before the regulation market closes [14].

A. Aggregate DER Model

As mentioned earlier, the energy and power capacities of

DERs are comparatively small so that a large population

of DERs usually have to jointly participate in a regulation

market under the coordination of an aggregator. As a result,

this aggregator has to combat the “curse” of dimensionality

when modeling all these DERs. To handle this challenge,

some researchers developed aggregate models for large scale

DERs, e.g., PEVs or distributed batteries in [16], [18], [28] and

thermostatically controlled loads in [19], [29]. These models

all have similar formulations. This paper adopts a generalized

form for these models, which is hereinafter referred to as the

aggregate DER model. For completeness, this section briefly

reviews this model.
The aggregate DER model adopts the aggregate energy

and power boundaries, which are in small scale, to describe

the feasible sets of the aggregate power consumption of a

group of DERs. Aggregate energy and power boundaries of

a group of DERs (taking PEVs as an example) are illustrated

in Fig. 1. The upper energy boundary e+ corresponds to the

fastest path for consuming energy, whereas the lower energy

boundary e− corresponds to the slowest path for consuming

energy. p+ corresponds to the maximum charging power

and p− corresponds to the maximum discharging power. A

feasible power schedule for the DERs should be constrained

by both the energy and power boundaries. The corresponding

aggregate model can be mathematically formulated as follows:

0 ≤ P c
t ≤ (1−Dt)p

+
t , ∀t, (1)

Dtp
−
t ≤ P d

t ≤ 0, ∀t, (2)

Dt ∈ {0, 1}, ∀t, (3)

P der
t = P d

t + P c
t , ∀t, (4)

e−t ≤
t
∑

τ=t0

P der
τ ∆t ≤ e+t , ∀t, (5)

where, P c
t and P d

t are respectively the aggregate charging

and discharging power of the DERs, which are respectively

constrained by their upper and lower boundaries, p+t and p−t ,

in constraints (1)–(2). The DERs can not charge and discharge

at the same time, i.e., constraint (3). P der
t is the total aggregate

power of the DERs calculated by equation (4). Constraint (5)

ensures that the DERs’ cumulative energy consumption will

not violate its upper and lower boundaries, e+t and e−t .
Remark 1: The above aggregate model can be used for

modeling various types of DERs with both energy and power

constraints, e.g., batteries, PEVs, or other shapeable loads

such as thermostatically controlled loads. For inflexible DERs,

e.g., distributed renewable generation, they can be modeled

simply by their forecasted power profiles, which can also

be described by this aggregate model with the upper and

lower (energy and power) boundaries coincide with each other

(without any flexibility). For brevity, we do not distinguish

DER types in this paper and uniformly adopts their aggregate

t
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Fig. 1. Aggregate energy and power boundaries for a group of DERs [16].
tmin and tmax define the time interval when the DERs are connected to the
grids. emax and emin are respectively the maximum and minimum cumulative
energy consumption of the DERs. eneed is the demanded cumulative energy
consumption of the DERs. pmax and pmin are respectively the maximum and
minimum power capacities of the DERs.

energy and power boundaries, e+/− and p+/−, to describe

their constraints.

Remark 2: The formulations (1)–(5) consider scenarios with

discharging power sources (batteries or PEVs with vehicle-to-

grid technologies) so that the lower power boundary p−t is

below zero. In practice, it is possible that p−t is nonnegative.

In that scenario, we no longer need to distinguish charging

and discharging power so that (1)–(5) can be reformulated as:

p−t ≤ P der
t ≤ p+t , ∀t, (6)

e−t ≤
t
∑

τ=t0

P der
τ ∆t ≤ e+t , ∀t, (7)

Remark 3: Though the aggregate DER model is simple and

takes no account of the detailed constraints of each individual

DER, it has high accuracy when the aggregate power is

dispatched to each individual DER properly. Interested readers

can refer to references [16], [18], [19] for suitable real-time

power dispatch algorithms.

B. Aggregate Regulation Signal Model

Frequently charging and discharging may lead to signif-

icant energy losses due to inefficiency. However, because

the regulation signals are highly stochastic and their time

granularity is very small, it is computationally expensive to

explicitly model them in the capacity offering strategy. This

section proposes a novel hourly aggregate model to describe

the regulation signals. Compared with published papers using

hourly average values, this model can evaluate inefficiency

with greater accuracy.

A sample regulation signal, st,d ∈ [−1, 1], for one hour in

the PJM market is shown in Fig. 2(a). The signals are issued

every 2 seconds. When st,d > 0, up regulation is required
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and the aggregator should decrease the charging power or

increase the discharging power; when st,d < 0 the opposite is

true. The value of st,d is the ratio of the aggregator’s power

shift (increment or decrement) to its offered capacity; we

represent the trajectory as a vector st = {st,1, st,2, ..., st,1800}.

Considering DERs are mostly composed by loads, we define

that charging power is positive and discharging power is

negative. Hence, given the DERs’ aggregate power baseline

Pt, regulation capacity Rt, and regulation signal st,d during

each sub-hourly interval d in hour t, the DERs’ actual power

(at the grid side) is Pt − st,dRt.

To develop the aggregate model for the regulation signals,

we assume that the energy and power constraints are not bind-

ing during each sub-hourly interval. Then, the DERs’ actual

power (at the resource side) during each sub-hourly interval d
is a function of their power baseline Pt, regulation capacity Rt,

and signal st,d; we denote it by P(st,d, Rt, Pt). The cumula-

tive energy consumption of the DERs is thus a function of Pt,

Rt and the trajectory of st,d and is denoted by E(st, Rt, Pt).
Then, we have E(st, Rt, Pt) =

∑

d P(st,d, Rt, Pt)∆d.

If we think of the regulation signals not as an ordered vector

but instead as a set of unordered data, we can use St to denote

the set of regulation signal trajectories which can be created by

rearranging the data in st. As an example, we may create s
′

t =
{s′

t,1, s
′

t,2, ..., s
′

t,d∗ , ..., s
′

t,1800} ∈ St, in which, s
′

t,d ≥ 0, ∀d ≤
d∗, and s

′

t,d ≤ 0, ∀d > d∗. We can see that s
′

t can easily

be created from st by moving all the regulation-up signals

forward and the regulation-down signals backward, and thus

confirm that s
′

t ∈ St. Fig. 2(b) shows an example of how this

might be done with d∗ = 726. Hence, we have:

Proposition 1: If the power and energy constraints

are not binding, then ∀st, ∀Rt, ∀Pt, ∀s
′

t ∈ St,

E(st, Rt, Pt)=E(s
′

t, Rt, Pt).
This proposition is intuitive, because E(st, Rt, Pt) =

∑

d P(st,d, Rt, Pt)∆d =
∑

d P(s
′

t,d, Rt, Pt)∆d =

E(s′

t, Rt, Pt). In the day-ahead scheduling problem, we

can assume that the aggregator can fulfill all the regulation

requirements and relax the energy and power constraints so

that Proposition 1 holds.

Then, we can further approximate s
′

t by

s
′′

t = (s
′′

t,1, s
′′

t,2, ..., s
′′

t,d∗ , ..., s
′′

t,1800), in which,

s
′′

t,d = sup
t = 1

d∗

∑d∗

d=1 s
′

t,d, ∀d ≤ d∗, and s
′′

t,d = sdn
t =

1
1800−d∗

∑1800
d=d∗+1 s

′

t,d, ∀d > d∗ (see Fig. 2(c) for an

example). Thus, we have E(st, Rt, Pt) ≈ E(s′′

t , Rt, Pt)
so that s

′′

t can be used to describe the regulation signals’

influence on cumulative power consumption and regulation

capacities.

s
′′

t is the proposed aggregate model for the regulation

signals. It has only four parameters including the average

regulation up and down signals, i.e., sup
t and sdn

t , and the

corresponding up and down period, i.e., δt
up
t = d∗

1800 hour and

δtdn
t = 1 − sup

t hour. In Fig. 2(c), sup
t = 0.52, sdn

t = −0.58,

δtup
t = 29.2 minutes and δtdn

t = 30.8 minutes.

Remark 4: Using the proposed hourly aggregate parameters

of the signals, sup/dn
t and δtup/dn

t , the scale of the modeling

is significantly decreased. Furthermore, we can also estimate

the sub-hourly charging and discharging inefficiency because
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(c) Hourly aggregate trajectory

Fig. 2. The trajectories of regulation signals, i.e., (a), st, (b), s
′

t, (c), s
′′

t .

charged and discharged energy can be easily distinguished as

is shown in the following section.

C. Two-stage Stochastic Programming Strategy

In the day-ahead problem, we propose using the two-stage

stochastic programming to roughly incorporate uncertainties.

A set of scenarios of the aggregate regulation signals, s
up/dn
ω,t ,

the regulation mileages1, mω,t, the energy and power capac-

ities (at the resource side), e
+/−
ω,t and p

+/−
ω,t , are generated

based on historical data. The energy offer P gr,da
t is the first-

stage decision variable, and the regulation capacity offer of

each scenario Rω,t is the second-stage decision variable.

Note that the PJM market does not compensate up regulation

and down regulation services separately. Instead, it requires

DERs to provide equal capacities of up regulation and down

regulation simultaneously for each hour. Hence, when the DER

aggregator offers Rω,t regulation capacity to the market, it

should be able to provide at least Rω,t up regulation and Rω,t

down regulation at the same time.

1The regulation mileage is the absolute summation of movement requested
by the regulation signal. It is used to evaluate the regulation service contri-
bution of the regulation resources in the PJM market [14].
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1) Day-ahead Objective: The objective of the aggregator

in the day-ahead market is:

max F =
∑

ω∈Ω

∑

t

πω

(

crc
t + crp

t mω,t

)

Rω,t∆t

−
∑

t

ce,da
t P gr,da

t ∆t−
∑

ω∈Ω

∑

t

πωc
dEder,d

ω,t (8)

The first term in (8) is the revenue for providing regula-

tion services, which includes two parts: the revenue for the

cleared regulation capacities, and the revenue for the service

performance evaluated by the regulation mileage [14]. The

second term is the energy purchase cost. For some DERs,

e.g., batteries or PEVs, discharging may cause degradation.

Therefore, we add the last term to calculate the degradation

cost. In practice, battery degradation can be influenced by

various factors, e.g., ambient temperature, depth of discharg-

ing, charge cycles etc. In this paper, we assume that the

degradation of a battery is proportional to its number of

charge cycles, as in references [30], [31]. Hence, the battery

degradation cost is proportional to the aggregate discharged

energy, Eder,d
ω,t . Published papers also proposed other battery

degradation models, e.g., the quadratic models in [32], [33],

and the piecewise linear model in [34]. These models can also

be implemented in the proposed biding strategy, but is out of

the scope of this paper.

2) Day-ahead Constraints: The charging and discharging

power must not violate the capacities of the DERs:

P
gr,da
t − s

up/dn
ω,t Rω,t =

P
c,up/dn
ω,t

ηc
+ P

d,up/dn
ω,t ηd, ∀ω ∈ Ω, ∀t, (9)

Rω,t ≥ 0, ∀ω ∈ Ω, ∀t. (10)

0 ≤ P c,up/dn
ω,t ≤ (1−Dup/dn

ω,t )p+ω,t, ∀ω ∈ Ω, ∀t, (11)

Dup/dn
ω,t p−ω,t ≤ P d,up/dn

ω,t ≤ 0, ∀ω ∈ Ω, ∀t, (12)

Dup
ω,t, D

dn
ω,t ∈ {0, 1}, ∀ω ∈ Ω, ∀t, (13)

P
der,up/dn
ω,t = P

c,up/dn
ω,t + P

d,up/dn
ω,t , ∀ω ∈ Ω, ∀t, (14)

Eder
ω,t = δtup

ω,tP
der,up
ω,t + δtdn

ω,tP
der,dn
ω,t , ∀ω ∈ Ω, ∀t, (15)

e−ω,t ≤
t
∑

τ=t0

Eder
ω,τ ≤ e+ω,t, ∀ω ∈ Ω, ∀t, (16)

Equation (9) calculates the expected power during the sub-

hourly interval when regulation up/down is required, i.e.,

δt
up/dn
ω,t in the aggregate regulation signal model. It reflects the

relationship between the grid-side power and the resource-side

power considering charging and discharging efficiency. The

aggregator’s regulation capacity is nonnegative, i.e., constraint

(10). Equations (11) and (12) constrain the charging and

discharging power respectively; the two constraints will not

be active simultaneously as can be seen from constraint (13).

Equation (14) calculates the expected charging and discharging

power at the resource side during each sub-hourly interval.

Equation (15) calculates the total energy consumption at the

resource side in each hour. After each hour, the cumulative

energy consumption of the DERs can not violate their aggre-

gate upper and lower energy capacities, which are guaranteed

by equation (16).

TABLE I
NOMENCLATURE OF THE DAY-AHEAD STRATEGY

Indices/sets
ω/Ω Index/set of all the scenarios.
d/κ Index of sub-hourly intervals, ∆d=2 seconds.
t/τ Index of hours, ∆t=1 hour, t0 is the initial hour.

Parameters

ηc/d Charge/discharge efficiency.
πω Occurrence probability of scenario ω.

ce,da
t Day-ahead whole-sale energy price forecast, in $/kWh.
crc
t Regulation capacity price forecast at time t, in $/kWh.
crp
t Regulation performance price forecast at time t, in

$/kWh.

cd Degradation costs due to discharging, in $/kWh.

e
+/−
ω,t Aggregate upper/lower energy capacity (at the resource

side), in $/kWh.
mω,t Regulation millage.

p
+/−
ω,t Aggregate upper/lower power capacity (at the resource

side), in $/kW.
st Trajectory of regulation signals.
st,d Regulation signal.

sup/dn
t Average regulation up/down signal in hour t.

δtup/dn
t Length of regulation up/down period in hour t, in hour.

Decision variables

Dup/dn
ω,t Binary discharge decision variable: Dup/dn

ω,t = 1, if the

DERs are discharged; Dup/dn
ω,t = 0, otherwise.

Eder
ω,t The total energy consumption at the resource side, in

kWh.

Eder,d
ω,t The total discharged energy at the resource side, in kWh.

P der,up/dn
ω,t The power at the resource side when up/down regulation,

i.e., sup/dn
ω,t is dispatched, in kW.

P gr,da
ω,t The total power schedules at the grid side, in kW.

P c/d,up/dn
ω,t The charging/discharging power at the resource side

when up/down regulation, sup/dn
ω,t is dispatched, in kW

Rω,t Regulation capacity offer in each scenario, in kW

Rda
t Regulation capacity offer at day-ahead, in kW

The total discharged energy in each hour is:

Eder,d
ω,t = −δtup

t P d,up
ω,t − δtdn

t P d,dn
ω,t , ∀ω ∈ Ω, ∀t. (17)

Because the aggregator may reduce its regulation capacity

offer 60 minutes before the actual operating hour (without any

penalty), it is acceptable to be aggressive in the regulation

capacity offering. Therefore, the aggregator can submit the

highest capacities to the market:

Rda
t = max

ω∈Ω
Rω,t, ∀t. (18)

Remark 5: The aforementioned model, i.e., (8)–(18), is a

mixed integer linear program, which can be efficiently solved

by the Branch-and-Cut algorithm. Furthermore, the scale of the

problem is moderate because it employs the aggregate hourly

regulation signals developed in Section II-B and adopts the

aggregate DER model introduced in Section II-A whose scales

are irrelevant to the DERs’ population.

III. HOUR-AHEAD REGULATION CAPACITY OFFERING

In the hour-ahead problem, although the future available

regulation capacities are uncertain, the aggregator still needs to
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TABLE II
NOMENCLATURE OF THE HOUR-AHEAD STRATEGY

Indices/sets

ξ̃ Set of uncertain parameters, ξ̃ = {p̃
+/−
t , ẽ

+/−
t , ẽ0, s̃t,d}.

Ξ Distribution of ξ̃.
Parameters

ce,rt
t Real-time energy price forecast at time t, in $/kWh.
ẽ0 Cumulative energy consumption after hour t− 1.
ǫ The tolerance parameter of the chance constraints.
mt The expected regulation mileage.

Decision variables

∆P gr,ha
t Absolute values of the power deviations between day-

ahead and hour-ahead schedules, in kW.
Dt,d Binary discharge decision variable.

P gr,ha
t Hour-ahead power schedule, in kW.

P c/d
t,d Charging/discharging power at the resource side, in kW.

Rt Actual (hour-ahead) regulation capacity offer, in kW.

Note: We omitted those notations already appeared in Table I.

give an explicit offer for the target hour. If the aggregator fails

to respond to the regulation signals as it offered, it may get

penalized by the market. To control regulation service quality

and balance revenue and risk, we propose a risk-averse strategy

based on chance-constrained programming [35].

A. Risk-averse Chance-constrained Strategy

1) Hour-ahead Objective: The objective is to offer a proper

regulation capacity to the market 60 minutes before the actual

operation hour t to maximize the overall expected revenue:

maxF =(crc
t + crp

t mt)Rt∆t− ce,rt
t ∆P gr,ha

t ∆t

−
∑

ω∈Ω

πωc
dEder,d

ω,t , (19)

This includes the regulation revenue (the first term), the energy

purchase cost because of power deviations (the second term),

and the cost for degradation (the last term).

To avoid myopic hour-ahead capacity offering, we adopt a

receding horizon optimization to consider power schedules and

regulation offers after t. The corresponding formulations are

the same with those in the day-ahead strategy, and are omitted

here for brevity.

2) Hour-ahead Constraints: The actual regulation capacity

offered to the market cannot exceed the day-head value:

0 ≤ Rt ≤ Rda
t . (20)

The absolute value of the power deviation is constrained by:

∆P
gr,ha
t ≥ P

gr,ha
t − P

gr,da
t , (21)

∆P gr,ha
t ≥ −P gr,ha

t + P gr,da
t . (22)

The degradation costs are influenced by various factors, e.g.,

the power schedules, the regulation offers, and the signals.

Because these costs are risk neutral, we still use the two-

stage stochastic programming to estimate the expected value.

Namely, P der,d
ω,t should still satisfy the following constraints2:

(9)–(13), (17).

The DERs’ charging and discharging power during each

sub-hourly time interval should not violate their capacities:

P gr,ha
t − s̃t,dRt = P c

t,d/η
c + P d

t,dη
d, ∀d, (23)

P c
t,d ≤ (1−Dt,d)p̃

+
t , ∀d, (24)

P d
t,d ≥ Dt,dp̃

−
t , ∀d, (25)

Dt,d ∈ {0, 1}, P c
t,d ≥ 0, P d

t,d ≤ 0, ∀d. (26)

Their cumulative energy consumption should also not vio-

late its lower and upper capacities:

ẽ0 +

d
∑

κ=1

(P c
t,κ + P d

t,κ)∆d ≥ ẽ−t , ∀d, (27)

ẽ0 +

d
∑

κ=1

(P c
t,κ + P d

t,κ)∆d ≤ ẽ+t , ∀d, (28)

where, ẽ0 is the cumulative energy consumption after hour

t−1 (before the operating hour t). Because the power schedule

and regulation capacity offers at hour t− 1 are already fixed,

therefore, the aggregator can estimate the distribution of ẽ0 by

simulations based on historical regulation signals.

The above formulations form a mixed-integer linear regu-

lation capacity offering strategy at hour-ahead:

P1: max (19) s.t.: (9)–(13), (17), (20)–(28).

In P1, parameters ξ̃ = {p̃+/−
t , ẽ

+/−
t , ẽ0, s̃t,d} are all

stochastic and may affect the aggregator’s future regulation

performance. Therefore, the aggregator should properly offer

its regulation capacities according to the distribution of ξ̃
so that it can reap adequate revenue and, at the same time,

effectively control the quality of regulation services.

Hence, we propose to use chance constraints to describe the

DERs’ energy and power limits, as follows:

P2: max (19) s.t.: (9)–(13), (17), (20)–(23), (26), and

Prξ̃∼Ξ {(24)} ≥ 1− ǫ, ∀d, (29)

Prξ̃∼Ξ {(25)} ≥ 1− ǫ, ∀d, (30)

Prξ̃∼Ξ {(27)} ≥ 1− ǫ, ∀d, (31)

Prξ̃∼Ξ {(28)} ≥ 1− ǫ, ∀d, (32)

which ensures that the probability that each of the power

and energy constraint is violated (which means the aggregator

fails to fully respond to the regulation signal) is less than ǫ.
The trade-off between the service revenue and quality can be

effectively balanced by tuning ǫ, which can be determined

according to the aggregator’s risk preference.

Remark 6: P2 is intractable in its current form, because:

1) The scale of binary variables is large due to the small

time granularity, i.e, ∆d. Furthermore, the binary vari-

2The binary variables in (9)–(13) are redundant and can be relaxed because
simultaneously charging and discharging the DERs in this constraint can not
increase the regulation capacity.
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ables can not be directly relaxed; otherwise, P2 may

overestimate the regulation capacities.3

2) The probabilities in the left-hand sides of constraints

(29)–(32) are hard to evaluate. These are not convex

even the binary variables are relaxed [35].

3) The decision variables P c
t,d and P d

t,d in the constraints

(29)–(32) are intermediate variables which are not ex-

plicit functions of the uncertain parameters ξ̃. Hence, P2

is not in a standard chance-constrained program form

and cannot be directly solved by existing techniques.

In the following sub-sections, we first derive a safe con-

tinuous relaxation for P2 and reformulate it into a typical

chance-constrained program; then, we solve it as a data-driven

distributionally robust chance-constrained program [36] based

on its convex safe approximation in the form of an SOCP.

B. Relaxation of the Chance-constrained Program

In this section, we relax the binary variables and eliminate

the intermediate variables of P2 to reformulate it into a typical

linear chance-constrained program. Our derivations lead to the

following proposition (the proof is given in Appendix A):

Proposition 2: When p̃+t ≥ 0, p̃−t ≤ 0, and P gr,da
t and

P gr,ha
t have the same sign, the constraints (23)–(28) hold if

the following constraints hold:

ηc
(

P gr,ha
t − s̃a

t,1Rt

)

− p̃+t ≤ 0, (33)

− 1

ηd

(

P gr,ha
t − s̃a

t,1Rt

)

+ p̃−t ≤ 0, (34)


























−ηcd∆dP gr,ha
t +

(

1+ηcηd

2ηd s̃a
t,d +

1−ηcηd

2ηd

)

d∆dRt

−ẽ0 + ẽ−t ≤ 0, ∀d, if P gr,da
t ≥ 0,

− 1
ηd d∆dP gr,ha

t +
(

1+ηcηd

2ηd s̃a
t,d +

1−ηcηd

2ηd

)

d∆dRt

−ẽ0 + ẽ−t ≤ 0, ∀d, if P gr,da
t < 0,

(35)

ηcd∆dP
gr,ha
t − ηcs̃a

t,dd∆dRt + ẽ0 − ẽ+t ≤ 0, ∀d, (36)

where, s̃a
t,d = 1

d

∑d
κ=1 s̃t,κ is the average regulation signals

from sub-hourly interval 1 to d; s̃a
t,1 = s̃t,1.

We also observe that the energy constraints (35)–(36) are

more conservative when d is large (see Appendix A). There-

fore, we need only retain the constraints when d = 1800. As

a result, we obtain a new problem:

P3: max (19) s.t.: (9)–(13), (17), (20)–(22), and

Prξ̃′∼Ξ′ {(33)} ≥ 1− ǫ, (37)

Prξ̃′∼Ξ′ {(34)} ≥ 1− ǫ, (38)

Prξ̃′∼Ξ′ {(35)} ≥ 1− ǫ, d = 1800, (39)

Prξ̃′∼Ξ′ {(36)} ≥ 1− ǫ, d = 1800. (40)

The above chance-constraints are all linear with uncertain

parameters ξ̃
′

= {p̃+/−
t , ẽ

+/−
t , ẽ0, s̃

a
t,1, s̃

a
t,1800} ∼ Ξ

′

.

Remark 7: P3 is a typical linear chance-constrained pro-

gram. It is a safe approximation of P2 under the mild assump-

tions that p̃+t ≥ 0, p̃−t ≤ 0, and P gr,da
t has the same sign with

3Without the binary constraints, the program may provide down regulations
by charging and discharging the DERs simultaneously to waste electricity.

P gr,ha
t . In other words, when the aforementioned assumptions

are true, P3’s solution is also feasible for P2.

C. Data-driven Distributionally Robust Chance-constrained

Program and its SOCP Approximation

Chance-constrained programming is generally intractable.

An individual chance constraint can be equivalently reformu-

lated into its convex counterpart in only few cases, e.g., when

the uncertain parameters are Gaussian [35]. Some researchers

propose the distributionally robust chance-constrained pro-

gramming which does not require that the uncertain parameters

follow specific distributions. By contrast, they only utilize

parts of the uncertain parameters’ information, e.g., their

supports [37], or moments [37], [38]. As a compromise, their

solutions should be satisfied for any potential distribution

with the same known information. Though the results may

be conservative, they are usually tractable, e.g., in the form of

SOCP [37] or semi-definite programming [38].

Considering that historical regulation data in many power

markets are public, we propose a data-driven approach to

utilize the available information for the uncertain regulation

signals. In this paper, we take the Reg-A type regulation

signals in the PJM market as an example. Based on our

analysis (see Appendix B), we observe that the signals in

every two seconds, i.e., s̃a
t,1 in (37)–(38), do not follow a

specific tractable distribution. By contrast, the hourly average

regulation signals, i.e., s̃a
t,1800 in (39)–(40), are approximately

Gaussian (hence, the hourly cumulative energy consumption

ẽ0 is also approximately Gaussian).

Utilizing the above analysis and assuming that the forecast

errors of the energy and power capacities are Gaussian, we

adopt the distributionally robust chance-constrained program-

ming (with known mean and covariance) to approximate the

power constraints (37)–(38). This approach only uses the em-

pirical mean and covariance of the uncertain parameters. How-

ever, we utilize the Gaussian distribution to approximate the

energy constraints (39)–(40) (whose uncertain parameters are

all approximately Gaussian). As the hourly regulation signals

are not exactly Gaussian, we utilize the historical data to learn

the φ-divergence [36] (a measure of the difference between

two distributions) between the empirical distribution with the

approximated Gaussian distribution. Then, we adopt the φ-

divergence-based data-driven distributionally robust chance-

constrained programming [36] to conservatively model the

energy constraints.

Before giving the further formulations, we first briefly intro-

duce the φ-divergence, a function that measures the distance

between two nonnegative vectors p = (p1, p2, ..., pn)
⊺ and

q = (q1, q2, ..., qn)
⊺. In this paper, we use it to measure

the distance between two discrete probability distributions.

We let q denote the true distribution’s probabilities, and

p denote the corresponding observations, so that we have
∑n

i=1 pi =
∑n

i=1 qi = 1. The φ-divergence between p and

q is defined as follows:

Iφ(p, q) =
m
∑

i=1

qiφ (pi/qi) , (41)
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in which, φ(t) is called the φ-divergence function which is

convex for t ≥ 0, φ(1) = 0, φ(a/0)
.
= a limt→∞ φ(t)/t

for a > 0, and φ(0/0) = 0. There are different types of φ-

divergence functions studied in published literature (see [36]).

We adopt the χ2-divergence function, i.e., φ(t) = (t − 1)2.

We also use Iφ(D,D0) to denote the φ-divergence, i.e., χ2-

divergence, between two distributions D and D0 (we can

discretize the continuous distributions and calculate the φ-

divergence according to (41)).

Letting X
.
= [Rt, P

gr,ha
t ]⊺ denote the vector of decision

variables; X̂
.
= [X⊺ 1]⊺, P3 can be reformulated into a data-

driven distributionally robust chance-constrained program (see

Appendix C for the detailed reformulations):

P4: max (19) s.t.: (9)–(13), (17), (20)–(22), and

inf
Dj∈(dj ,Γj)

Pr
d̃j∼Dj

{

d̃
⊺

j X̂ ≤ 0
}

≥ 1− ǫ, ∀j = 1, 2, (42)

inf
Iφ(Dj,D0)≤ρ

Pr
d̃j∼Dj

{

d̃
⊺

j X̂ ≤ 0
}

≥ 1− ǫ, ∀j = 3, 4. (43)

Where j is the index of chance-constraints, (42) are the power

constraints and (43) are the energy constraints, d̃j
.
= [ã⊺j , b̃j]

⊺

with mean dj and covariance Γj
.
= var{d̃j} � 0, and the

entries of ãj and b̃j are linear combinations of the uncertain

parameters in ξ̃
′

. We use (dj ,Γj) to denote the set of

distributions having the same mean dj and covariance Γj .

Iφ(Dj ,D0) is the χ2-divergence between distribution Dj and

D0 = Gaussian(dj ,Γj), ∀j = 3, 4; ρ is the empirical upper

bound of the χ2–divergence learned from historical data. dj

and Γj can also be easily calculated based on the empirical

means and covariances of the parameters of ξ̃
′

, which are

introduced in Appendix D.

Remark 8: P4 is a safe approximation of the original chance-

constrained program P3, i.e., the solution of P4 is also feasible

for P3. This is because the true distributions of the uncertain

parameters in P3 are included in the set (dj ,Γj), ∀j = 1, 2,

and set {Dj : Iφ(Dj ,D0) ≤ ρ}, ∀j = 3, 4. In words, the power

constraints (37)–(38) are satisfied for all the distributions

with the same mean dj and covariance Γj while the energy

constraints (39)–(40) are satisfied for all the distributions

whose χ2–divergence between D0 = Gaussian(dj ,Γj) is

less than ρ.

Based on the findings in [37] and [36], we have:

Proposition 3: For any ǫ ∈ (0, 0.5], the chance constraints

(42)–(43) hold if the following constraints hold:

√

(1− ǫ)/ǫ‖Γ
1

2

j X̂‖2 + d
⊺

j X̂ ≤ 0, ∀j = 1, 2, (44)

Ψ−1
G (1− ǫ

′

)‖Γ
1

2

j X̂‖2 + d
⊺

j X̂ ≤ 0, ∀j = 3, 4, (45)

where, ΨG(ǫ) = (1/
√
2π)

∫ ǫ

−∞
exp( t

2

2 )dt; ǫ
′

= ǫ −√
ρ2+4ρ(ǫ2−ǫ)−(1−2ǫ)ρ

2ρ+2 is an adjusted tolerance based on χ2-

divergence.

The proof for the Proposition 3 is given in Appendix E.

Based on Proposition 3, we obtain the safe convex approxi-

mation of P4, which is an SOCP and can be efficiently solved:

P5: max (19) s.t.: (9)–(13), (17), (20)–(22), (44)–(45).

IV. EXPERIMENTS

We model a fleet of 5,000 private PEVs to verify the

effectiveness of the proposed method. Only home charg-

ing/discharging is considered in this case. The Nissan Leaf

PEV is chosen to represent the PEV population, with a battery

capacity 24 kWh. We assume that 50% of the customers install

Level 1 chargers with +/-3.3 kW rated charging/discharging

power. The others install Level 2 chargers with +/-6.6 kW rated

power. The efficiencies (ηc/d) are 92%; The battery degradation

cost is assumed to be $4.1 per charge cycle, i.e., cb=4.1/24

$/kWh. We adopt the method proposed in [39] to generate

PEVs’ driving behaviors and the storage-like aggregate model

for PEVs in [16] to generate aggregate energy and power

capacities. The standard variances of both the energy and

power capacities are assumed to be 0.05.

We use average values of 28-day historical data as the

forecasted prices of the energy and regulation market. The

RegA-type regulation signals from Aug. 1st, 2015, to Jul.

31th, 2016 of the PJM market are used in the simulation to

estimate their mean, covariance, χ2-divergence parameter ρ,

and hourly mileages [14]. We conduct simulations, including

regulation capacity offering and real-time operations, for 31

days to validate the performance of the proposed strategies, in

which the real regulation signals in August 2015 are used as

the input and the energy and power boundaries are generated

by the Monte-carlo simulation. We use CPLEX to solve the

problems on a laptop with a 4-core Intel Core i7 processor and

8 GB memory. It takes a few seconds to solve each problem.

A. Trade-off Between Revenue and Risk

We first conduct experiments to validate the effectiveness of

the proposed strategy at balancing the trade-off between the

regulation revenue and risk of poor service delivery. The PJM

market compensates the regulation DERs based on the cleared

regulation capacities, the mileages and the DERs’ performance

scores. The last factor is used to reflect the accuracy of the

DERs following the regulation signals. It consists of three

parts: precision, correlation, and delay [14]. Considering that

the simulations cannot truly reflect the real-time operation

results, e.g., the delays, we use the precision score to approx-

imate the performance score, which is calculated as follows:

S = 100%− 1

n

n
∑

d=1

∣

∣

∣
(sd − sr

d)/|s|
∣

∣

∣
, (46)

where, sd is the instructed signal, sr
d is the actual response,

|s| is the average of the absolute values of sd, n is the

number of samples. We therefore can calculate the actual total

revenue that the aggregator can actually reap from the market,

i.e., RevenueA, by adjusting its expected total revenue (the

objective of P5) with the performance score, as follows:

RevenueA = S ×RevenueR − Costder − CostD, (47)

in which, RevenueR is the expected regulation compensation

received from the market, while S × RevenueR is the actual

compensation adjusted according to the regulation perfor-

mance. Costsder and CostsD are respectively the energy cost
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Fig. 4. Expected and actual daily total revenue.

and battery degradation cost. The expected total revenue is

equal to RevenueA if S = 1.

We conduct experiments under different tolerance levels,

i.e., taking values of 1−ǫ from 50% to 95%. The performance

scores and the corresponding ratios of chance-constraint vio-

lations (unfulfilled regulation services) in the experiments are

illustrated in Fig. 3. The average expected daily total revenue

and the corresponding actual values are plotted in Fig. 4.

When ǫ increases, the probability that the regulation signals

can not be precisely followed increases while the performance

score decreases. With larger ǫ, the aggregator will be more

aggressive offering more regulation capacity to increase ex-

pected daily total revenue. However, the actual revenue growth

is offset by the performance score when ǫ is larger than 30%.

This phenomena demonstrates the trade-off between revenue

and the service quality (risk of poor service delivery).

In figure 4, the gap between the expected total revenue and

the actual total revenue reflects the regulation performance’s

influence on the aggregator’s actual profits. It is inversely

proportional to the regulation performance score, S, in equa-

tion (47). When ǫ decreases, the regulation performance score

increases; as a result, the gap decreases.

Note that the trade-off effect is highly dependent on the

penalty mechanism. If we adopt the calculation method used

in [23], the performance score would be approximately equal

to 100% minus the ratio of chance-constraint violations, which

will be much smaller (see Fig. 3). As a result, the trade-

off would be more apparent. A review of different penalty

mechanisms can be found in [10].

TABLE III
SUMMARY OF DIFFERENT STRATEGIES

Strategy
Regulation offer Performance Total revenue

(MWh/day) score (%) (k$/day)
Proposed 484 83 8.74
Robust 20.5 100 0.22
Determ 511 68 7.96

IgnoreEffi 481 80 8.41

B. Benchmark with Other Strategies

We adopt three benchmark strategies to validate the advan-

tages of the proposed method: a) A robust strategy (Robust),

which ensures that the regulation services can be delivered

under the worst scenario. b) A deterministic strategy (Determ)

which adopts expected values of the uncertain parameters.

It is also used as a benchmark in [23]. c) A risk-averse

strategy (IgnoreEffi) which adopts the proposed method but

ignores charging and discharging inefficiency at the capacity

offering stage. After the capacities are offered, we simulate

the real-time operations considering inefficiency to validate

its performance. In the two risk-averse strategies (Proposed

and IgnoreEffi), we both set ǫ = 20%. The summary of their

average daily regulation offers, performance scores, and actual

total revenue are listed in Table III.

From the results, we can conclude that the robust approach

is unnecessarily conservative with total daily regulation capac-

ity offer only about 6% of that in the proposed strategy- this

clearly does not take full advantage of the DER flexibility.

When assuming the uncertain parameters take average

values, the aggregator may be very aggressive in offering

regulation capacity because it is risk neutral. In fact, it provides

regulation offers that are higher than its actual capacities (sim-

ilar results were also found in [10]). However, the performance

scores are significantly decreased with the average value falls

below 70%. As a result, its total benefit is lower than that

of the proposed strategy. Furthermore, in the PJM market,

if the performance scores are frequently below 75%, it may

fail the market’s qualification test and become not eligible to

participate in the market [14].

When inefficiency is ignored, the aggregator may evaluate

its regulation capacities less accurately. In Table III, though

all the experimental parameters (except the efficiency) are

the same, the strategy IgnoreEffi’s regulation capacity of-

fer, performance score, and total revenue are all less than

the proposed strategy. Compared with the proposed strategy,

the total revenue is reduced by 3.8%. An interesting point

is that though IgnoreEffi offers less regulation capacity, its

performance score is still lower that the proposed strategy.

That is because the inefficiencies cause the DERs to consume

additional electricity during real-time operations, affecting

their regulation performance.

V. CONCLUSIONS AND DISCUSSIONS

DERs are promising flexibility service providers for future

power systems. The main novel contribution of this paper is

formulating a data-driven distributionally robust chance con-

strained optimization approach for regulation capacity offering
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of a DER aggregator. This approach can effectively balance

the aggregator’s regulation revenue and risk of poor regulation

service delivery by tuning a simple parameter according to

the aggregator’s risk preference. We further derived an SOCP

approximation for it so that it can be efficiently solved

by a commercial solver. The proposed strategy outperforms

published ones, e.g., those based on robust optimization or

scenario-based risk-averse approaches, in both decision con-

servativeness and computational efficiency.
In practice, the controlling of DERs may be affected by

power flow constraints of distribution networks. In this pa-

per, we assumed power flow constraints did not bind and

could be ignored, as in references [15]–[27]. Though power

flow constraints are not considered explicitly in the proposed

formulation, they can be readily incorporated if needed in

practice. In that scenario, we should first aggregate DERs at

each distribution bus (instead of aggregating them integrally).

Then, we can adopt various published methods to deal with

power-flow constraints. For example, we can calculate power

injection and absorption margins at each distribution bus sub-

ject to the power flow constraints adopting methods proposed

in [40]. After that, we can use the margins at each bus to

modify the power capacity limits of the DERs, i.e., p− and

p+. Hence, the aggregate DER power can be constrained by

the margins at each bus which also ensures that the power

flow constraints are satisfied. We can also directly consider

the power flow constraints, which define the feasible region

for future regulation services, in the biding strategy. Then,

we can adopt chance-constrained power flow models, e.g.,

[41], to reformulate our regulation capacity offering strategy.

Because this paper mainly focuses on the risk management in

regulation capacity offering, modeling power flow constraints

is beyond its scope, but will be part of our future work. We

also plan on studying the impact of of price uncertainty on

optimal regulation offering strategies in future work.

APPENDIX A

PROOF OF PROPOSITION 2

1) Power Capacity Constraints: We first derive the relax-

ation of the power capacity constraints (24)–(26). Because

when p̃+t and p̃−t have the same sign, e.g., both positive for

shapeable load, the sign of the power in (23) can be determined

a priori. As a result, we do not need to distinguish charging

and discharging power in (24)–(25) so that they are reduced

to continuous constraints. Here, we consider the scenario

when p̃+t ≥ 0 and p̃−t ≤ 0, which is true for batteries or

PEVs with vehicle-to-grid technology. In that case, constraint

(24) will be binding only when charging power happens and

P gr,ha
t − s̃t,dRt = P c

t,d/η
c. Therefore, it is equivalent to:

ηc
(

P gr,ha
t − s̃t,dRt

)

≤ p̃+t , ∀d, (48)

Similarly, constraint (25) is binding only when discharging

power happens so that it is equivalent to:

1

ηd

(

P gr,ha
t − s̃t,dRt

)

≥ p̃−t , ∀d. (49)

The above two constraints are both continuous and linear.

Because the distribution of regulation signals in different time

interval d are the same, therefore, constraints (48)–(49) for

different d are equivalent.

2) Energy Capacity Constraints: Then, we then relax the

energy capacity constraints (27)–(28). Using equation (23) to

eliminate the intermediate variable P c
t,d, we can reformulate

the first energy constraint (27) as follows:

ẽ0 +
d
∑

κ=1

(

ηc
(

P gr,ha
t − s̃t,κRt

)

+ (1− ηcηd)P d
t,κ

)

∆d

≥ ẽ−t , ∀d, (50)

where, P d
t,κ = min

(

P gr,ha
t − s̃t,κRt

ηd
, 0

)

=
P

gr,ha
t − s̃t,κRt − |P gr,ha

t − s̃t,κRt|
2ηd

≥ P gr,ha
t − |P gr,ha

t | − (s̃t,κ + 1)Rt

2ηd
, ∀κ. (51)

Because the hour-ahead power schedule, i.e., P gr,ha
t , is close

to the day-ahead power schedule, i.e., P
gr,da
t , we can safely

assume that they have the same sign. As a result, the absolute

value sign in (51) can be eliminated a priori according to P gr,da
t .

Hence, if P gr,da
t ≥ 0, we can further eliminate variable P d

t,d

based on (51) to approximate constraints (50)–(51) as:

ẽ0 +

d
∑

κ=1

(

ηc
(

P gr,ha
t − s̃t,κRt

)

−

1− ηcηd

2ηd
(s̃t,κRt +Rt)

)

∆d ≥ ẽ−t , ∀d. (52)

Otherwise, if P gr,da
t < 0, we can approximate constraints (50)–

(51) as:

ẽ0 +

d
∑

κ=1

(

ηc
(

P gr,ha
t − s̃t,κRt

)

+

1− ηcηd

2ηd

(

2P gr,ha
t − s̃t,κRt −Rt

)

)

∆d ≥ ẽ−t , ∀d. (53)

Because, 0 ≤ ηc, ηd ≤ 1, P d
t,κ ≤ 0, we also have

P c
t,κ + P d

t,κ = ηc
(

P gr,ha
t − s̃t,κRt

)

+ (1− ηcηd)P d
t,κ

≤ ηc
(

P gr,ha
t − s̃t,κRt

)

, ∀κ. (54)

Thus, constraint (28) can also be safely approximated by:

ẽ0 +

d
∑

κ=1

ηc
(

P gr,ha
t − s̃t,κRt

)

∆d ≤ ẽ+t , ∀d. (55)

Based on the above analysis, and substitute
∑d

κ=1 s̃t,κ by

ds̃a
t,d in the above constraints, we have that when p̃+t ≥ 0,

p̃−t ≤ 0, and P gr,da
t and P gr,ha

t have the same sign, constraints

(23)–(28) hold if constraints (33)–(36) hold. Note that all the

intermediate variables, i.e., Dt,d, P
c
t,d, P

d
t,d are omitted because

their constraints are redundant for the true decision variables,

i.e., P gr,ha
t and Rt.

This proves Proposition 2. �

We can also observe that, for the relaxed energy constraints



11

Signal
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

P
ro

b
ab

il
it

y

0

0.5

1

1.5

2

Empirical
Gaussian

Fig. 5. Distribution of s̃a
t,1.

Signal
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

P
ro

b
ab

il
it

y

0

0.2

0.4

0.6

0.8

1

1.2

Empirical
Gaussian
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(35)–(36), they are slightly conservative because we relaxed a

part of the element (1−ηcηd)P d
t,κ for each sub-hourly interval

d. The total relaxed term increases monotonically with the

increase of d. Hence, the new energy constraints (35)–(36) will

be more conservative when d is large. Therefore, in practice,

we can approximately adopt constraints (35)–(36) for d =
1800 instead of all the possible 1 ≤ d ≤ 1800.

APPENDIX B

DISTRIBUTIONS OF THE REGULATION SIGNALS

The regulation signals (RegA-type) from 1st August, 2015,

to 31th July, 2016 (a total of 366 days), of the PJM market

[14] are used to analyze their distributions.
The empirical distributions and its Gaussian regressions

of the regulation signals s̃a
t,1 and s̃a

t,1800 are respectively

illustrated in Fig. 5 and Fig. 6. It is obvious that the regulation

signals in every two seconds, i.e., s̃a
t,1, do not follow a specific

tractable distribution; by contrast, the distribution of s̃a
t,1800 is

approximately Gaussian.

APPENDIX C

REFORMULATION OF P3

Based on equations (33)–(36), we define ãj and b̃j as:

ãj =










































[

−ηcs̃a
t,1, ηc

]⊺

, j = 1
[

1
ηd s̃

a
t,1, − 1

ηd

]⊺

, j = 2
[

1+ηcηd

2ηd s̃a
t,d +

1−ηcηd

2ηd , − ηc
]⊺

, P
gr,da
t ≥ 0, j = 3

[

1+ηcηd

2ηd s̃a
t,d +

1−ηcηd

2ηd , − 1
ηd

]⊺

, P gr,da
t < 0, j = 3

[

−ηcs̃a
t,d, ηc

]⊺

, j = 4

,

(56)

b̃j =























−p̃+t , j = 1

p̃−t , j = 2

−ẽ0 + ẽ−t , j = 3

ẽ0 − ẽ+t , j = 4

, (57)

which can reformulate the constraints (33)–(36) by d̃
⊺

j X̂ ≤ 0,

in which d̃j
.
= [ã⊺j b̃j ]

⊺; X̂
.
= [X⊺ 1]⊺; X

.
= [Rt, P

gr,ha
t ]⊺.

As a result, P3 can be reformulated as:

P3 st: max s.t.: (9)–(13), (17), (20)–(22), and

Prξ̃′∼Ξ′

{

d̃
⊺

j X̂ ≤ 0
}

≥ 1− ǫ, ∀j = 1, 2, 3, 4, (58)

This is the standard formulation for the linear chance-

constrained program P3.

Based on the above standard formulations, we can easily

obtain the distributionally robust form P4.

APPENDIX D

CALCULATION OF THE MEAN AND COVARIANCE IN P4

The mean and covariance of d̃j , i.e., dj and Γj , can be

calculated as follows:

dj =






























































[

−ηcsa
t,1, ηc, − p+t

]⊺

, j = 1
[

1
ηd s

a
t,1, − 1

ηd , p−t

]⊺

, j = 2
[(

1+ηcηd

2ηd sa
t,1800 +

1−ηcηd

2ηd

)

, − ηc, − e0 + e−t

]⊺

,

if P gr,da
t ≥ 0, j = 3

[(

1+ηcηd

2ηd sa
t,1800 +

1−ηcηd

2ηd

)

, − 1
ηd , − e0 + e−t

]⊺

,

if P
gr,da
t < 0, j = 3

[

−ηcsa
t,1800, ηc, e0 − e+t

]⊺

, j = 4

,

(59)

Γj =


































diag
(

ηcVar(s̃a
t,1), 0, Var(p̃+t )

)

, j = 1

diag
(

1
ηd Var(s̃a

t,1), 0, Var(p̃−t )
)

, j = 2

diag
(

1+ηcηd

2ηd Var(s̃a
t,1800), 0, Var(ẽ0) + Var(ẽ−t )

)

,

j = 3

diag
(

ηcVar(s̃a
t,1800), 0, Var(ẽ0) + Var(ẽ+t )

)

, j = 4

,

(60)

where, we use over-line symbols, e.g., sa
t,1, and Var(·), e.g.,

Var(s̃a
t,1), to denote the mean and variance of the uncertain

parameters in ξ̃
′

, which can be estimated learning historical

data; diag(·) denotes a diagonal matrix. Because the variance

of a uncertain parameter is nonnegative, we have Γj � 0.

APPENDIX E

PROOF OF PROPOSITION 3

First, based on the result proposed by Calafiore and Ghaoui

[37] (Theorem 3.1), for any ǫ ∈ (0, 1), the chance constraint

(42) holds, if constraint (44) holds.

To solve the φ-divergence based data-driven chance-

constraint (43), we introduce another proposition based on the
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findings of Jiang & Guan [36] (we omitted the proof here

for brevity, interested readers can refer to Corollary 1 and

Proposition 2 in [36]):

Proposition 4 (Jiang & Guan [36], Corollary 1 and Propo-

sition 2): The distributionally robust chance constraint

inf
Iφ(Dj,D0)≤ρ

Pr
d̃j∼Dj

{

d̃
⊺

j X̂ ≤ 0
}

≥ 1− ǫ, ∀j,

where, Iφ(Dj ,D0) is defined by the χ2-divergence, holds if

the classical chance constraint

Pr
d̃j∼D0

{

d̃
⊺

j X̂ ≤ 0
}

≥ 1− ǫ
′

, ∀j,

holds, where

ǫ
′

= ǫ−
√

ρ2 + 4ρ(ǫ2 − ǫ)− (1 − 2ǫ)ρ

2ρ+ 2
.

By Proposition 4, we can conservatively approximate the

chance constraint (43) by the following constraint:

Pr
d̃j∼D0

{

d̃
⊺

j X̂ ≤ 0
}

≥ 1− ǫ
′

, ∀j = 3, 4, (61)

in which, D0 is Gaussian with mean dj and variance Γj .

Then, based on the result on Gaussian chance-constrained

program proposed by Prékopa [42] (Theorem 10.4.1), for any

ǫ ∈ (0, 0.5], the chance constraint (61) holds, if the following

constraint holds:

Ψ−1
G (1 − ǫ

′

)‖Γ
1

2

j X̂‖2 + d
⊺

j X̂ ≤ 0, ∀j = 3, 4,

which is exactly the constraint (45).

This proves Proposition 3. �
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