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Battery Adaptive Observer for a Single Particle Model with
Intercalation-Induced Stress

Dong Zhang, Satadru Dey, Luis D. Couto, Scott J. Moura

Abstract—Battery electrode particle fracture due to stress
generation is a critical mechanism causing capacity fade, and thus
reducing battery life. This paper develops a nonlinear adaptive
observer for lithium-ion battery state of charge (SOC), electrode
particle stress, and solid phase diffusivity estimation using a
high fidelity coupled single particle – mechanical stress model,
where the stress sub-model captures stress development during
lithium-ion intercalation and deintercalation. Simultaneous state
and parameter estimation based on coupled single particle and
mechanical stress model is extremely challenging because the
coupled model is given by highly nonlinear partial differential
equations. We address this problem by reducing the coupled
model to a nonlinear finite dimensional system. The key novelty
of the present work is a nonlinear internal state and parameter
estimation methodology, from which the internal stress and the
state of health related parameters are monitored from real-time
electric current and terminal voltage measurements. Numerical
studies on simulation and experimental data have been conducted
to illustrate the performance of the proposed estimation scheme.

Index Terms—Li-ion Batteries, Electrochemical Modeling, Me-
chanical Stress, Adaptive Observer, Lyapunov Stability

I. INTRODUCTION

Safe operation and degradation of Lithium-ion (Li-ion)
batteries have always been critical especially when the usage
of batteries gets ubiquitous. To address this problem, a battery
management system (BMS) implements real-time control and
estimation algorithms to enhance performance while improv-
ing safety [1]. One of the important functions of a BMS
is battery state of charge (SOC) and state of health (SOH)
estimation. However, simultaneous SOC and SOH estimation
are particularly challenging due to (i) limited real-time mea-
surements, (ii) complex electrochemical-thermal-mechanical
physics, and (iii) limitations of control theory – especially for
nonlinear partial differential equation (PDE) models.

Battery models are typically used in a BMS for infer-
ring internal states based on measured current, voltage and
temperature [2], [3]. The equivalent circuit models possess
simple structure but sacrifice the information of internal states,
while high-fidelity electrochemical models can capture the
underlying physical and chemical processes [4]. Though elec-
trochemical models accurately predict the internal states, their
mathematical structures are often very complicated for con-
trol/estimation design. This point motivates model reduction
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techniques to reduce the complexity of full order electrochem-
ical models. Among the numerous reduced order models, the
single particle model (SPM) is the most commonly used one.
The SPM is derived from the full order electrochemical model,
and hence it inherits some important properties. Each electrode
of the SPM is assumed to be a single spherical particle and
the current distribution is uniform across both electrodes.
In addition, the electrolyte concentration is assumed to be
constant in space and time [3]. Based on the SPM, Kalman
filter (KF) for SOC estimation was designed in [5], [6]. The
shortcoming of KF approaches arise from the difficulties to
verify the asymptotic convergence properties. The authors of
[7] proposed a SOC estimation technique using the SPM,
where the radial-domain dependence of solid phase lithium
concentration is approximated by a fourth-order polynomial.
One of the important drawbacks of the SPM is that it does not
accurately predict voltage at high C-rate, since the electrolyte
dynamics are neglected. In order to compensate this, models
that combine the SPM with other components are developed.
For instance, electrolyte phase contribution are approximated
by polynomial functions in [8]. State estimation scheme with
provable convergence for the SPM with electrolyte dynamics
is derived and analyzed in [9]. Temperature distribution inside
the battery is a crucial quantity for thermal management
in BMS. An electrochemical model coupled with electrolyte
dynamics and temperature dependent parameters is presented
for SOC estimation [10]. Battery SOC and internal temperature
are estimated from a reduced and reformulated electrochemical
model in [11].

In recent years, battery SOH has gained increased focus
due to concerns over battery safety and life. Various factors
contribute toward battery degradation, e.g. capacity fade and
resistance growth. See [12] for a particularly excellent review.
Though simultaneous SOC and SOH estimation problem has
been well-studied using circuit models [13]–[15], it is less
examined for electrochemical models. Moura et al. created an
adaptive PDE observer for combined SOC and SOH estimation
by adopting PDE backstepping observer design procedure
[16]. A nonlinear Luenberger-type adaptive observer is de-
signed on a coupled electrochemical-thermal model in [17]. In
the aforementioned papers, certain parameters, e.g. diffusion
coefficient and contact resistance, are used as indicators of
SOH, and these parameters are identified in real time.

Other than the model parameter dependent health indicator
for Li-ion batteries, this paper inspects another quantity for
studying battery health, namely the intercalation-induced stress
generated inside the solid phase particles. An important capac-
ity fade mechanism is the particle fracture due to intercalation-
and deintercalation-induced stresses [18]. Volume changes of
the electrode particles due to stress generation may induce
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particle fracture if the stress (radial or tangential [19], [20])
exceeds the yielding stress of the material [21]. This phe-
nomenon motivates the development of models that incorpo-
rate stress mechanics into the SPM. Seminal work conducted
by Christensen and Newman developed a mathematical model
to capture volume expansion and contraction during lithium
insertion [21]. Later, models that combine the SPM with
diffusion-induced stress was introduced in [22], relying on an
analogy to thermal stress. In [23], a modified SPM that incor-
porates stress-enhanced diffusion and electrolyte concentration
distribution was developed. This model strikes an intriguing
balance of fidelity and structural simplicity. An interesting
BMS application of these models is introduced in [24], where
the authors performed optimal charging under stress con-
straints. It is worth noting that spatial non-uniformity in battery
electrode can cause degradation even when operating within
the manufacturer specified limits. Although applying the SPM-
based model for battery SOH estimation and monitoring can
not capture this spatial distribution of degradation patterns
due to heterogeneities in electrode geometry [25], we seek
quantitative aggregated stress prediction to better understand
battery SOH in this paper.

In summary, there now exists a keen interest to address
the SOH estimation problem, and recent model developments
on diffusion induced stress can be enabling. However, no
work currently exists on state and parameter estimation with
coupled SPM-Stress models to the authors’ best knowledge.
In this paper, we extend our previous work [26] and design
a nonlinear observer based on this coupled model to estimate
the bulk SOC, the particle stress profile, and the anode lithium
diffusivity from current and voltage measurements only. Con-
sequently, the real-time electrochemical model parameter can
be monitored as a battery health indicator, and the electrode
stress supports the studies on several physical degradation
phenomena associated with battery health. This contribution
departs from previous works in estimation for battery models
in the following ways:

• It makes one of the first attempts to exploit the stress-
enhanced electrochemical model for the estimation of
internal stress on top of SOC and model parameters. This
issue is relevant for batteries consisting of electrodes that
tend to expand and fracture due to stress.

• It considers a nonlinear state dynamical model stemming
from intercalation-induced stress effects, which contrasts
with linear state dynamics in [16], [17].

• A sliding mode observer based adaptive estimation
scheme is proposed, which differs from e.g. output inver-
sion and least squares estimation [16]. The used observer
is known to be robust against model uncertainties.

• It performs state and parameter estimation simultaneously
while providing convergence conditions for the proposed
estimation scheme through a rigorous stability analysis.

The remainder of the paper is organized as follows: Section
II presents the battery single particle model with intercalation-
induced stress. Section III motivates the importance of moni-
toring the electrode stress via a simulation example. Section IV
discusses model properties, model reduction, and state-space

Figure 1. Sketch of the Single Particle Model (SPM) Concept

model formulation. The observer design with convergence
analysis is presented in Section V. Section VI demonstrates the
performance of designed observer via simulation and utilizing
experimental data. The limitations of the proposed scheme
and future work are enumerated in Section VII. Finally,
conclusions are drawn in Section VIII.

II. MODEL DESCRIPTION

Figure 1 portrays the concept of the SPM. In the full order
electrochemical model (a.k.a. Doyle-Fuller-Newman model
[4]), Li-ion transports in the solid and electrolyte phases. The
key idea of the SPM is that the solid phase of each electrode
can be modeled as a single spherical particle, and Li-ion
concentration in electrolyte phase is assumed to be constant in
space and time [16]. The SPM captures less dynamic behavior
than the full order model, and specifically does not include
mechanical responses, whose effect on diffusion becomes
significant when the electrode material has high modulus and
high partial molar volume [22].

The model equations for the coupled SPM and stress
presented here closely follow the derivation by Zhang et al.
[22]. A list of description for symbols can be found in Table
I. For the case of a two dimensional spherical particle, the
intercalation of Li-ions in the solid phase is modeled as a
process due to diffusion and stress generation, given by

∂cjs
∂t

= Dj
s

[
∂2cjs
∂r2
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∂cjs
∂r

∂σjh
∂r

− Ωj

RT
cjs

(
∂2σjh
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+
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r

∂σjh
∂r

)]
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with the boundary condition
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[
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cjs(R
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∂σjh
∂r
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]
=
ijn(t)

F
, (2)

where cjs = cjs(r, t) : [0, Rjs] × [0,∞) → R maps the radial
position and time to solid phase lithium concentration in
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Table I
SPM-STRESS MODEL SYMBOL DESCRIPTION

Symbols Description Units
aj Specific interfacial surface area [m2/m3]
A Cell cross sectional area [m2]
c0e Li-ion concentration in electrolyte phase [mol/m3]
cjs Solid phase Li-ion concentration [mol/m3]
cjss Li-ion concentration at particle surface [mol/m3]

cjs,max Max Li-ion concentration in solid phase [mol/m3]

c̃js
Concentration change from

stress-free value [mol/m3]

Dj
s Solid phase diffusion coefficient [m2/sec]

Ej Young’s Modulus [GPa]
F Faraday’s constant [C/mol]
ijn Particle surface current density [A/m2]
I Applied current [A]
kj Charge transfer reaction rate [A·m2.5/mol1.5]
Lj Electrode thickness [m]
nLi,s Lithium in the solid phase [mol]
r Radial coordinate [m]
R Universal gas constant [J/mol-K]
Rf Contact film resistance [Ohm]
Rj

s Particle radius [m]
t Time [Second]
T Battery cell temperature [K]
Uj Open circuit potential [V]

Θj
min Lower stoichiometry point [-]

Θj
max Upper stoichiometry point [-]
αj Charge transfer coefficient [-]
εjs Volume fraction of solid phase [-]
νj Poisson’s ratio [-]
σj
h Hydrostatic stress [MPa]

Ωj Partial molar volume [mol/m3]

electrode j, and σjh = σjh(r, t) : [0, Rjs] × [0,∞) → R maps
the radial position and time to hydrostatic stress in electrode
j. The current density ijn is proportional to the input current
by the relation ijn(t) = ±I(t)/ajALj .

The stress tensor consists of radial stress σr and tangential
stress σt, which are functions of the lithium concentration:

σjr(r, t) = 2βj
[

1

(Rjs)3

∫ Rj
s

0

c̃jsr
2dr − 1

r3

∫ r

0

c̃jsρ
2dρ

]
, (3)

σjt (r, t) = βj
[

2

(Rjs)3

∫ Rj
s

0

c̃jsr
2dr+

1

r3

∫ r

0

c̃jsρ
2dρ−c̃js

]
, (4)

where βj = ΩjEj/3(1 − νj). The hydrostatic stress is a
weighted sum of σr and σt:

σjh =
σjr + 2σjt

3
=

2

3
βj
[

3

(Rjs)3

∫ Rj
s

0

c̃jsr
2dr − c̃js

]
. (5)

Substituting (5) into (1) yields

∂cjs
∂t

=Dj
s

[
(1 + θjcjs)

(
∂2cjs
∂r2

+
2

r

∂cjs
∂r

)
+ θj

(
∂cjs
∂r

)2]
, (6)

where θj = (Ωj/RT )[(2ΩjEj)/9(1 − νj)] is a constant
depending on electrode material mechanical properties. The
boundary condition is obtained by substituting (5) into (2):

−Dj
s

(
1 + θjcjs(R

j
s, t)

) ∂cjs
∂r

(Rjs, t) =
±I(t)

FajALj
. (7)

For well-posedness, the Neumann boundary condition at r = 0
is required:

∂cjs
∂r

(0, t) = 0. (8)

The two variables, concentration and stress involved in
PDE (1), are decoupled into a single nonlinear PDE (6) that
describes the diffusion of Li-ion under the influence of stress,
and concentration-dependent radial and tangential stresses in
(3) and (4). Therefore, the dynamical equation for the solid
phase Li-ion concentration with intercalation-induced stress
is given by (6), with the boundary conditions (7)-(8). The
nonlinearities in PDE (6) can be regarded as a diffusion with
state-dependent diffusivity as well as a square of the spatial
derivative of the state. Note that the intercalation-induced
stress effect is ignored if θj = 0, resulting in the regular SPM.

The output terminal voltage VT is a function of solid
phase surface concentration, open circuit potentials, electric
overpotentials, and Butler-Volmer kinetics:

VT (t) =
RT

α+F
sinh

[
−I(t)

2a+AL+i+0 (c+ss(t))

]
− RT

α−F
sinh

[
I(t)

2a−AL−i−0 (c−ss(t))

]
+ U+(c+ss(t))− U−(c−ss(t))−RfI(t), (9)

where the exchange current density ij0(·) is

ij0(cjss) = kj
√
c0ec

j
ss(t)(c

j
s,max − cjss(t)), (10)

cjss(t) = cjs(R
j
s, t). (11)

U+(·) and U−(·) in Eq. (9) are the equilibrium potentials of
positive and negative electrode material as functions of solid
phase surface concentrations.

III. MOTIVATION

In this subsection, we illustrate the importance of moni-
toring stress inside the electrode solid particle via a simu-
lation study. The model parameters are identified from the
experimental data presented in Figure 7 in Section VI.B, and
they correspond to a commercial LiNiMnCoO2 (NMC) - LiC6

cell. A transient electric vehicle-like charge/discharge cycle
generated from urban dynamometer driving schedule (UDDS)
is applied, and the maximum absolute radial and tangential
stresses for anode (graphite) are simulated and plotted in
Figure 2. The maximum absolute radial and tangential stresses
are located at the center and the surface of the electrode
particle, respectively [22], and they are dependent on the
change of radial Li-ion concentration from its stress-free value:

σ−r,max(t) = 2β−
[

1

(R−s )3

∫ R−
s

0

c̃−s r
2dr − 1

3
c̃−s (0, t)

]
, (12)

σ−t,max(t) = β−
[

3

(R−s )3

∫ R−
s

0

c̃−s r
2dr − c̃−s (R−s , t)

]
. (13)

The dotted red lines in Figure 2 represent the yielding stress
for graphite. It is evident that the yielding stresses of materials
are generally lowered by repeated cycling, and it is possible
that the yielding stress of carbonaceous materials will fall



4

0 10 20 30 40 50 60
-2

-1

0

1
C

u
rr

e
n
t 
[C

-r
a
te

]

I

0 10 20 30 40 50 60

0

50

100

M
a
x
 S

tr
. 
(r

) 
[M

P
a
]

σr,max

Yielding Stress

0 10 20 30 40 50 60

Time [min]

0

50

100

150

M
a
x
 S

tr
. 
(t

) 
[M

P
a
]

σt,max

Figure 2. Maximum radial and tangential stresses for a commercial NMC
cell under UDDS cycle loads

below 30 MPa when the cell is cycled [21]. Consequently, the
maximum absolute radial and tangential stresses exceed the
yielding stress at approximately 4 minutes and 1.2 minutes
after the current switches to non-zero value, respectively. The
anode particle may fracture during the large portion of this
driving cycle since the maximum stresses are significantly
higher than the yielding stress. Hence, from the safety point
of view, the users of the BMS shall greatly benefit from the
real-time particle stress information to ensure safe operation
and longevity of the battery.

Remark 1. The electrode particles are very likely to fracture
if the maximum stresses exceed the yielding stress of the
electrode material. However, the stresses at which particles
actually fracture may greatly vary, and the yielding stress of
the material is an upper limit on the stress required for particle
fracture. It is possible to fracture during cycling even when the
maximum stress is below the yielding stress [27]. Although the
exact condition for particles to fracture may not be determined,
criteria for electrode fracture tendency have been identified in
[20], namely strength-based and energy-based criteria.

IV. MODEL ANALYSIS AND REDUCTION

This section presents model properties, system observability
analysis, and state-space formulation for observer design.

A. Conservation of solid-phase lithium

The moles of lithium in the solid phase nLi,s is conserved,
where

nLi,s(t) =
∑

j∈{+,−}

εjsL
jA

4
3π(Rjs)3

∫ Rj
s

0

4πr2cjs(r, t)dr. (14)

The lithium conservation can be verified by differentiating
(14) with respect to time:
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sFajALj

=
I

F
− I

F
= 0, (15)

where the second equality comes from the dynamical equation
(6), the third equality follows from integration by parts, the
fourth equality results from the boundary conditions (7), and
the last equality utilizes the relation εj = ajRjs/3.

The lithium conservation property will be leveraged for
model reduction in the next subsection.

B. Model Reduction

The cell voltage in (9) depends on U+(c+ss) − U−(c−ss),
which makes the difference of the open circuit potential ob-
servable from the voltage measurement but does not guarantee
the observability of each open circuit potential [6]. This paper
adopts the idea in [6] to overcome this issue by seeking a
relation between the positive and negative solid phase surface
concentrations by the lithium conservation property in (14):

c+ss =
nLi − ε−s L−Ac−ss

ε+s L+A
, (16)

and the output function (9) can be adjusted accordingly:

VT (t) =
RT

α+F
sinh

[
−I(t)

2a+AL+i+0 (γc−ss(t) + κ)

]
− RT

α−F
sinh

[
I(t)

2a−AL−i−0 (c−ss(t))

]
+ U+(γc−ss(t) + κ)− U−(c−ss(t))−RfI(t), (17)

where γ = −(ε−s L
−)/(ε+s L

+) and κ = nLi/(ε
+
s L

+A). The
reduced system is then modeled by the anode dynamics (c−s -
system) from diffusion equation (6) and output function (17).
Ideally, we intend to check the observability of the reduced
nonlinear PDE system (6) and (17), but the theoretical results
of the PDE system observability is not well-developed, and as
a result we discretize the PDE system into a system of ODEs
in the subsequent section and evaluate the local observability
of the spatially discretized system.
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Remark 2. In the present work, we introduce state and param-
eter observer for the graphite anode in particular. Although
the above model reduction is motivated by the observability
condition from control theory perspective, the anode selection
arises from the physics. The graphite anodes are prone to
degradation due to volume changes and concentration gra-
dients [28]–[30], and such degradation results in diffusion-
induced stress that might lead to particle fracture [21], [31].

C. State-Space Model Formulation and Analysis

There is a growing but small body of theoretical results
on adaptive estimation of parabolic PDEs. For instance, an
extended Luenberger-type observer is designed for a class
of semilinear parabolic PDEs in [32], achieving exponential
stability of the linearized observer error dynamics. However,
the model therein reflects only semi-linearity and no parameter
uncertainties. The methods introduced in [33] stands out as it
provides a thorough analysis and proof of adaptive scheme
using output feedback for linear parabolic PDEs with spa-
tially varying coefficients. Nonetheless, this approach doesn’t
directly extend to this paper as the SPM-Stress model contains
highly nonlinear components. In [34], the authors developed an
adaptive boundary observer for parabolic PDEs with both do-
main and boundary parameter uncertainties, with convergence
results, where the PDE is linear in the states and parameters,
making it more tractable for the backstepping technique. In the
context of battery applications, Ascencio derives an adaptive
PDE observer for the SPM, including a parameter estimate for
the diffusion coefficient [35]. Sum-of-squares programming is
used for solving the kernel PDE online. Although these results
have advanced our understanding of adaptive estimation for
parabolic PDEs in infinite dimensional space, the considered
problem in this paper is still extremely difficult. Hence, this
paper uses model discretization so that finite dimensional
estimation tools can be leveraged.

Henceforth, we will only consider dynamics for anode
and drop the subscripts and superscripts to simplify notation,
namely c = c−s , D = D−s , Rs = R−s , a = a−, L = L−, and
θ = θ−. Suppose (N + 1) nodes are used for discretization in
the r direction, and ∆r = Rs/N . Define the parameter

τ =
D

(∆r)2
. (18)

The central difference method is used for discretizing the
PDEs into ODEs. The system of ODEs for the internal nodes
of the anode diffusion dynamics are

∂ci
∂t

= τ

[
(1 + θci)(ci−1 − 2ci + ci+1)

+

(
2

i
+ θ

ci+1 − ci−1
2

+
2θ

i
ci

)(
ci+1 − ci−1

2

)]
, (19)

where i ∈ {1, 2, · · · , N − 1}. At the right boundary point
i = N (r = Rs), the method of imaginary points is utilized

to discretize the governing equations:

∂cN
∂t

= τ

[
(1 + θcN )

(
cN−1 − cN −

I ·N
3τεFAL(1 + θcN )

)]
+ τ

[
1

N
+
θ

4

(
cN − cN−1 −

I ·N
3τεFAL(1 + θcN )

)
+

θ

N
cN

]
·
[
cN − cN−1 −

I ·N
3τεFAL(1 + θcN )

]
. (20)

The terms including 1/r has singularity at r = 0. Applying
L’Hopital’s rule eliminates the singularity, and (6) becomes

∂c

∂t
= D

[
3(1 + θc)

∂2c

∂r2
+ θ

(
∂c

∂r

)2]
. (21)

Method of imaginary points can be employed again to dis-
cretize the governing equation at i = 0 (r = 0):

∂c0
∂t

= 6τ(1 + θc0)(c1 − c0). (22)

The state-space model can be written in the following form
based on (19), (20), (22), and (17):

ẋ = τAx+ τθf(x, τ, u),

y = h(cN , u), (23)

where the state vector x =
[
c0 c1 c2 ... cN

]> ∈ RN+1,
input u = I ∈ R is the applied current, output terminal voltage
y = h(cN , u) = VT ∈ R, nonlinear function f(x, τ, u) =[
f0(x) f1(x) ... fN−1(x) fN (x, τ, u)

]> ∈ RN+1, and
matrix A ∈ R(N+1)×(N+1). Following the derivation from
(19), (20), and (22), we have

A =



−6 6 0 0 · · · · · · 0
0 −2 2 0 · · · · · · 0
0 1

2 −2 3
2 · · · · · · 0

0 0 2
3 −2 · · · · · · 0

...
...

...
. . . . . . . . .

...
0 0 0 0 · · · −2 N

N−1
0 0 0 0 · · · N−1

N −N−1N


, (24)

and

f(x, τ, u) =

6c0(c1 − c0)
...

ci
(
i−1
i ci−1 − 2ci + i+1

i ci−1
)

+ (ci+1−ci−1)
2

4
...

fN (cN−1, cN , τ, u)

 , (25)

where

fN (cN−1, cN , τ, u) = −N + 1

θN

I ·N
3τεFAL(1 + θcN )

+ cN

[
cN−1 − cN −

I ·N
3τεFAL(1 + θcN )

]
+

[
1

4

(
cN − cN−1 −

I ·N
3τεFAL(1 + θcN )

)
+

1

N
cN

]
×[

cN − cN−1 −
I ·N

3τεFAL(1 + θcN )

]
. (26)
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Assumption 1. It has been verified by numerous literature,
e.g. [36], that the nonlinear output function h(cN , u) is
strictly increasing with respect to the surface concentration
cN . We can conclude that for any given finite input u and
any two different surface concentration values cN,i, cN,j ∈
[Θ−min,Θ

−
max] · c−s,max, the following expression holds:

sgn(h(cN,i, u)− h(cN,j , u)) = sgn(cN,i − cN,j), (27)

where the operator sgn(·) is the signum function.

This property will become important, as it eases the analysis
of observer convergence in the next section.

Remark 3. The function f(x, τ, u) is continuously differen-
tiable with respect to the state x and the parameter τ , a
sufficient condition for Lipschitz continuity [36]. For any two
vectors X1, X2 ∈ RN+1, where each entry of X1 and X2 is
within the range [Θ−max,Θ

−
min] · c−s,max, a Lipschitz constant

with respect to the state x can be obtained by computing the
infinity norm of ∂f/∂x, i.e., Kx = ‖∂f/∂x‖∞, such that

‖f(X1, τ, u)− f(X2, τ, u)‖ ≤ Kx‖X1 −X2‖. (28)

Similarly, for any two scalars T1, T2 ∈ R, a Lipschitz
constant with respect to the parameter τ is expressed as
Kτ = ‖∂f/∂τ‖∞, such that

‖f(x, T1, u)− f(x, T2, u)‖ ≤ Kτ‖T1 − T2‖. (29)

From (28) and (29), a multi-variable Lipschitz continuous
condition for the function f(x, τ, u) is inferred:

‖f(X1, T1, u)− f(X2, T2, u)‖
≤ Kx‖X1 −X2‖+Kτ‖T1 − T2‖. (30)

It also immediately follows from (28) that fN (cN , cN−1, τ, u)
is bounded within the compact operating interval cN−1, cN ∈
[Θ−min,Θ

−
max] · c−s,max, for all finite input current u and

finite parameter τ . Mathematically, for any (cN−1, cN ) and
(c′N−1, c

′
N ),

|fN (cN−1, cN , τ, u)− fN (c′N−1, c
′
N , τ, u)| ≤M, (31)

where 0 < M <∞.

Remark 4. It should be pointed out that the considered set-
up can be readily transferred to the case of concentration
dependent parameters, eg. D = D(c) and θ = θ(c). Suppose
the dependence is continuous, then the Lipschitz continuity
property on nonlinear function f(x, τ, u) introduced in Re-
mark 3 still holds since the discretized concentration ci is
bounded by [Θ−min,Θ

−
max] · c−s,max.

D. Observability Analysis

The observbility of a nonlinear finite-dimensional system
can be verified by a rank test based on the concept of
Lie Derivatives. It should be pointed out that the local ob-
servability of a nonlinear system is not equivalent to the
observability of the linearized system, which was examined
previously in [37], [38] for battery equivalent circuit models.

Here, we present local observability rank test by considering
the following form of nonlinear system:

ẋ = η(x) +

m∑
i=1

uigi(x), (32)

y = φ(x), (33)

where x ∈ Rn is the state, ui ∈ R is the input, y ∈ R is the
output, and η, gi, and φ are real-valued smooth functions. The
gradient of φ, denoted by dφ, is expressed by

dφ =

[
∂φ

∂x1

∂φ

∂x2
· · · ∂φ

∂xn

]
. (34)

The Lie Derivative of φ with respect to function η is denoted
by

Lηφ = dφ · η =

n∑
i=1

∂φ

∂xi
· ηi. (35)

The following theorem [39] provides the rank test for local
observability of a nonlinear system in the form of (32)-(33).

Theorem 1. Suppose x0 ∈ Rn is given. Consider the expres-
sion

Γ = (dLzsLzs−1
· · ·Lz1φ)(x0), (36)

where s ≥ 0, zi ∈ {η, g1, · · · , gm}, evaluated at x0. If there
are n linearly independent row vectors in Γ, then the system
is locally observable around x0.

Herein, for the simplicity of the calculation, we evaluate the
local observability under constant input current. The expres-
sions of η(x), g1(x), g2(x), and φ(x) can be derived from
the state-space model (23)-(26), and u1 = I and u2 = I2.
The calculation of Γ in (36) reveals that the system is locally
observable at x0.

V. OBSERVER DESIGN AND ANALYSIS

The state and parameter estimation problem seeks to design
an adaptive observer system to reconstruct the unknown state
x and parameter τ in the plant model (23) with the knowledge
of output y and input u measurements. In this present work,
the available energy of the battery cell is quantified by the bulk
SOC in the anode, and it can be computed from normalizing
the anode volume average of Li-ion concentration against the
maximum concentration:

SOC(t) =
3

(R−s )3c−s,max

∫ R−
s

0

r2c−s (r, t)dr. (37)

Note that the SOC calculation in (37) yields an unnormalized
value. The actual bulk SOC should be normalized with respect
to the difference of upper and lower stoichiometry points
of anode material. The estimation of radial and tangential
stresses are computed using solid phase Li-ion concentration
estimation by (3)-(4).

Remark 5. The magnitude of diffusion induced electrode
stress is not a comprehensive indicator of battery health,
but certainly is a contributor to several physical degradation
phenomena associated with battery health. Examples include
the growth of particle surface cracks as a function of maximum
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Figure 3. Block diagram of adaptive observer structure. It consists of
the solid phase surface concentration observer (blue), the adaptive observer
(yellow), and the stress estimation calculation (coral). The adaptive observer
is comprised of two parts: diffusion coefficient identification (yellow/left) and
and full state observer (yellow/right). The observers utilize measurements of
input current and output terminal voltage only.

tangential stress according to Paris’ Law [40], and mechanical
fatigue described by the Palmgren-Milner (PM) rule [41].

The primary unknown parameter considered in this paper
is the diffusivity in the anode D−s , or equivalently τ , as it
directly affects the dynamics of Li-ion transportation in the
solid phase. There is also consensus within the literature that
the diffusion coefficient is one of the most sensitive parameters
to the battery cycling aging [42]. Aside from improving the
state estimation accuracy, the estimated parameter can be
regarded as an indicator of SOH. Thus, the battery health
condition is assessed by both model parameter values and
physical degradation phenomena associated with the diffusion
induced stress.

Systematic ways for adaptive observer design for nonlinear
systems have been studied in the existing literature [43], [44].
These approaches often consider certain dynamic model struc-
tures with linear model output function, where the linearity
in the output is an essential property for deriving the update
law for parameter estimate. Nonetheless, the output map in
the battery application is highly nonlinear with respect to the
states and input, which makes the adaptive observer design
intricate. In this paper, we adopt a similar approach as in
[43], with the extension to (i) a nonlinear output equation and
(ii) a more general model dynamics structure. The stability of
the the proposed observer will be rigorously analyzed by the
Lyapunov’s direct method.

Figure 3 depicts the observer design concept. The surface

concentration observer (blue block) takes the measurements
of input current and output voltage to estimate the surface
concentration only. The estimated surface concentration be-
comes a pseudo-measurement signal utilized in the subse-
quent adaptive observer (yellow blocks). The model used for
adaptive observer design is reformulated such that the surface
concentration estimation becomes the model output, which is a
linear function of the state vector. Finally the stress estimation
(coral block) can be calculated from the state estimates. The
details are illustrated in the following subsections.

A. Surface Concentration Observer Design
In this subsection, we present the observer design for

estimating solid phase surface concentration (blue block in
Figure 3), and the corresponding convergence analysis using
the Lyapunov’s direct method.

In order to obtain surface concentration information and
reformulate the state space model for adaptive observer design,
we separate the state vector x into two components, namely
define ξ =

[
c0 c1 · · · cN−1

]>
that contains the first N

entries of x, and x =
[
ξ> cN

]>
. Re-write the plant model

(23) as

ξ̇ = τAx+ τF (x), (38)

ċN = τ
N − 1

N
cN−1 − τ

N − 1

N
cN + τθfN (x, u), (39)

y = h(cN , u), (40)

where matrix A is the matrix A excluding the last row, and
F (x) =

[
f0(ξ) f1(ξ) · · · fN−1(x)

]>
. Note that in the

plant model (38)-(40), the unknown parameter is τ and the
unknown states are ξ and cN . Despite the fact that τ is
unknown, proper upper and lower bounds of τ is assumed.
These bounds can be retrieved from existing literature based
on the electrode materials. Mathematically, we have

0 < τ ≤ τ ≤ τ <∞. (41)

Consider the following observer structure:

˙̌cN = τo
N − 1

N
čN−1 − τo

N − 1

N
čN + τoθf̌N

+ L · sgn(y − y̌), (42)

where the quantities with the “inverse hat” symbols denote
their estimation, and the scalar observer gain L > 0 is to
be designed such that the estimation converges to the actual
value. Moreover, f̌N = fN (čN−1, čN , τ

o, u). The parameter
τo is a nominal value chosen a priori such that τ ≤ τo ≤ τ ,
and we further assume that τ = τo + δτ . Our objective is
to estimate the surface concentration with the presence of
parameter uncertainty, which can be achieved by selecting a
sufficiently high observer gain L. The above sliding mode ob-
server structure adopts the error injection concept and is well-
known for its robustness against parameter/model uncertainty
when applied to nonlinear systems [45].

Proposition 1. Consider the surface concentration dynamics
(39) with bounded unknown parameter τ ≤ τ ≤ τ , and
observer (42). If there exists a scalar gain such that

L > τ
N − 1

N
|c̃N−1|max + τθM + Ψ, (43)
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in which Ψ > 0 is finite and given by (45), then the estimation
error c̃N = cN − čN converges to zero in finite time.

Proof. Consider the estimation errors c̃N = cN − čN and
c̃N−1 = cN−1 − čN−1. Subtracting (42) from (39), and the
error dynamics can be written as:

˙̃cN =τo
N − 1

N
c̃N−1 − τo

N − 1

N
c̃N + τoθf̃N − Lsgn(c̃N )

+ δτ
N − 1

N
cN−1 − δτ

N − 1

N
cN + δτθfN , (44)

where f̃N = fN (cN−1, cN , τ, u) − fN (čN−1, čN , τ
o, u). No-

tice that we have utilized the monotonicity property of y (see
Assumption 1) to substitute sgn(y − y̌) with sgn(c̃N ). Based
on the fact that cN , cN−1 and fN are bounded under finite
input current, let

Ψ , δτ
N − 1

N
cN−1 − δτ

N − 1

N
cN + δτθfN ≤ Ψ, (45)

with Ψ > 0 being the upper bound of Ψ.
We analyze the error dynamics (44) using the Lyapunov

function candidate
V =

1

2
c̃2N , (46)

and the derivative of the Lyapunov function along the trajec-
tory of c̃N is

V̇ =c̃N ˙̃cN

=c̃N

[
τo
N − 1

N
c̃N−1 − τo

N − 1

N
c̃N + τoθf̃N

− Lsgn(c̃N ) + Ψ

]
≤|c̃N |

[
τ
N − 1

N
|c̃N−1|+ τθ|f̃N |+ Ψ

]
− Lc̃N sgn(c̃N )

− τoN − 1

N
c̃2N

≤|c̃N |
[
τ
N − 1

N
|c̃N−1|+ τθ|f̃N |+ Ψ

]
− L|c̃N |

≤|c̃N |
[
τ
N − 1

N
|c̃N−1|+ τθM + Ψ− L

]
. (47)

If the gain L is chosen high enough such that

L > τ
N − 1

N
|c̃N−1|max + τθM + Ψ, (48)

then we have that V̇1 ≤ 0.
Choose L∗ that meets the condition in (48), and define

ρ = L∗ −
[
τ
N − 1

N
|c̃N−1|max + τθM + Ψ

]
> 0. (49)

From (47) and (49), we have that

V̇ ≤ −
√

2ρ
√
V . (50)

The time required for c̃N to converge to zero can be analyt-
ically computed by solving (50) for V using the comparison
principle [46], and setting V = 0 and solving for tf :

tf =

√
2V (0)

ρ
, (51)

where V (0) is the initial condition of V . Therefore after t ≥
tf , c̃N → 0. Finite time convergence of čN → cN is attained.

�

B. Adaptive Observer Design

In this section, we develop the adaptive observer by extend-
ing the results from [43]. The surface concentration estimation
čN from the surface concentration observer is leveraged as a
pseudo-measurement signal for a reformulated plant model.
The dynamical equations in (23) are preserved while the output
is reformulated as a linear function of the state vector:

ẋ = τAx+ τθf(x, τ, u),

ys = Cx, (52)

where ys = cN and C =
[
0 0 · · · 0 1

]
∈ R1×(N+1).

The adaptive observer is designed such that the unknown
state x and parameter τ are converging to their actual values
simultaneously. The estimation system consists of a copy of
the plant model (52) plus the output error injection, as follows:

˙̂x = τ̂Ax̂+ τ̂ θf(x̂, τ̂ , u) + La(ys − ŷs),
ŷs = Cx̂, (53)

where the quantities with the “hat” symbols denote their
estimation, and La ∈ RN+1

+ is a vector of positive scalar gains
to be designed. We seek to derive an update law for τ̂ and
conditions on La that guarantee the convergence of state and
parameter estimates. Theorem 1 summarizes the convergence
results for adaptive observer (53).

Theorem 2. Consider the plant model (52) and observer sys-
tem (53), given accurate estimation of surface concentration
from Proposition 1. Let the error between the actual and the
estimated quantities to be x̃ = x − x̂, τ̃ = τ − τ̂ , and
ỹs = ys − ŷs. Furthermore, assume the actual value of the
unknown parameter is bounded by τ ≤ τ < τ . Then the
estimation error x̃ and τ̃ converge to zero asymptotically, if
the observer gain vector La is designed such that for all
τ † ∈ [τ , τ ], there exists a positive semidefinite matrix Q that
verifies

τ †A+ τθKxIN − LaC � −Q, (54)

and τ̂ evolves according to the system

˙̂τ =
ỹsCAx̂+ ỹsθfN (x̂, τ̂ , u)

γ
, (55)

where IN denotes a (N + 1) × (N + 1) identity matrix, and
γ > 0.

Proof. The state error dynamics are expressed by subtracting
(53) from (52):

˙̃x = τAx− τ̂Ax̂+ τθf(x, τ, u)− τ̂ θf(x̂, τ̂ , u)− Laỹs,
ỹs = Cx̃. (56)

The Lyapunov function candidate is chosen as

Va =
1

2
x̃>x̃+

1

2
γτ̃2, where γ > 0. (57)
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The derivative of Va along the trajectory of x̃ is

V̇a =
1

2
˙̃x>x̃+

1

2
x̃> ˙̃x+ γτ̃ ˙̃τ

=x̃> ˙̃x+ γτ̃ ˙̃τ

=x̃>[τAx− τ̂Ax̂+ τθf(x, τ, u)− τ̂ θf(x̂, τ̂ , u)

− Laỹs] + γτ̃ ˙̃τ

=x̃>[τAx− (τ − τ̃)Ax̂+ τθf(x, τ, u)

− (τ − τ̃)θf(x̂, τ̂ , u)− LaCx̃] + γτ̃ ˙̃τ

=x̃>[τAx̃+ τ̃Ax̂+ τθ(f(x, τ, u)− f(x̂, τ̂ , u))

+ τ̃ θf(x̂, τ̂ , u)− LaCx̃] + γτ̃ ˙̃τ

≤τ̃ [x̃>Ax̂+ x̃>θf(x̂, τ̂ , u)− γ ˙̂τ ]

+ x̃>(τA− LaC)x̃+ τθ‖x̃‖‖f(x, τ, u)− f(x̂, τ̂ , u)‖
≤τ̃ [x̃>Ax̂+ x̃>θf(x̂, τ̂ , u)− γ ˙̂τ ]

+ x̃>(τA− LaC)x̃+ τθ‖x̃‖(Kx‖x̃‖+Kτ‖τ̃‖)
=τ̃ [x̃>Ax̂+ x̃>θf(x̂, τ̂ , u)− γ ˙̂τ ]

+ x̃>(τA+ τθKxIN − LaC)x̃+ τθKτ‖x̃‖‖τ̃‖, (58)

where we have applied the Lipschitz continuity of the function
f with respect to x and τ at the second inequality according to
Remark 3, and the last equality follows from ‖x̃‖‖x̃‖ = x̃>x̃.

Now choose the update law for τ̂ by eliminating the terms
associated with τ̃ in the last line of (58):

x̃>Ax̂+ x̃>θf(x̂, τ̂ , u)− γ ˙̂τ = 0. (59)

Since x̃ is unavailable because the actual states are unknown,
we multiply both sides of (59) by CC> = 1 to get

ỹsCAx̂+ ỹsCθf(x̂, τ̂ , u)− γ ˙̂τ = 0. (60)

Then the update law for τ̂ can be explicitly written as

˙̂τ =
ỹsCAx̂+ ỹsθfN (x̂, τ̂ , u)

γ
, (61)

and the inequality (58) is simplified to

V̇a ≤ x̃>(τA+ τθKxIN − LaC)x̃+ τθKτ‖x̃‖‖τ̃‖. (62)

Choose gain La such that for all τ † ∈ [τ , τ ], there exists a
positive semidefinite matrix Q that satisfies

τ †A+ τθKxIN − LaC � −Q, (63)

and therefore,

V̇a ≤ −x̃>Qx̃+ τθKτ‖x̃‖‖τ̃‖
≤ −λmin(Q)‖x̃‖2 + τθKτ‖x̃‖‖τ̃‖

= −
[
‖x̃‖ ‖τ̃‖

] [λmin(Q) −τθKτ

0 0

] [
‖x̃‖
‖τ̃‖

]
, −ṽP ṽ>, (64)

where ṽ =
[
‖x̃‖ ‖τ̃‖

]
. Apparently the matrix P is positive

semidefinite since the eigenvalues of P are {λmin(Q), 0},
where λmin(Q) ≥ 0. Hence, it follows that V̇a ≤ 0. Next
we analyze the convergence of state and parameter estimation
errors.

1) Convergence of state estimation: Integrating both sides
of (64) and we have that

Va(t) ≤ Va(0)−
∫ t

0

ṽ>P ṽdt, (65)

which implies 0 ≤ Va(t) ≤ Va(0), so Va ∈ L∞. From (57),
x̃ ∈ L∞ and τ̃ ∈ L∞. Moreover, x̂ = x − x̃ ∈ L∞ and τ̂ =
τ − τ̃ ∈ L∞. Since Va(0) is finite and Va(t) ∈ L∞, x̃ ∈ L2.
In addition, from (56) and the fact that f is bounded, we have
˙̃x ∈ L∞. According to Barbalat’s Lemma [47], x̃, ˙̃x ∈ L∞
and x̃ ∈ L2 allows us to conclude that

lim
t→∞

x̃ = 0. (66)

Therefore, x̂ converges to x asymptotically.
2) Convergence of parameter estimation: It has been shown

in the previous subsections that x̃ is differentiable and has a
finite limit as t → ∞. Since f is Lipschitz continuous, f is
immediately uniformly continuous. Let χ = τAx − τ̂Ax̂ −
Laỹs = τAx̃+ τ̃Ax̂−LaCx̃, which are the terms at the right
hand side of (56) that are not associated with function f , and
we would like to show χ is uniformly continuous by verifying
the boundedness of χ̇. Taking the derivative of χ with respect
to time:

χ̇ = τA ˙̃x+ ˙̃τAx̂+ τ̃A ˙̂x− LaC ˙̃x. (67)

Since x̂ ∈ L∞ and f is bounded, we have ˙̂x ∈ L∞ from
(53). Based on (61), ˙̃τ = − ˙̂τ is bounded because x̂ and f
are bounded. Then it can be concluded that χ̇ is bounded,
which reveals that χ is uniformly continuous. Therefore, ˙̃x is
uniformly continuous. Again, apply Barbalat’s Lemma [47],

lim
t→∞

˙̃x = 0. (68)

Consider the first N state error dynamical equations in (56),
and it implies that when t→∞,

τAx− τ̂Ax̂+ τθF (x)− τ̂ θF (x̂)→ 0. (69)

Theoretically if the states converge asymptotically, i.e. x̂→ x
as t→∞, then from (69) we have

[Ax+ θF (x)](τ − τ̂)→ 0 as t→∞, (70)

so τ̂ converges to τ asymptotically. The value which τ̂
converges to highly relies on whether x̂ provides an ac-
curate estimation. In other words, the state estimation er-
ror determines how accurate the parameter estimation will
be. The uncertainties in the adaptive observer may result
from uncertainties in current and voltage measurements, and
model mismatch. Additionally, the performance of the adaptive
observer is highly sensitive to the accuracy of the surface
concentration observer since its output becomes the input
of the adaptive observer. Any uncertainties in the surface
concentration observer are passed into the adaptive observer
stage. �

C. Summary of Observer Design

The design of the complete observer is summarized in Table
II. It lists equations for each subsystem, the corresponding
design parameters, as well as the convergence type based on
the analysis in Section V.A and V.B.
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Table II
SUMMARY OF OBSERVER DESIGN

System Variables Design Params. Convergence Type

Observer
Concentration

Surface
čss L in (42) Finite-Time

Concentration
Solid Phase

x̂ La in (53) Asymptotic

Diffusivity
Parameter -

τ̂ γ in (61) Asymptotic

Table III
SPM-STRESS MODEL PARAMETERS

Symbols Simulation Experimental Units
L− 100 × 10−6 123 × 10−6 m
L+ 100 × 10−6 119 × 10−6 m
D−

s 3.9 × 10−14 7.98 × 10−16 m2/s
R−

s 10 × 10−6 8.21 × 10−6 m
ε−s 0.6 0.7215 N/A
ε+s 0.5 0.6516 N/A
k− 1 × 10−5 2.19 × 10−6 A·m2.5/mol1.5

k+ 3 × 10−7 2.68 × 10−7 A·m2.5/mol1.5

Rf 1.0 × 10−3 1.0 × 10−3 Ω×m2

nLi,s 2.5 0.14 mol
c−s,max 24983 31168 mol/m3

c+s,max 46171 42649 mol/m3

A 1 0.049 m2

En 60 60 GPa
νn 0.25 0.25 N/A
Ωn 4.926 × 10−6 4.926 × 10−6 m3/mol

VI. RESULTS AND DISCUSSION

In this section, we present results from simulation and
experimental data to demonstrate the performance of the
proposed nonlinear observers.

A. Simulation Study

The parameters used in the simulation are adopted from
the DUALFOIL simulation package that is publicly available
[48]. The model parameters for anode, including diffusion
and mechanical properties, are enumerated in Table III. The
mechanical parameters of anode material are obtained from
[23]. We illustrate the observer performance by initializing
the state and parameter estimates at incorrect values.

We apply a constant 1C discharge cycle for around 45 min-
utes. Figure 4 portrays the evolution of input current and the
surface concentration estimate from the surface concentration
observer. The surface concentration estimation is initialized
with a 12.8% error to validate the convergence property. Notice
that with a proper selection of the gain as presented in (48),
the convergence time for č−ss is 15 seconds. Next, the surface
concentration estimate is fed into the adaptive observer as a
pseudo-measurement signal for combined state and parameter
estimation. The estimation for surface concentration, terminal
voltage, bulk SOC, and anode diffusivity are plotted against
their simulated values from the plant model (23) in Figure 5.
Figure 6 provides the plot of estimation for maximum absolute
radial and tangential stresses over time, which are located at
the center and the surface of the anode electrode particle,
respectively. With an appropriate choice of gain as presented in
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Figure 4. Surface concentration observer results for a 1C constant current
discharge. The estimate of surface concentration is initialized with incorrect
value.

Section V.A and V.B, the estimates effectively converge to their
simulated values from plant model. It is worth mentioning that
the internal stress estimates can be monitored in real time to
prevent it from getting higher than the yielding stress of the
electrode material, and utilized to analyze the stress-related
physical degradation.

B. Experimental Studies

In this section, the performance of the designed adap-
tive observer is demonstrated via experimental data from a
commercial LiNiMnCoO2 (NMC) – LiC6 cell. The ambient
temperature of the battery cell under test is retained at 25.5 ◦C
inside an ESPEC BTL-433 environmental chamber, and an
Arbin High Current Cylindrical Cell Holder is used to hold the
battery cell. A PEC SBT2050 cycler applies a vehicle charge-
discharge cycle. The experimentally collected data, current and
voltage, have been used for identification of SPM-Stress model
parameters. For the model identification, we utilized Particle
Swarm Optimization (PSO) to minimize the root mean squared
voltage error between experimental data and model output to
get the best model fit [49]. Besides the parameters associated
with battery geometry, mechanical properties, and equilibrium
structure, the model parameters that are fitted by PSO are D−s ,
R−s , k−, and k+. The mechanical parameters are adopted from
[23] for graphite. A summary of the parameter values are listed
in Table III. The state and parameter estimation are initialized
with random (incorrect) guess to evaluate the convergence of
the observers. Unlike the cases in the simulation study, we
no longer know the true solid phase Li-ion concentration and
SOC. As a consequence, the criteria for assessing the observer
performance is through the comparison of measured voltage
and voltage estimates computed from Li-ion concentration
estimation.

The “actual” quantities plotted in the figures are obtained
through the following ways:
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ĉ
−

ss

0 10 20 30 40
0

0.2

0.4

0.6

0.8

B
u
lk

 S
O

C

SOC
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Figure 5. Adaptive observer results for a 1C constant current discharge. The
states and parameters converge to their true values asymptotically.

• The “actual” diffusion coefficient is obtained by fitting
the voltage output from the plant model in (23) to the
experimental voltage measurement offline by PSO.

• The “actual” surface concentration, maximum radial
stress, and maximum tangential stress are simulated uti-
lizing the plant model (23) with the identified parameters
from the last step.

• The “actual” bulk SOC is computed by the coulomb
counting technique, by integrating the applied current
normalized with battery capacity.

During the experiment, the battery cell was first charged to
100% SOC using a standard constant-current-constant-voltage
(CCCV) protocol, followed by a discharge period until the
SOC drops down to 80% SOC. An electric vehicle-like charge-
discharge cycle is then applied to the battery cell, plotted in
Figure 7. The results for the surface concentration observer
and adaptive observer are given in Figure 7, Figure 8, and
Figure 9. The root mean squared percentage error (RMSPE)
is selected to quantified the estimation accuracy:
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Figure 6. Maximum radial and tangential stresses estimation under 1C
discharge current.
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Figure 7. An electric vehicle-like charge-discharge cycle is applied to the
battery cell. The surface concentration observer successfully track the surface
concentration, compared against the simulated value from the model.

RMSPE(z, ẑ) =

√√√√ 1

n

n∑
i=1

(
ẑi − zi
zi

× 100%

)2

, (71)

where z and ẑ denote the true and estimated quantities and n
is the number of data points. After the initial transition period,
the RMSPE between the voltage estimation and experimentally
measured voltage is 0.143%. Similarly, the RMSPE for SOC
and anode diffusivity estimation against their true values are
1.24% and 5.53%, respectively. As expected, the estimated
variables converge to their actual values starting with an incor-
rect initialization. Notice that the estimated variables from the
adaptive observer exhibit large uncertainties at the beginning,
mainly because the adaptive observer requires correct surface
concentration estimation from the previous stage.
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Figure 8. Adaptive observer results for the charge/discharge cycle using
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experimental voltage measurement offline using PSO.

This paper presents and rigorously analyzes simultaneous
state and parameter estimation utilizing the nonlinear cou-
pled SPM and stress model. Similar to most other existing
techniques [28], [42], the method proposed here is capable of
estimating aging related parameters in the battery model, e.g.
diffusivity. Moreover, estimation of stresses generated inside
the electrode particles provide another crucial measure for
evaluating stress-related battery degradation phenomena.

Remark 6. This work addresses observer design for nonlinear
PDEs by projecting the PDEs onto a finite-dimension sub-
space, and applying nonlinear observer design for ODEs. For
linear PDEs, one can avoid projection in the observer design
by utilizing methods such as backstepping [50] or optimal
estimation [51]. Unfortunately, a unified theory for nonlinear
PDE observer design does not yet exist. Nevertheless, results
can be obtained in special cases - a topic for future work.

VII. LIMITATION OF THE PROPOSED SCHEME

The adaptive estimation performance is reasonably well in
the simulation study and using experimental data. Nonetheless,
there are limitations in the proposed algorithm. In this section,
we discuss and illustrate these limitations.

A. Flatness of Anode OCP

For the purpose of system observability, we reduce the
coupled SPM and stress model by only considering the anode
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Figure 9. Maximum radial and tangential stresses estimation in the using
experimental data. The “actual” maximum radial stress, and maximum tan-
gential stress are simulated utilizing the plant model (23) with the identified
parameters.

dynamics. A potential issue is that the open circuit poten-
tial (OCP) of the anode is generally flat, which means the
sensitivity of output voltage with respect to the state is low.
This may lead to large estimation error due to sensor and
modeling uncertainties [52]. In order to compensate for the low
sensitivity, observer with high gain is proposed. However, high
gains amplify the output measurement noise, but we expect
the sliding mode observer to provide certain robustness. The
effect of measurement noise on the sliding mode observer
performance in the surface concentration observer stage is
tested in simulation with constant input current (see Figure
10). Uniformly distributed noise with magnitudes of 1 mV, 10
mV, 30 mV, and 70 mV are manually injected to the voltage
signal. Due to the effect of high observer gain, the surface
concentration estimation deviates from the actual (simulated)
signal when uncertainties grow. This illustration reveals that
the measurement uncertainty weakens the effectiveness of the
estimation scheme owing to high observer gain.

B. Modeling Inadequacy

The coupled SPM and stress model adopted from [22] is
derived from physical principles relying on an analogy to
thermal stress, and provides a quantitative aggregated stress
prediction, which is useful to understand battery SOH asso-
ciated with stress. This model also has desired computational
simplicity for our application. However, the model is never
validated against experimental data. It is derived based on the
SPM, so (i) it cannot capture the electrode localized stress as a
function of position along the electrode, and (ii) its accuracy
can be compromised for high input current, and electrolyte
dynamics are expected to be incorporated as the electrode
region in which fracture takes place depends on the electrolyte
properties [53]. Moreover, reviewing dynamical equation (6)
and Remark 4, it is evident that the effects of temperature
and concentration on θj and Dj

s were not taken into account.
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Finally, the model used here does not account for phase change
and staging in the electrodes, which have a significant impact
on the stress generation of some materials [27].

C. Unknown Actual Initial Condition

To compute the estimates σ̂r,max and σ̂t,max in real time,
one needs to know the change of solid phase concentra-
tion estimation from the actual stress-free value, which is
recognized as the concentration profile after relaxation. In
the numerical studies in this paper, the “stress-free value of
concentration” is simply the actual initial condition of the
solid-phase concentration in the battery cell, and apparently
this information is unavailable. In the above numerical studies
(for instance see Figure 7), zero current is injected at the
beginning of an input profile, which allows 1) the battery cell
to relax and 2) the state observer to converge to the actual
initial concentration instantly. The concentration estimation at
the end of zero current can be used as the “actual” initial
concentration. However, the convergence of observer within
zero-current period is not guaranteed.

VIII. CONCLUSION

This paper presents a nonlinear observer for mechanical
stress estimation in Li-ion batteries, along with solid-phase Li-
ion concentration, i.e. state of charge, and diffusion coefficient
estimation. A key feature is utilizing a single particle model
coupled with an intercalation-induced stress model. Monitor-
ing the mechanical response of electrode materials is crucial
because particle fracture due to stress generation is a major
source of battery capacity fade. The reduced PDE system for
the SPM-Stress model is approximated by nonlinear ODEs
using the finite difference method. A nonlinear observer based
on the sliding mode observer concept is proposed for estimat-
ing the surface concentration from current and voltage mea-
surements only. The estimated surface concentration is then

utilized as a pseudo-measurement signal for combined state
and parameter estimation in the subsequent adaptive observer.
The observers’ convergence is mathematically proved using
Lyapunov stability theory and Barbalat’s Lemma. Real-time
monitoring of aging related parameters in battery model and
internal mechanical stress enables (i) a battery management
system (BMS) to apply optimal control methods that protect
against particle fracture, and consequently extend battery life,
and (ii) further understanding of battery degradation behavior
associated with diffusion-induced stress. Studies from simu-
lation and experimental data are carried out to demonstrate
observer performances. Future work seeks observer design on
more advanced stress models.
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