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Abstract—Increasing longevity remains one of the open chal-
lenges for Lithium-ion (Li-ion) battery technology. We envision a
health-conscious advanced battery management system, which
implements monitoring and control algorithms that increase
battery lifetime while maintaining performance. For such algo-
rithms, real-time battery capacity estimates are crucial. In this
paper, we present an online capacity estimation scheme for Li-ion
batteries. The key novelty lies in (i) leveraging thermal dynamics
to estimate battery capacity and, (ii) developing a hierarchical
estimation algorithm with provable convergence properties. The
algorithm consists of two stages working in cascade. The first
stage estimates battery core temperature and heat generation
based on a two-state thermal model, and the second stage receives
the core temperature and heat generation estimation to estimate
state-of-charge and capacity. Results from numerical simulations
and experimental data illustrate the performance of the proposed
capacity estimation scheme.

Index Terms—Li-ion Batteries, Real-Time Capacity Estima-
tion, Nonlinear Estimation Theory

I. INTRODUCTION

With the rapid evolution of smart grid technologies and
electrified vehicles, the Lithium-ion (Li-ion) battery has be-
come a prominent device for energy storage. An advanced
battery management system (BMS) implements real-time con-
trol/estimation algorithms that enhance battery performance
while improving safety. A crucial function of a BMS is to esti-
mate the state-of-charge (SOC) and the state-of-health (SOH).
Capacity fade is one of the most important metrics among
all of principal effects of battery aging [1]. Accurate real-
time capacity estimation with certified convergence properties
is still an unsolved problem. In this paper, we propose and
rigorously analyze a thermal model based online capacity
estimation scheme.

The existing literature contains several approaches to capac-
ity estimation. Broadly, they can be categorized into offline and
online approaches.

Offline approaches generally develop capacity estimation
scheme in specific laboratory settings with access to large
amounts of battery data under varying operating conditions [2],
[3], [4]. However, the applicability of the offline approaches is
limited due to the following reasons: (i). in real-time, we have
access to very limited amount of data; (ii). battery degrada-
tion depends significantly on users, operating conditions, etc.
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Therefore, a single offline capacity estimation scheme may not
be sufficient for these cases.

Online capacity estimation methods operate on embedded
BMS microcontrollers utilizing real-time measurements. Gen-
erally, online approaches are comparatively more challenging
than their offline counterparts, due to lack of measured infor-
mation and limited computation power. Several studies have
investigated this. Seminal work exploring combined SOC and
model parameter estimation using Kalman Filter (KF) were
introduced in [5], [6]. In [7], a dual sliding mode observer con-
sists of a fast-paced and a slow-paced time-varying observer
was presented for estimating the SOC and SOH of Li-PB
batteries. Lin et al. developed an adaptive observer based on
online parameterization method for battery core temperature
estimation and health monitoring [8]. Electrochemical model
based battery aging studies provide a sharp understanding
of the underlying physical and chemical processes occurring
during battery utilizations. For instance, a reduced-order elec-
trochemical model for a composite electrode battery combined
with KF was utilized for a dual-observer design to estimate
SOC and capacity [9]. Moura et al. performed combined
SOC/SOH estimation based on single particle model (SPM)
and the concept of backstepping state estimator for partial
differential equations (PDEs) [10]. Several other authors used
Particle Filter (PF) for battery state of health estimation [11],
[12]. Machine learning tools for SOH estimation are attracting
extensive attention in recent years. For example, the Support
Vector Machine (SVM) is commonly used as a regression
tool for SOH estimation [13]. Efforts have also been made to
improve accuracy of battery health estimation by combining
SVR with a Bayesian framework [14]. However, none of the
aforementioned approaches explore battery capacity estimation
from a thermal perspective. Moreover, only few of these
algorithms have proven convergence properties - a crucial
requirement for ensuring reliable operation in real-world BMS.
In this paper, we propose and rigorously analyze a capacity
estimation scheme that utilizes battery thermal dynamics.

The results presented in this article is a significant exten-
sion of our previous work [15]. The extensions include: (i).
providing algorithm validation on experimental capacity fade
data from a commercial battery cell; (ii). analyzing observer
convergence with modeling uncertainties; (iii). refining the
estimation algorithm by adding a real-time thermal model
parameter identification block.

The rest of this paper is organized as follows: Section
IT presents battery electrical and thermal models. Section
III examines thermal model parameter identifiability, state
estimation with unknown input, and sliding mode observers



with convergence analysis. Section IV highlights the benefits
of thermal model based capacity estimation against electrical
only estimation. Section V discusses the capacity estimation
algorithm validation on simulation and experimental data.
Conclusions are drawn in Section VL.

II. BATTERY MODEL

In this section, a coupled electro-thermal model is de-
tailed for a cylindrical lithium-iron-phosphate battery cell
(A123 ANR26650M1). The model utilizes a coulomb counting
method to capture the dynamics of SOC and a two-state ther-
mal model that predicts battery surface and core temperature.

A. Electrical Model

The SOC is computed via the coulomb counting method by
integrating the applied current normalized by battery capacity
over time. The dynamical equation is given by:

dSOC(t) (1) 0
dt N Chat’
where I(t) is the input current, and we specify positive I(t)
for discharge and negative I(t¢) for charge. Parameter Cpqy is
the battery charge capacity in Ampere-second.

B. Thermal Model

We consider a two-state lumped thermal model for a
cylindrical battery, adopted from [16]. This model assumes
homogeniety along the cell’s longitudinal axis. The model
states are core temperature (7.) and surface temperature (7%):
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where R., R, C. and C represent heat conduction resistance,
convection resistance, core heat capacity, and surface heat
capacity, respectively. Symbol Q(t) is internal heat generation.
Heat generation from resistive dissipation and entropic heat are
considered, where dU/dT is the entropic coefficient and 7'(¢)
is the average of surface and core temperature [17]. Vi denotes
the measureable terminal voltage, whereas OC'V is the open
circuit voltage as a function of state of charge. We assume the
coolant flow rate is constant and the ambient temperature 7'y
is nearly constant [18]. We also introduce bounded terms v..(t)
and v4(t) to model the uncertainties in the thermal dynamics,
where v.(t) < 7. and v;(t) < T,. Estimates of 7. and 7, can
be found by comparing the open-loop thermal model output
with experimental data. Moreover, a time-varying but bounded
measurement noise n(t) <7 is considered, with @@ > 0.
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Fig. 1: Cascaded online capacity estimation structure
Re-arranging (2)-(6) into state-space form:
i(t) = Az(t) + Bu(t) + GQ(t) + v(t), (7)
y(t) = Ca(t) + n(t), (8)
where the input, states, and uncertainties are
T.(t) PAG Iz
u(t) =Ty, z(t) = |5 ,v(t)=1"° <v=|_°,
(0 =15, o) = | 7ip)| - v = [1e4) v
)
and the corresponding system matrices are
__1 1 i 0
A= Rfc“ 1 ReCe 1 B= 1 )
R.C, _(RuCS + RCCS)_ ’ R.C,
1
G:[%W, c=1[0 1]. (10)

Remark 1. The local observability of the thermal model (2)-
(6) has been verified by computing the rank of the linearized
system at the equilibrium points.

III. ONLINE CAPACITY ESTIMATION SCHEME

The goal of this work is to develop an online battery
capacity estimation scheme. We present a hierarchical struc-
ture depicted in Figure 1. In Stage 1, heat generation Q
in the T,.-dynamics (2) is treated as a bounded unknown
input. An output error injection based state and unknown
input estimation technique, along with the two-state thermal
model are employed to estimate the unmeasured state (7)
and unmeasured input Q), using the online measurements of
input current (/) and surface temperature (75). Based on the
thermal model parameter sensitivity analysis, R. is updated
in real time to improve model and estimation accuracy. 1/\\Iext,

the estimated core temperature JA“C and heat generation Q, as
well as the measured terminal voltage (Vr), are utilized to
algebraically compute a pseudo-measurement of OC'V within
Stage 2, where a sliding mode observer based on the SOC-
model is applied to simultaneously estimate the unmeasured
state (SOC) and unknown parameter (Cyp,;). In the following
subsections, we detail the design of each stage.

A. Stage 1: Core Temperature & Heat Generation Estimation

The Stage 1 aims to estimate the core temperature (unmea-
sured state) and heat generation (unmeasured input).



1) Thermal Model Parameter Identification: We first eval-
uate the thermal parameter identifiability. The method for
ranking output sensitivity with respect to parameters and
determining parameter linear dependence is outlined in [19].
Consider the thermal model parameters:

6,=[C. C, R. R . (1)
The sensitivity vector
gy 9y 9y Oy Nx4
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represents each parameter’s sensitivity in the output, where
N is the number of measurements. The Gram-Schmidt or-
thonormalization of STS reveals information about linear
dependence between parameters. Let STS = DTCD with

D € R*™* and C € R, where D(i,i) = |S;|| and
D(i,j) = 0fori# j,and C(i,i) = Land C(i, ) = 157
Herein, || - || denotes the Euclidian norm and (-,-) is the

inner product. Diagonal matrix D provides a quantification of
parameter sensitivity. Strong linear dependence exists between
0:; and 0 ; if the value of % is near £1. This indicates
that if the off-diagonal element of matrix C' is near 1, then
the corresponding pair of parameters are difficult to identify
separately. An example of the thermal parameter sensitivity
analysis based on the profile shown in Figure 5 for a LFP cell
is performed, and the result reveals that the model output is
most sensitive to R,, (yet assumed to be constant in this work)
and R, and strong linear dependence exists between R,, C.,
and R.. Consequently, . is chosen to be identified in real
time, considering parameter sensitivity and linear dependence.

Remark 2. According to Ref. [8], the heat capacities C.
and Cj are relatively constant over battery lifetime since they
depend on the material thermal properties and the mass of
the rolled electrode assembly and the casing. Meanwhile, R,,
is affected by the coolant flow rate, which is assumed to be
constant. Coincidently, the implication of sensitivity analysis
matches the physical intuition, where the change of R. over
lifetime is the consequence of battery degradation.

An online parameter estimation algorithm, which aims to
minimize the instantaneous squared error between measured
surface temperature and model output by updating R.., is run-
ning in real time to ensure estimation accuracy. A parametric
model for such identification can be derived by performing
Laplace Transformation on thermal model (2) to (3) [8]:
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where T and T, are initial conditions of surface and
core temperatures. Herein, notice in (13) that we feedback
the heat generation estimation from the upper block in Stage
1 to improve the estimates of thermal parameter, which is
visualized by the red arrow in Figure 1. It is assumed that
battery evolves from the steady state, and thus T, o = T .

Further, the ambient temperature T’ is assumed to be constant,
namely sT; = 0:
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For the parametric model in (14), let
1
0— — 15
R (15)
1
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yielding
Z(s) =07 d(s). (18)

The update law for 0 can be generated as follows:

O=T(Z—0T®)D,  6(0) = by, (19)

where I' = I'T = 0 is a symmetric positive-definite matrix
that controls the convergence rate.

For the initial offline parameter identification for a fresh cell,
particle swarm optimization (PSO) is employed to minimize
the root mean squared error between the measured surface
temperature and thermal model output. The initial thermal
parameters identified by PSO are summarized in Table 1.

TABLE I: Initial Thermal Parameters for LFP Cell
C. [JJK] | Cs [J/K] | R, [K/'W] | R, [K/W]
59.5 4.4 1.61 3.14

2) Core Temperature & Heat Generation Estimation: We
consider the following observer structure based on the thermal
plant model (7)-(8):

a(t) = A (t) + Bu(t) + L [y(t) — §(t)] .
9(t) = Ci(t),

(20)
2y

AT
[Tc TS} denotes the estimated state vector,

and L = [Ll LQ]T, with Ly, Ly > 0, is the observer gain
vector to be designed. The following theorem provides the
convergence results of the observer (20)-(21).

where =

Theorem 1. Consider the locally observable thermal system
(7)-(8) with bounded heat generation |Q(t)| < Mg, ¥Vt € R,
and bounded model uncertainties v < U, along with the
observer (20)-(21). If there exists a gain matrix L and a
positive definite matrix M such that

(A-LC)" + (A - LC) = —M,

(22)
(23)
then the state estimation error &(t) = x(t) — &(t) remains
bounded in the following sense as t — oo:
2(® + Ln)

Pl < Rp 22— — 2
7] < Fy £ 5=

(24)



where ® = ||G||Mg+ ||7|| and Amin (M) denotes the minimum
eigenvalue of matrix M.

Theorem 1 leads to the notion of input-to-state (ISS) stabil-
ity [20]. The proof for Theorem 1 is provided as follows.

Proof. Subtracting (20) from (7), the state estimation error
dynamics can be written as

i(t) = f(&) = (A= LO)&(t) + GQ(t) + v — Ln

= (A= LO)E(t) + ® — Ln, (25)

where ® = GQ(t) + v, and let | @] < @ 2 ||G||Mg + |7
As in [20], if there exists a class CL function 3(-,-) and a
class K function 7(-), which is called a gain function, such
that for any input Q(-) € L and any (0),

121 < BUZO), 1) + 1 (1QC) o), (26)
then the system (25) is said to be ISS.
Consider the Lyapunov function candidate
Vi=i'z=|z|? @7

The derivative of V' is
Vi=iTi+al
(A-LO)i+®—Ln]'#+ 7' [(A— LO)i + ® — Ln]
=i"[(A-LO)" + (A— LC)|i 428" (® — Ln)
—Amin(M)||Z[|* + 2|1 2] (@ + L7)

= Amin(M)V1 + 2(B + Lu) /1.

Comparison principle [21] provides the solution to the differ-
ential inequality (28):

IN

(28)

Amin (M) mm(M)
#t b 11111 Sy

2(<I>+Lﬁ){ o . (29)

2] < |12(0)]le~ Amin(M)

where M and ||Z(0)]| verify Amin(M)[|Z(0)]| > 2(® + Ln).
To satisfy the ISS condition, let

B(IZO)],£) = [[#(0)[]e~ 47, (30)
- 20 _mip D)
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and it is straightforward to show that (3 is a class CL function
and +y is class K. Hence we conclude that the system (25) is
ISS. In addition, due to the exponentially decaying terms at
right hand side of Eq. (29),

2(® + Ln)

g 2@ )
I < Ry = 5

as t — oo. (32)
Therefore, with bounded unknown input Q and bounded
uncertainties v in thermal dynamics, ||Z|| will settle on or

within a norm ball of radius R} in the error space. O

Remark 3. The size of R, may be reduced by optimally
selecting gain L to balance convergence speed and robustness
to uncertainty. A large L enlarges the denominator of Ry, but
also amplifies the measurement noise in the numerator.

According to [22], we can compute heat generation Q
by inverting plant model dynamics (7). Nonetheless, we do

not know the exact value of states x(¢). By using certainty
equivalence [23], the unknown input estimate can be obtained
by replacing the state x(t) with its estimation Z(t):

Q(t) = GT(&(t) — A (t) — Buf(t)), (33)

where Gt = (GTG)"'GT is the left inverse of G. Heat
generation estimation calculated in (33) will be utilized to
design observers in Stage 2.

Remark 4. There exists a loop between the two blocks in
Stage 1. Specifically, the heat generation estimates are used for
thermal parameter identification, and meanwhile the identified
thermal parameters alter the system matrix A. Herein, we
analyze each block separately, and only verify the stability
of the coupling in the simulation.

B. Stage 2: Battery SOC and Capacity Estimation

The Stage 2 simultaneously estimates battery SOC (unmea-
sured state) and capacity (unknown parameter) by receiving
the core temperature and heat generation estimates from Stage
1 as input signals. We consider the following sliding mode
observer structure for the Stage 2:

SOC = Lssgn(OCV,, — OCV), (34)

_Q dU
OCVim = 7+ Ve + T, (35)
7 %(Ts,m + T, (36)

where I, Vr.,, and Ty, are current, terminal voltage,
and surface temperature measurements. Gain Lg is the scalar
observer gain to be designed. OC'V is the OCV estimation

corresponds to SOC estimation SOC. Note that ) and T. are
the estimated heat generation from (33) and estimated core
temperature from (20). As analyzed in the previous subsection,

the Q and fc estimation are biased due to thermal model
uncertainties and unknown heat generation. Consequently,
OC'V,, obtained from (35) is biased. We model the uncertainty
between OC'V,,, and the actual OC'V' by an additive error term
&, with OCV,,, = OCV +&. Note that £ may also include the
measurement noise from I,,, and V7 ,,. Under this scenario,
we provide the convergence analysis of observer (34)-(36).

Theorem 2. Consider the SOC dynamics (1), estimated heat
generation and core temperature from Stage 1. Furthermore,
assume OCV is a monotonically increasing function of SOC
over domain 0 < SOC < 1. Also, assume bounds Mj; >
0,mc,,, > 0 are known, where |I(t)] < M, V t € R,
Mey,, < Chat. If the scalar observer gain Ls verifies

My

L3 > )
mcbat

(37)

then the estimation error SOC(t (t) = 50C(t) — SOC(t (t) from
observer (34)-(36) converges to an bounded error ball defined
by 'OCV‘ , where OCV = 0CV —0CV. Furthermore,

estimated battery capacity is given by
1

L3U’

Coar = (38)



where v is the filtered version of sgn(OCV,, — @),
computed by passing sgn(OCV,, — 56’\V) through a low
pass_ filter with unity steady-state gain_in real time, i.e.
v(t) = {w/(s + w)}sgn(OCV,,,(t) — OCV (t)), where w is
the cut-off frequency.

Remark 5. We have assumed that OCV is a monotonically
increasing function of SOC over the 0%-100% SOC range.
This assumption is verified for most of the popular Li-ion
chemistry, e.g. LiCoOs -Graphite and LiFePO 4-Graphite [24].

Proof. Under the condition of ‘6_(\7_‘7’ > €],

sgn(OCV,, — W) = sgn(azﬁ7 +¢&) = sgn(a(\l'?). (39)
Strict monotonicity of the OCV-SOC relationship guarantees
sgn(OCV — O/ﬁ) =sgn(SOC — S/O\C’) (40)

Consequently, we can re-write observer (34) based on (40):
SOC = Lysgn(SOC — 50C). (41)

The dynamics of SOC = SOC — SOC can be written as:

S0C = SOC — 50C = —

— Lgsgn(gaz’). (42)

bat

We consider the following Lyapunov function candidate:

1/—\_/2

Vs(t) = §SOC’ , (43)

and the derivative of V3 along the trajectories of SOC is

V(1) = 50C 500 = 500~

bat

- Lgsgn(S/(%'))

I — e~
SOC — Lysgn(50C) - S0C

bat

< o] s
bat
=150 - (C‘jt - Ls). (44)

Choose the gain L3 high enough such that Ly > M;/mc,,,.
Furthermore, note from (43) and (44) that

My

MChyay

Vg < —ay/2V3, where o= L3 —

(45)

Applying the comparison principle on (45) suggests the finite
time for SOC to converge to the error ball defined by
‘55?’ < |§| to be ty = +/2V3(0)/. Hence, based on
the selection of some high gain Ls, Vs will decrease until
‘55\7’ > |¢| is violated. At the sliding mode, we have

SOC = ¢, where ¢ is less than or equal to the size of the
SOC error space corresponds to ‘OCV‘ <|¢], and SOC = 0.
Substituting these expressions in (42) yields:

~ I
Chat = —7—,

bat Lsv
where v(t) is the signal produced from low-pass filtering

sgn(OCV,, (t) — OCV (1)). O

(40)

Remark 6. The battery capacity estimation computed from
(46) is expected to be biased as a result of the Stage 1
estimation error €. Nevertheless, & can be reduced by optimally
selecting observer gain L, based on Remark 3.

Remark 7. Given that the thermal parameters vary slowly, the
lower block in Stage 1 operates on slow time scale (cycles)
while the upper block and the entire Stage 2 evolve on a fast
time scale (second).

IV. BENEFITS OF THERMAL MODEL BASED CAPACITY
ESTIMATION

The fundamental difference between the thermal based and
the equivalent circuit based approach is that the thermal based
scheme estimates capacity, thermal resistance, heat generation,
temperature, and SOC without any need of output voltage
model and estimates of R (internal resistance) and V. (voltage
of R-C pairs). In the equivalent circuit based SOH estimation,
the SOH estimation error stems from the combined errors
of capacity and internal resistance estimation. We hereby
show conceptually how leveraging thermal dynamics enables
to isolate away the estimation error of internal resistance.
Essentially, we design an observer to estimate OCV using
available online measurements.

Thermal model based estimation: Consider the thermal
model based estimation scheme shown in Figure 1. In Stage
2, we use the estimated heat generation as the feedback signal
in the observer. For a given input current profile and measured
terminal voltage within a certain cycle, the heat generation
estimation are given according to Eq. (4):

- —— ~ dU
Q) = 1) |00V ()~ V() - TO ] . @)
Subtract (47) from (4), the feedback error signal is given as
Q=100 [0V -TO ] 6

Assume f(t) is negligible due to robust temperature estima-
tion in Stage 1, and the feedback error signal becomes:

Q(t) = I(t) - OCV (t), (49)

which captures OCV estimation error only, which is in turn
dependent only on the capacity estimation error.

Electrical model based estimation: In this case, we use
terminal voltage as the feedback signal. Consequently, the
feedback error signal is given as

Vi(t) = OCV (t) — Vi(t) — I(t)Rs, (50)

where \7T, ‘76, and ES are the estimation errors for the terminal
voltage, voltage across R-C pairs, and the internal resistance.
Under this scenario, the estimation errors for capacity (OC'V)
and internal resistance (R) both emerge.

Methods that estimate capacity and internal resistance from
an equivalent circuit perspective, e.g. [7], need crucial assump-
tions, e.g. linearly varying capacity and internal resistance
with respect to time, to distinguish the estimation errors of
capacity and internal resistance. However, the thermal based
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Fig. 2: Simulation of current and terminal voltage in the plant.

estimation completely decouples capacity estimation error
from the combined SOH estimation error without requiring
any such restrictive conditions.

Moreover, though the primary objective for this work is
real-time battery charging capacity estimation, the algorithm
presented in this paper can be considered as a novel method-
ology for combined SOC/SOH estimation. Specifically, it
provides estimates for SOC and charge capacity. Even more,
Stage 1 produces estimates for thermal model parameters,
core temperature, and internal heat generation. To the best of
the authors’ knowledge, this is the first estimation framework
in the literature to estimate all the aforementioned states
and parameters simultaneously, with provable convergence
properties, under suitable conditions.

V. RESULTS AND DISCUSSION

In this section, we present studies on simulation and exper-
iments to validate the performance of the proposed capacity
estimation scheme. The battery under test is a LiFePO4/LiCg
A123 26650 cell with initial capacity of 2.3 Ah.

A. Simulation Study

This subsection presents the simulation study. The param-
eter values for thermal model (2)-(3) are taken from [18].
To illustrate the performance, we apply a driving cycle to
the battery model. Figure 2 plots the evolution of current
and terminal voltage from the plant model simulation. The
estimates (unknown states, input, and parameter) are initialized
with incorrect values to illustrate the convergence properties.

We first evaluate the performance of observer (20)-(21) and
(33) in Stage 1. The core temperature estimate is initialized
with 3°C error. Figure 3 portrays the evolution of the unknown
state (7.) and unknown input (Q) from the simulation of
thermal system (2)-(3), with their estimated values. Note that
with an appropriate choice of observer gain L as presented in

Theorem 1, ZA“C and Q converge rapidly. Similarly the effective-
ness of SOC and capacity (Cq) estimation are investigated by
initializing SOC estimate with 15% initial error. These results
from Figure 3 confirm the finite-time convergence analysis
conclusions for the Stage 2 observers in Section III.B.
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Fig. 3: Estimation performance for the charge-discharge cycle in
simulation study, for core temperature, heat generation, SOC, and
capacity.

B. Experimental Studies

We further demonstrate the proposed algorithm on experi-
mentally obtained capacity data. The battery cell was placed
inside of an ESPEC BTL-433 environmental chamber that
maintains the ambient temperature at 25.5°C (298.65 K).
A thermocouple was attached to the surface of the cell to
measure sueface temperature. A PEC SBT2050 cycler was
used to apply a repeated charge-discharge cycle (a charging
protocol based on SPMeT model - Fig. (10) in [25]) to the
battery cell to induce aging (see Figure 4). The effect of
battery aging on terminal voltage and surface temperature is
noticeable, especially towards the final 50 cycles, where the
cell experiences higher voltage and temperature changes for
the same input.

Figure 5 shows the charge-discharge profile for the first
cycle, along with the measured voltage (Vr) and surface
temperature (7). The cell is first charged under I,,x = 6C
constant current for 300 seconds which elevates SOC from
initial value 25% to final value 75%, followed by a 300-
second resting period (I = 0). In the discharge phase, the
current initially holds constant but eventually decays over time,
resulting in a constant voltage discharge. The capacity was
determined using a 1C CC-CV cycling test at cycle numbers
{0, 10, 60, 110, 160, 210}. For real-time implementation,
accurate parameter estimation in the thermal model plays a
critical role in capacity estimation, due to the fact that the
uncertainties in heat generation estimation and OC'V,,, could
accumulate error, since a large portion (nearly 85%) of OCV
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plot lies in the flat region of OCV-SOC curve. Put simply, the
SOC estimation is sensitive to OC'V,,, uncertainty.

Here, we demonstrate the estimation performance for the
first charge-discharge cycle. The SOC estimate is initialized
with 30% error and capacity estimate is initialized with 0.3
Ah (13%) error. Figure 6 presents the convergence of SOC
and capacity estimates to their true values. The blue solid line
in the upper figure represents the evolution of SOC generated
by coulombic counting method. The value of measured battery
capacity (2.31 Ah) is shown in the lower figure in blue.

Finally, we examine the capacity estimation performance
across 210 cycles under two scenarios.

1) Effect of updating R. in real time.: Figure 7(a) plots
the values of R, every five cycles as black dots. In spite
of the apparent uncertainties stemming from the noisy ex-
perimental measurements, the trend of R. over cycles bears
accelerated growth behavior, especially towards the end of the
experiments. The frequency for updating R. (every 5 cycles)
is somewhat arbitrary, but it is selected to adequately track the
change rate. We explicitly evaluate the estimation results by
comparing two cases: (i). when R, is updated online, and (ii).
when R, remains at the value from the first cycle throughout
the experiments. Specifically in Figure 7(b), the blue and green
plus symbols (‘+°) represent the estimated capacities from case
(1) and case (ii). Moreover, the red star symbols (‘*’) are the six
capacity measurements, and the black dotted line is the fitted
curve using the measured data. Note that both cases follow
the black curve closely until R, starts to deviate. Ultimately,
after cycle 180, the estimation from case (ii) without R, being
updated experiences more disturbances and reveals relatively
larger error. The same observation can be made in Figure 7(c)
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Fig. 5: The first cycle of the charge-discharge profile.
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Fig. 6: Evolution of true/estimated SOC and battery capacity (Chat)
for the charge period of the first charge-discharge cycle.

where the percentage errors of capacity estimation from both
cases against the experimentally fitted values are plotted.

2) Effect of measurement uncertainties.: Despite the fact
that the cycled data are experimentally collected, the mea-
surement signals are in fact accurate and almost noise-free. In
order to mimic the real-world applications, a 2% random error
is manually added to the signals from Figure 4 to validate the
robustness of the estimation scheme. One may clearly observe
from Figure 7(d) that the capacity estimation result indeed
suffers from errors. According to Remark 3, the observer
gain L is supposed to be selected to appropriately balance
the convergence rate and robustness to measurement noise to
minimize the size of I;. Here, the maximum percentage error
between the estimates and the fitted capacity curve is 4.7%.
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Fig. 7: Battery capacity estimation results, plotted every five cycles.
Figure (a) presents the evolution of R., and (b) and (c) suggest a
more accurate estimation with updating R. in real time. Figure (d)
depicts the observer robustness against the measurement noise.

VI. CONCLUSION

This paper rigorously analyzes an online capacity estimation
scheme for Li-ion batteries from a thermal prospective. Stage
1 estimates core temperature, heat generation, and thermal
resistance based on a two-state thermal model, and the second
stage receives these estimation signals to estimate SOC and
capacity utilizing a sliding mode observer. The convergence
for the observers are mathematically analyzed using Lyapunov
stability theory. This approach only requires the tuning of three
scalar observer gains, wheres the number of tuning parame-
ters in commonly adopted KF based methods is polynomial
with respect to the number of states. Experimental results
demonstrate the capacity estimation accuracy and robustness
by comparing with real data. The benefit of using thermal
dynamics for capacity estimation is that it decouples capacity
estimation error from the combined SOH estimation error.
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