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Abstract—This paper examines the problem of optimally split-
ting driver power demand among the different actuators (i.e., the
engine and electric machines) in a plug-in hybrid electric vehicle
(PHEYV). Existing studies focus mostly on optimizing PHEV power
management for fuel economy, subject to charge sustenance
constraints, over individual drive cycles. This paper adds three
original contributions to this literature. First, it uses stochastic dy-
namic programming to optimize PHEV power management over
a distribution of drive cycles, rather than a single cycle. Second, it
explicitly trades off fuel and electricity usage in a PHEYV, thereby
systematically exploring the potential benefits of controlled charge
depletion over aggressive charge depletion followed by charge
sustenance. Finally, it examines the impact of variations in relative
fuel-to-electricity pricing on optimal PHEV power management.
The paper focuses on a single-mode power-split PHEV configu-
ration for mid-size sedans, but its approach is extendible to other
configurations and sizes as well.

Index Terms—Dynamic programming, Markov process, plug-in
hybrid electric vehicles (PHEV), power management, powertrain
control, powertrain modeling.

I. INTRODUCTION

HIS paper examines plug-in hybrid electric vehicles
(PHEVs), i.e., automobiles that can extract propulsive
power from chemical fuels or stored electricity, and can obtain
the latter by plugging into the electric grid. This paper’s goal
is to develop power management algorithms that optimize
the way a PHEV splits its overall power demand among its
various, and often redundant, actuators. Such optimal power
management may help PHEVs attain desirable fuel economy
and emission levels with minimal performance and drivability
penalties [1], [2]. Furthermore, the optimal “blending” of fuel
and electricity usage in a PHEV may also provide significant
economic benefits to vehicle owners, especially for certain
fuel-to-electricity price ratios [3].
The literature provides a number of approaches to hybrid
vehicle power management, many equally applicable to both
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plug-in and conventional (i.e., nonplug-in) hybrids. These
approaches all share a common goal, namely, to meet overall
vehicle power demand while optimizing a metric such as
fuel/electricity consumption, emissions, or some careful com-
bination thereof. For example, the equivalent fuel consumption
minimization approach [4]-[6] uses models of electric pow-
ertrain performance to mathematically convert electricity
consumption to an equivalent amount of fuel, and then makes
real-time power split decisions to minimize net fuel consump-
tion. The manner in which most approaches optimize vehicle
performance is either by identifying a power management
trajectory, or by establishing a power management rule base.
Trajectory power management algorithms require knowledge
of future power demand and use this information to specify
the future power output of each actuator. Such optimization
can be performed offline for drive cycles known a priori using
deterministic dynamic programming (DDP) [7]-[10], and
can also be performed online using optimal model predictive
control [11], [12]. Rule-based approaches, in comparison,
constrain the power split within a hybrid vehicle to depend
only on the vehicle’s current state and input variables (e.g.,
vehicle/engine speed, battery charge, power demand, etc.)
through some map, or rule base [13]-[19]. One then tailors
this rule base to ensure that each actuator in the powertrain
operates as close to optimally as possible. These maps can be
constructed from engineering expertise and insight, or using
more formal methods such as optimization [17] or fuzzy logic
[18], [19]. Stochastic dynamic programming (SDP) methods
are particularly appealing in this context, despite their well-rec-
ognized computational complexity [20], because of their ability
to optimize a power split map for a probabilistic distribution of
drive cycles, rather than a single cycle [21]-[25].

The above survey briefly examines the hybrid power manage-
ment literature for both plug-in and conventional hybrid electric
vehicles. Within the specific context of PHEVs, power manage-
ment research has generally focused on fuel economy improve-
ment, subject to constraints on battery state of charge, using ei-
ther the rule-based [16], [17] or DDP approach [9], [10]. This
paper, and related work by the authors [26], extends this re-
search by adding three important original contributions to the
PHEV power management literature. First, it uses SDP to opti-
mize PHEV power management over a probability distribution
of drive cycles. Second, it explicitly accounts for the interplay
between fuel and electricity costs in PHEV power management.
This makes it possible, for the first time, to fully explore the po-
tential benefits of controlled charge depletion over aggressive
charge depletion followed by charge sustenance. Finally, this
paper presents what the authors believe to be the first study on

1063-6536/$26.00 © 2010 IEEE

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 22,2010 at 15:03:28 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

=== Example of Power Flow
along Series Path

==p Example of Power Flow

O)

BATTERY PACK

along Parallel Paths
:
Ii
—
M/G1 INVERTER

l 1
oo\ E

0000 | wez
\TATAT e~ 5
ENGINE -
PLANETARY §

GEAR SET = VEHICLE

Fig. 1. Single mode power-split hybrid architecture uses a planetary gear set to
split power amongst the engine, M/G1, and M/G2. Diagram adapted from [27].

the impact of variable electricity and petroleum purchase prices
on optimal PHEV power management. The above contributions
are made specifically for a single-mode power-split PHEV con-
figuration, although the paper’s approach is extendible to other
configurations as well.

The remainder of this paper is organized as follows. Section II
introduces the vehicle configuration, problem definition, and ve-
hicle model. Section III then describes the numerical optimiza-
tion method adopted in this work. Section IV discusses the re-
sults of this optimization, and Section V highlights this paper’s
key conclusions.

II. PROBLEM FORMULATION

Fig. 1 portrays the main components and configuration of the
powertrain architecture considered in this paper, often called
the single-mode power split, “series/parallel”, or “combined”.
This architecture combines internal combustion engine power
with power from two electric motor/generators (identified as
M/G1 and M/G2) through a planetary gear set. The planetary
gear set creates both series and parallel paths for power flow
to the wheels. The parallel flow paths (dashed arrows) include
a path from the engine to the wheels and a path from the bat-
tery, through the motors, to the wheels. The series flow path, on
the other hand, takes power from the engine to the battery first,
then back through the electrical system to the wheels (solid ar-
rows). This redundancy of power flow paths, together with bat-
tery storage capacity, increases the degree to which one can op-
timize powertrain control for performance and efficiency while
meeting overall vehicle power demand.

The above power split hybrid vehicle architecture can be used
for a variety of vehicle sizes and needs. This paper focuses
on a midsize sedan power split PHEV whose key component
sizes are listed in Table I. This PHEV is quite similar in con-
figuration, dynamics, and design to the 2002 Toyota Prius, but
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TABLE 1

POWERTRAIN MODEL SPECIFICATIONS

EPA Classification

Midsize Sedan

Vehicle .
Base Curb Weight 1400 kg
Type Gasoline Inline 4-cylinder
. Displacement 15L
Engine .
Maximum Power 43 kW @ 4000 RPM
Maximum Torque 102 N-m @ 4000 RPM
Type Permanent Magnet AC
Motor/ M/G1 Maximum Power 15 kW @ 3000-5500 RPM
Generator
M/G2 Maximum Power 35 kW @ 1040-5600 RPM
Cell Chemistry Nickel Metal Hydride
Nominal Voltage 1.2 V per cell
Battery . . R N
Pack Nominal Capacity 6.0 A-h per cell
Number of Cells 480
Pack Energy Capacity 3.7kWh

with roughly twice the battery capacity. Specifically, we as-
sume that the PHEV has 80 modules of Ni-MH batteries in-
stead of 38 in the 2002 Prius. This choice of battery size and
type is partly motivated by the relative ease with which one can
convert the above conventional hybrid vehicle into an exper-
imental PHEV—by simply adding Ni-MH battery energy ca-
pacity. A subsequent paper builds on this paper’s results by ex-
amining the influence of battery sizing on the optimal control
laws studied herein [28]. Furthermore, the impact of battery type
(e.g., Lithium-ion versus Ni-MH, etc.) on PHEV performance
and efficiency is the subject of ongoing research that also builds
on the methods and results of this paper.

Given the above vehicle, powertrain, and battery choices, this
paper examines the following power management problem:

N—oo

N-1
Minimize: J = lim Ep,. | Y g (a(k),u(k))| (1)
k=0

Subject to: z(k+ 1) = f (z(k),u(k))
reX
ueU. @)

In this discrete-time stochastic optimal control problem, k rep-
resents an arbitrary discrete time instant, and the sampling time
is 1 s. This sampling time is consistent with the paper’s focus
on supervisory, rather than servo, control. The optimization
objective in this control problem consists of the instantaneous
combined cost of PHEV fuel and electricity consumption,
g(z(k),u(k)), accumulated over time, discounted by a constant
factor v, and averaged over the stochastic distribution of instan-
taneous power demand, Pjer,. In optimizing this objective, we
impose three constraints, namely: 1) the PHEV powertrain’s
dynamics, represented by f(z(k),u(k)); 2) the set of admis-
sible PHEV states, X; and 3) the set of admissible control
inputs U. The remainder of this section presents these opti-
mization objectives and constraints in more detail. Specifically,
Sections II-A-II-D present, respectively, the PHEV model
f(z(k),u(k)), the optimization functional g(z(k),u(k)), the
state and control constraint sets X and U, and the Markov
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Fig. 2. PHEV model components and signal flow. Note that the signal flow
forms a state feedback control architecture.

chain-based drive cycle model used for computing the expected
PHEV optimization cost.

A. PHEV Model

To model the dynamics of a PHEV, we first identify the
PHEV’s inputs, outputs, and state variables. Towards this
goal, Fig. 2 presents a conceptual map of the key interactions
between the PHEV examined in this paper, the drive cycle, and
the supervisory power management algorithm. This conceptual
map adopts the fairly common tradition in hybrid power man-
agement research of interpreting the driver’s accelerator and
brake pedal positions as a power signal Py, demanded at the
wheels (e.g., [22]-[24]). The supervisory power management
algorithm attempts to meet this power demand by adjusting
three control input signals: engine torque 7., M/GI1 torque
Tar/a1, and M/G2 torque Thr/go-

Engine startup and shutdown can also be treated as a con-
trol input, but the bulk of this paper assumes, for simplicity,
that the PHEV engine idles when power is not demanded. This
assumption is reasonable for aggressive drive cycles, since the
motor/generator components are too small to meet power de-
mand for extended periods of time. Section IV-C does, however,
analyze the impact of adding engine-shut off as an additional
control input.

The above control inputs affect the PHEV plant by affecting
its state variables. In this paper, we closely follow some of
the existing hybrid vehicle power management research by
choosing engine crankshaft speed w., longitudinal vehicle
velocity v, and battery state of charge SOC, as the three PHEV
state variables [23]. Note that because the power-split con-
figuration decouples the vehicle speed and engine crankshaft
speed, this model requires one more state variable than is
typically used for a parallel configuration (see, e.g. [10], [22],
and [25]). We also use a Markov memory variable to represent
the stochastic distribution of driver power demand, as explained
in Section II-D. This additional state is necessary because we
wish to integrate a drive cycle model within the stochastic
control optimization problem.

To model the inertial dynamics governing the PHEV state
variables, we begin by expressing the total road load acting
against the PHEV’s inertia. Then we include this force in
the equations governing the planetary gear set’s rigid body
dynamics. The road load F},,q is given by

Fioaa = Fron + Fdrag + Fdamp (3)
In this equation, Fyo is a rolling resistance term given by
Fron = pnmg “

where g, m, and p represent the acceleration of gravity, mass
of the PHEV, and a rolling resistance coefficient (assumed con-
stant), respectively. Furthermore, Fy;,g is an aerodynamic drag
force given by

Elrag = 0~5pAfrC(iv2 (5)

where p, A¢,, and Cy represent the density of air, the PHEV’s
effective frontal area, and the PHEV’s effective aerodynamic
drag coefficient, respectively. Finally, Fyamp is a wheel/axle
bearing friction term given by

Faamy = 22 ©)

Ttire

where b,, is the bearing’s damping coefficient and 7. is an
effective PHEV tire radius. Note that this expression for wheel
damping, as well as other derivations below, assumes a direct
proportionality between wheel angular velocity and vehicle
speed, where the proportionality constant is related to the tire
radius and final drive ratio. This assumption effectively neglects
tire slip for simplicity, thereby eliminating the need for using
two separate state variables to represent wheel and vehicle
speeds.

Road loads from (3) act on the PHEV powertrain through
the planetary gear set sketched in Fig. 3. This planetary gear
set can be conceptually and mathematically treated as an ideal
“lever” connecting the engine, two motor/generators, and ve-
hicle wheels (through the final drive), as shown in Fig. 3. Using
this lever diagram in conjunction with Euler’s equations of mo-
tion, one can relate the road load in (3) to angular velocities in
the PHEV powertrain as follows [23]:

I. 0 0 R+S e

0 Inraa 0 =S WGl

0 0 Ivyge  —R wM/G2
“(R+8) S R 0 F

T,

Ty,

= |/
M/G2
0

In this equation, R and S denote the number of teeth on the
planetary gear set’s ring and sun, respectively. The angular ve-
locities of the engine and two motor/generators are denoted by
We, War/G1,> and wyy/go, respectively. Furthermore, Te. and I,
denote the engine’s brake torque and inertia, and T/ and
In/G1 denote the torque and inertia of the first motor/generator,
respectively. The force F' represents an internal reaction force
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Fig. 3. Planetary gear set and lever diagram. The engine, M/G1, and M/G2 are
attached to the planet carrier, sun, and ring gears, respectively.

between the planetary gear set’s sun and planet gears. Finally,
the terlps I, /G2 and 17, /Go are effective inertia and torque
terms given by

Myce =Iajce + (L +mrdy.) [ K?
T]/\/[/GQ = T]\J/GZ - Froadrtirc/K (8)

where Ij/qo and I, are the rotational inertias of the second
motor/generator and wheel, K is the final drive gear ratio, and
Thr/a2 is the torque produced by the second motor/generator.

The point-mass model in (7) and (8) provides a complete de-
scription of how the state variables w, and v (which is directly
proportional to wys/2) evolve with time for given control input
trajectories. This description is provided in differential alge-
braic equation (DAE) form. Note here that only two state vari-
ables are independent, although (7) contains three states. This
is because the algebraic equation in the DAE removes one de-
gree of freedom. Therefore the force F' and velocity wyy g1 act
as dependent state variables. Simple algebraic manipulations,
omitted herein, can be used in conjunction with time discretiza-
tion to convert this DAE description to the explicit form in (2).

To complete the derivation of the PHEV plant model, we as-
sume that the PHEV’s battery can be idealized as an open-circuit
voltage V., in series with some internal resistance Rpa¢t. We
allow both V. and Ryt to depend on battery state-of-charge
SOC through a predefined map (adapted from [30] and [31]).
Furthermore, we define SOC as the ratio of charge stored in the
battery to some known maximum charge capacity Qpat¢. This
furnishes the following relationship between the rate of change
of SOC and the current [y,,4, generated by the battery

SOC = —Ipate/Qbatt- ©))

To obtain an expression for the current [,,¢+ we note that the
instantaneous power delivered by the battery to the two motor/
generators P, is related to Ipa¢¢ through the following power
balance:

Pbatt = ‘/oclbatt - Rbattlgatt- (10)
Solving (9) and (10) for the rate of change of SOC gives
. I/voc - V2 - 4P a R a’
SOC = — ¢ vV batt Thatt (11)

2QbattRbatt

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Note that (10) has two solutions for I},,¢t. However, only one
of these two solutions is feasible for negative power demands
and maximizes efficiency for nonnegative power demands. We
therefore adopt this unique solution for battery current in (11).

Finally, relating the power Pyt to the torques, speeds, and
efficiencies of the two motor/generators gives

kar/ e ks o
Pyagy = TM/GWM/GW]\;;/GCl + T]\J/GZWM/GQ'UA};/GGQ (12)
where
_17 ﬂw7 >0 P
ki = { L g 2 fori = (M/GLM/G2). (13)

Combining (11)—(13) with maps from [29], which relate the
efficiencies of the electric motor/generators to their torques and
speeds, provides a complete description of the battery SOC
dynamics as a function of PHEV states and inputs. Discretizing
these expressions and combining them with an explicit dis-
cretized form of (7) and (8) furnishes a complete model of the
PHEV plant dynamics, i.e., f(z(k),w(k)) in (2). This model
mostly replicates existing hybrid powertrain models in the
literature (e.g., [23]), but we use it in conjunction with the novel
objective function in Section II-B to examine PHEV power
management.

B. Objective Function

The optimization objective .J in (1) aggregates the expected
combined cost of PHEV fuel and electricity consumption over
a stochastic distribution of trips, and discounts this cost expo-
nentially through the factor «. This discount factor, if restricted
to the interval [0,1), ensures that the cumulative optimization
objective remains finite over infinite time horizons. This paper
follows Lin [22] in setting -y to 0.95, leaving the question of how
different values of ~y affect optimal PHEV power management
open for future research.

To explicitly trade off fuel and electricity consumption in
PHEVs, we define the instantaneous cost functional, namely,
g(z(k),u(k)) in (1), as follows:

1
g(:l?, u) = /BafueIquel + CVelec_Pelec- (14)

Ngrid

The first term in this cost functional quantifies PHEV fuel con-
sumption, while the second term quantifies electricity consump-
tion, and the coefficient 5 makes it possible to carefully study
tradeoffs between the two. Specifically, Wy, represents the fuel
consumption rate in grams per time step, where we use the en-
gine map in [29] to convert engine torque and speed to fuel con-
sumption. The constant parameter a,] then converts this rate to
an energy consumption rate, in megajoules (MJ) per time step.
Similarly, Peje. represents the instantaneous rate of change of
the battery’s internal energy, i.e.,

e (15)
The constant parameter qelec converts Pele. to MJ per time
step. Dividing this change in stored battery energy by a constant
charging efficiency 7yriq = 0.98 (which corresponds to a full
recharge in six hours) furnishes an estimate of the amount of
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energy needed from the grid to replenish the battery charge
consumed during the trip. Note that Pe.. is positive when
the PHEV uses stored battery energy and negative during
regeneration. Hence, there exists a reward for regeneration that
offsets the need to consume grid electricity. The magnitude of
this reward depends on the parameter 3, which represents the
relative price of gasoline per MJ to the price of grid electricity
per MJ is defined as follows:

. Price of Gasoline per MJ
"~ Price of Grid Electricity per MJ"

(16)

We refer to this parameter as the “energy price ratio,” and
use it to examine the tradeoffs between fuel consumption and
electricity consumption in PHEVs. Specifically, we begin this
paper’s power management optimization studies by setting
a price ratio of 3 = 0.8, consistent with the average energy
prices in 2006, namely $2.64 USD per gallon of gasoline and
$0.089 USD per kWh of electricity [31]. We then vary this
ratio to examine the influence of different relative fuel-to-elec-
tricity prices on optimal power management, as shown in
Section IV-C.

C. Constraints

In optimizing PHEV power management, we seek controllers
capable of keeping the state vector x within simple bounds ex-
pressed as a constraint set X in (17). These bounds ensure that
the engine neither exceeds its maximum allowable speed nor
falls to speeds where noise, vibrations, and harshness (NVH) be-
come excessive [27]. They also constrain battery state of charge
to remain between two limits denoted as SOC,,;;, = 0.25 and
SOCax = 0.9. Constraining SOC in such a way helps to pro-
tect against capacity and power fade due to overcharging or ex-
cessive discharging [10], [16], [17]. However, the precise impact
of the depths and rates of PHEV battery charging/discharging
on battery health is still under investigation. Finally, we also
impose limits on the speeds of the motor/generators to protect
them from damage. As explained in Section III-B, when solving
the optimal PHEV power management problem numerically, we
use exterior point penalty functions to implement all of these
state constraints as “soft” constraints [33]

We, min S We S We, max
X = {4 WM/GLmin S WM/G1 S WM/G1,max

WM /G2,min < War/Ge < WAr/G2,max
SOCHhin < SOC < SOCpax

7)

In addition to constraining the PHEV state variables, we
also implement two types of control input constraints as part
of power management optimization: a power conservation
constraint and control input bounds. The power conservation
constraint, given by (18), ensures that driver power demand is
met by equating it to the sum of the three engine/motor/gener-
ator power outputs

Paem = Pe + Prrjgr + Puyga- (18)

Since the power output of each PHEV actuator equals its torque
multiplied by its angular velocity, which depend directly on the
PHEV’s states, this constraint reduces the number of indepen-
dent control inputs from three to two. The choice of torques as

control inputs ensures the system representation is causal, as can
be seen in (7). The choice of which two torque commands to
make independent is arbitrary, but we select engine torque and
M/G1 torque to match existing work [23]. Hence, the vector of
independent control inputs becomes

w=I[T. Tuci] - (19)
As with the state variables, we constrain the two elements of this
vector to take values within an admissible control set denoted by
U(z) in (20). This control set limits the rate of battery charging
and discharging to minimize battery damage, and also limits the
engine and motor/generator torque to safe and attainable values.
We refer to control policies that map states to control inputs
within this set as “admissible” policies [20]

Te,min S Te S Te,max(we)
u: Tr/c1,min < Ty < Taayar,max(Wii/a)
" Trya2,min < Taya2 < Thiyao,max(Wi/a2)
Pr,hg,lim(SOC) S Pbatt S I)dis,lim(SOC)(ZO)

U(z) =

D. Drive Cycle Modeling

The drive cycle model is a stochastic component to the plant
model which predicts the distribution of future power demands
using a discrete-time Markov chain [34]. Specifically, the model
defines a probability of reaching a certain power demand in the
next time step, given the power demand and vehicle speed in the
current time step [22]. To acquire a numerical realization of this
model, we define a state space for the Markov chain by selecting
a finite number of power demand and vehicle speed samples.
Then we form an array of conditional transition probabilities
according to

Di,j,m =Pr (Pdcm(k+ 1) :L|Pdcm(k) :jv ’U(k) :m) (21)

where ¢, 7 index power demand and  indexes vehicle speed.
To estimate these transition probabilities, one needs observation
data for both power demand and vehicle speed. We obtain these
observations from a number of drive cycle profiles. The profiles
provide histories of vehicle speed versus time, and we invert the
PHEV dynamics to extract corresponding power demand histo-
ries. This results in the following equation for power demand,
solely in terms of vehicle velocity and vehicle parameters:

Pdem = m%v + %plﬁlf'rcvd'v3 + pmgv + bwv2/rtire~ (22)

In this work, we used federal drive cycles (FTP-72, US06,
HWFET) and real-world micro trips (WVUCITY, WVUSUB,
WVUINTER) in the ADVISOR database [29] to compute the
observation data. We then derived the transition probabilities in
(20) from this data using the maximum likelihood estimation
method [35].

Note that negative values for power demand denote braking
commands from the drive cycle. The batteries and electric
machines in our model are sized such that, for the drive cy-
cles we consider, they can provide all necessary power for
braking. Therefore we assume that all braking commands are
met through regeneration, as opposed to engine braking or
traditional hydraulic braking. Future work could examine the
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Fig. 4. Modified policy iteration flowchart. The process consists of two succes-
sive steps, policy evaluation and policy improvement, repeated iteratively until
a convergence criterion is satisfied.

impact of removing this assumption by: 1) introducing a model
for hydraulic brake power, P ake, in the right-hand side of
(18) and 2) explicitly introducing brake power split decision
variables.

III. STOCHASTIC DYNAMIC PROGRAMMING

This section presents the stochastic dynamic programming
approach used for solving the optimal power management
problem posed in Section II. The approach begins with a
uniform discretization of the admissible state and control
input sets X and U(x). This discretization makes the op-
timal power management problem amenable to computer
calculations, but generally produces suboptimal results. We
use the symbols X and U(z) to refer to both the continuous
and discrete-valued state and control input sets for ease of
reading. Given the discrete-valued sets, we apply a modified
policy iteration algorithm [20] to compute the optimal power
management cost function and policy. This algorithm consists
of two successive steps, namely, policy evaluation and policy
improvement, repeated iteratively until convergence. For each
possible PHEV state, the policy iteration step approximates
the corresponding ‘“cost-to-go” .J, which may be intuitively
interpreted as the expected cost function value averaged over
a stochastic distribution of drive cycles starting at that state.
The policy improvement step then approximates the optimal
control policy u*, corresponding to each possible PHEV state.
This process iterates, as shown in Fig. 4, until convergence.
Sections III-A and III-B present the policy iteration and policy
improvement steps in further detail.

A. Policy Evaluation

The policy evaluation step computes the cost-to-go for each
state vector value x given a control policy u(x). This computa-
tion is performed recursively as shown in (23)

Jn1(@) = g(z,u) + B [vJn (f(z,u))]

dem

Ve e X. (23)
The index n in the above recurrence relation represents an itera-
tion number, and the recurrence relation is evaluated iteratively
for all state vector values in the discretized set of admissible
states, X. In general, the cost-to-go values within the expec-
tation operator must be interpolated because f(z,u) will not
always generate values in the discrete-valued state set X. Al-
though the true cost-to-go for a given control policy must satisfy
Jn = Jnt1, we iterate (23) a finite number of times before ex-
ecuting the policy improvement step (next section). It has been
proven that this truncated policy evaluation approach, used in
combination with the policy improvement step below, converges
to the optimal control policy regardless of the maximum number
of iterations [20].
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B. Policy Improvement

Bellman’s principle of optimality indicates that the op-
timal control policy for the stochastic dynamic programming
problem in (1) and (2) is also the control policy that minimizes
the cost-to-go function .J() in (23). Thus, to find this control
policy u*, we minimize cost-to-go with respect to this policy
for each state vector value z, given the cost-to-go function
J(x). Mathematically, this minimization is represented by

u*(x):argmin{g(agu)—{— E [vJ(:E)]—I—gmns(:v)} VzeX.

u€U(x)

(24)
Equation (24) imposes the state and control input set constraints
from (2) in the form of an exterior point quadratic penalty term
[32], geons(x). This penalty term consists of 16 penalty func-
tions summed together, each corresponding to one of the in-
equalities given in (17) and (20). Each penalty function equals
the excursion from the corresponding constraint boundary, nor-
malized with respect to the feasible range of operation, squared,
and multiplied by a coefficient five orders of magnitude greater
than the energy consumption weights. For example, the penalty
function for minimum engine speed takes the form

dem

We min — We }:| 2
— We,min '
(25)
After both policy evaluation and policy improvement are
completed, the optimal control policy is passed back into the
policy evaluation step and the entire procedure is repeated
iteratively. The process terminates when the infinity norm of
the difference between two consecutive steps is less than 1%,
for both the cost and control functions.

Jeonswe.min (F) = Ocons e min [mm {0,

We, max

IV. RESULTS AND DISCUSSION

This section analyzes the properties of the proposed PHEV
power management approach by comparing its performance
against a baseline control policy, inspired by previous research
[1], [16], [17]. Specifically, it is fairly common in PHEV power
management research to examine algorithms that initially
operate in a charge depletion mode, then switch to charge
sustenance once some minimal battery state of charge is
reached [1], [16], [17]. The charge depletion mode typically
utilizes stored battery energy to meet as much of the driver
power demand as possible (engine power may be needed when
demand exceeds the power capabilities of the motor/gener-
ators), thereby depleting battery charge rapidly. The charge
sustenance mode then uses engine power to regulate battery
state of charge once it reaches some predefined minimum.
This charge depletion, charge sustenance (CDCS) approach
implicitly assumes that fuel consumption dominates operating
costs relative to electricity consumption from the battery. We
implement CDCS in this paper by setting cvejec in (14) to zero
and rely on the minimum SOC constraint in (17) to enforce
charge sustenance behavior once battery charge is depleted.
We refer to power management strategies that are the result
of setting all coefficients in (14) to nonzero values as blended,
since a weighted sum of both electricity and fuel is utilized to
construct the power split map.
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Fig. 5. Running energy consumption costs for blended and CDCS control
strategies on two FTP-72 cycles simulated back-to-back. The total cost (solid
line) is the sum of fuel (dashed line) and electricity (dotted line) costs.
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Fig. 6. State-of-charge response for blended and CDCS control strategies on
two FTP-72 cycles simulated back-to-back.

In the remainder of this section, we first analyze the per-
formance of the blended and CDCS strategies by focusing on
two FTP-72 drive cycles simulated back-to-back. Second, we
examine the difference between these two control strategies in
more depth by exploring how they manage engine speed and
torque. Next, we investigate the impact of varying fuel and elec-
tricity purchase prices on the optimal blended and CDCS con-
trol laws. Finally, we discuss the advantages and disadvantages
of implementing the proposed power management approach in
a real-time system.

A. Performance

To illustrate the potential performance improvements of
a blending strategy over a CDCS strategy, consider their re-
sponses for two FTP-72 drive cycles simulated back-to-back,
as shown in Figs. 5 and 6. The total cost of energy for this trip
is 6.4% less for the blended strategy relative to CDCS, and fuel
consumption is reduced by 8.2%. Blending accomplishes this
by utilizing the engine more during the charge depletion phase,
thereby assisting the battery to meet total power demand more
often than CDCS. Although in the blended case the engine
operates at higher loads, therefore consuming more fuel, the
engine efficiency is greater and, as demonstrated in Fig. 6,
battery charge depletes more slowly. As a result, blending and

CDCS incur nearly the same total energy costs through the
depletion phase (see Fig. 5), and the advantage of blending in
terms of overall cost arises from its delayed entry into charge
sustenance.

The benefit of delayed entry into charge sustenance is evi-
dent from previous research in the literature in which the PHEV
drive cycle and total trip length were assumed to be known a
priori (e.g., [9] and [16]). For example, in [9] deterministic dy-
namic programming furnished blending strategies that reached
minimum SOC exactly when the PHEV trip terminated, thereby
never allowing the PHEV to enter the charge sustenance mode.
This result agrees with our current findings, namely, that the pri-
mary benefit of blending strategies results from their ability to
delay or eliminate the need for charge sustenance. However, the
approach in [9] requires knowledge of trip length a priori. Since
SDP explicitly takes into account a probability distribution of
drive cycle behavior, our identified strategy is optimal in the av-
erage sense.

In Table II, several closed-loop drive cycle simulation per-
formance metrics are reported, for both the CDCS and blended
strategies. These metrics include fuel economy, distance per
cost, and energy efficiency. The results indicate performance
improvements for blending over CDCS, for all the drive cycles
shown in Table II. We selected the drive cycle lengths to ensure
the vehicle reaches charge sustenance before the trip terminates.
If the vehicle reaches its destination before entering charge sus-
tenance phase, however, the total energy consumption costs are
nearly identical for blending and CDCS (as demonstrated in
Fig. 5). Therefore the blending strategy proposed herein has no
significant energy consumption cost penalty for early trip termi-
nation.

B. Engine Control

A significant benefit of the power-split architecture is the fact
that it decouples the engine crankshaft from the road, and al-
lows the electric machines to move engine speed where fuel ef-
ficiency is maximized [27]. This optimal operating line is iden-
tified by the black dashed line in Figs. 7 and 8. As shown in
Fig. 7, the blending strategy operates the engine at fairly low
speeds during charge depletion, close to the optimal fuel ef-
ficiency operating line. It also applies nonzero engine torque
even when power demand can be met by the electric motors
alone. The excess engine power goes towards regenerating bat-
tery charge, which the blended cost function in (14) rewards.
During the charge sustenance phase, the electric machines are
generally not saturated and thus free to maintain low engine
speeds and high efficiencies (low brake specific fuel consump-
tion values). In contrast, the CDCS strategy forces the engine
to remain at very low engine torque levels during depletion,
where fuel consumption is low but so is engine efficiency (see
Fig. 8). Moreover, significant power is requested from the en-
gine only when the electric machines saturate and cannot meet
driver power demand by themselves. This limits the control au-
thority of the electric machines when driver power demand is
large, thereby reducing their ability to move engine speed to
the optimal operating line. These observations explain how the
blending strategy utilizes the engine and electric motors more
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TABLE II
BLENDED PERFORMANCE IMPROVEMENT OVER CDCS

Drive Cucl FUEL EcONOMY (km/kg) DISTANCE PER COST (km/USD)  ENERGY EFFICIENCY (MJ/km)
rive Cycle
CDCS Blended Improvement CDCS Blended Improvement CDCS Blended Improvement

2xFTP-72 37.83 40.94 8.2% 27.52 29.29 6.4% 1.30 1.23 5.4%
Uso6 42.79 44.17 3.2% 2334 23.98 2.8% 1.55 1.50 3.2%
4xSC03 38.46 43.02 11.8% 27.52 29.93 8.8% 1.30 1.20 7.7%
HWFET 51.90 56.40 8.7% 29.45 30.90 4.9% 1.22 1.16 4.9%
LA92 4423 49.08 11.0% 26.39 29.16 6.7% 1.36 1.28 5.9%
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Fig. 7. Engine operating points for the blended strategy on a brake specific fuel
consumption map, for two FTP-72 cycles simulated back-to-back.
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Fig. 8. Engine operating points for the CDCS strategy on a brake specific fuel
consumption map, for two FTP-72 cycles simulated back-to-back.

efficiently, thereby delaying the charge sustenance phase and
improving overall PHEV operating costs.

C. Engine Shut-Off Control

The analysis summarized by Table III examines the impact
of adding engine shutoff as an additional control option among
the engine torque inputs. Blending continues to provide notable
benefits in fuel economy, energy consumption cost, and energy
efficiency when the engine is allowed to shutoff. This is ex-
plained by the fact that when the engine does turn on, blending
takes advantage of the opportunity to regenerate battery energy
by requesting slightly greater engine power than necessary to
meet power demand. The CDCS strategy, in contrast, attempts
to minimize engine power requested.

D. Energy Price Ratio

An important feature of the proposed power management al-
gorithm is its dependence on the energy price ratio, 3, which
varies temporally (e.g., by year) and spatially (e.g., by geo-
graphic region). To investigate the nature of this dependence,
we obtained the history of average energy price ratios in the
United States since 1973 [31], shown in Fig. 9. The value of
[ has clearly changed significantly over the past 35 years due to
shifts in both oil and electricity prices. This motivates the need
to understand how this parameter impacts optimal PHEV power
management.

Consider the SOC depletion responses shown in Fig. 10
for controllers synthesized with energy price ratios in the set
B € {0.4,0.6,0.8,1.0,1.2} and for a CDCS strategy, which
by definition does not depend on (3. Several conclusions can
be drawn from this parametric study. First, as § approaches
infinity (i.e., fuel becomes infinitely more expensive than grid
electric energy), the optimal blending strategy converges to
a CDCS strategy. This is consistent with the fact that the
CDCS strategy implicitly assumes the cost of fuel is infin-
itely more than the cost of electricity. Second, for sufficiently
low 0 (i.e., electricity becomes more expensive than fuel),
the optimal blending strategy generates electric energy. The
implicit assumption leading to this result is that the driver is
able to sell energy back to the grid when the vehicle is plugged
in. Although electricity prices are unlikely to be this high in
general, real-time pricing could motivate using the vehicle as
a distributed power generator during periods of peak demand
when conventional generation is scarce [36]. This suggests that,
with the appropriate exchange of information, a vehicle could
be configured to modify its control policy in real time to reflect
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TABLE IIl
BLENDED PERFORMANCE IMPROVEMENT OVER CDCS W/ AND W/0O ENGINE SHUT-OFF CONTROL
FUEL DISTANCE PER ENERGY
DRIVECYCLE  ENGINE SHUT- ECONOMY COST EFFICIENCY
OFF CONTROL
(km/kg) (km/USD) (MJ/km)
NO +11.83% +8.34% 7.69%
4xSCO03
YES +9.45% +5.52% -4.84%
NO +11.0% +6.7% -5.9%
LA92
YES +10.8% +6.1% -5.7%
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Fig. 9. Historic average values for the energy price ratio 3 from 1973 to 2007
[31] in the United States. Note how the variation corresponds with shifts in oil
and electricity prices.
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Fig. 10. State-of-charge response for varying 3 (blended) and CDCS control
strategies on two FTP-72 cycles simulated back-to-back. Blending approaches
CDCS as 3 approaches infinity.

grid conditions. Hence, our proposed controller is extendible
toward vehicle-to-grid infrastructures.

E. Real-Time Implementation

A key advantage of the stochastic dynamic programming ap-
proach is that it produces a static feedback map offline, which
can be implemented in real time [22] on an actual PHEV. This
map relates the PHEV plant states (engine speed, vehicle speed,
SOC, and power demand) to the control inputs (engine, M/G1,
and M/G2 torques), as demonstrated in Fig. 2. As a result, the
only onboard computational requirement is interpolation be-
tween the map’s grid points. Moreover, the control engineer can
select the grid size to tradeoff performance with memory storage
requirements. In the actual system, engine speed, vehicle speed,
and power demand can be determined using existing on-board
sensors. Futhermore, battery SOC is typically estimated using

extended Kalman filters [37] or recursive least squares algo-
rithms [38].

V. CONCLUSION

This paper demonstrates the use of stochastic dynamic pro-
gramming for optimal PHEV power management. It derives an
optimal power management strategy that rations battery charge
by blending engine and battery power in a manner that improves
engine efficiency and reduces total charge sustenance time. This
strategy explicitly takes into account a probability distribution
of drive cycles and variable energy price ratios. This formula-
tion guarantees a solution that is optimal in the average sense,
without requiring drive cycle knowledge a priori. Moreover, we
have shown that energy price ratios can significantly influence
the characteristics of the optimal control policy. Indeed, it may
be useful to equip production PHEVs with a range of control
laws corresponding to the range of price ratios that could be ex-
perienced over the life of the vehicle.
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