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Abstract—This paper studies siting and sizing of plug-in
electric vehicle (PEV) fast-charging stations on coupled trans-
portation and power networks. We develop a closed-form model
for PEV fast-charging stations’ service abilities, which considers
heterogeneous PEV driving ranges and charging demands. We
utilize a modified capacitated flow refueling location model
based on sub-paths (CFRLM_SP) to explicitly capture time-
varying PEV charging demands on the transportation network
under driving range constraints. We explore extra constraints of
the CFRLM_SP to enhance model accuracy and computational
efficiency. We then propose a stochastic mixed-integer second
order cone programming (SOCP) model for PEV fast-charging
station planning. The model considers the transportation network
constraints of CFRLM_SP and the power network constraints
with AC power flow. Numerical experiments are conducted to
illustrate the effectiveness of the proposed method.

Index Terms—Plug-in electric vehicle, charging station, plan-
ning, heterogeneous driving ranges, transportation, power sys-
tem, second order cone programming.

NOMENCLATURE

Indices/Sets

(k) Index of (type k) plug-in electric vehicles (PEVs).

i/Zo/q) Index/set of transportation nodes (on sub-path
olpath q), i € Z(,/q).

I Set of transportation nodes connected to distribu-
tion bus m.

k/K Index/set of PEV types, k € K.

m/n/h Index of buses of the distribution network.
m/n/h € M. For the reference bus, m/n/h = 0.

(m,n)/L Index/set of lines of the distribution network.
(m,n) is in the order of bus m to bus n, i.e.,
m — n, and bus n lies between bus m and bus
0. (m,n) € L.
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M Sm) Set of buses of the distribution network (that are
connected to bus m and bus m lies between them
and bus 0).

0/Oq,xy Index/set of sub-paths (of PEV type k on path g),
[OS O(q,k).

q/Qq)  Index/set of paths (travel by node i), ¢ € Q).
Each path corresponds to one OD pair.

t Index of time intervals.

w/Q Index/set of scenarios. w € (2.

Functions

) Probability density function (PDF) of a normal
distribution.

F(") Cumulative distribution function (CDF) of a nor-
mal distribution.

d(+) CDF of the standard normal distribution.

Parameters of the PEVs

Ry Driving range of a type k PEV, in km.

tie Arrival (charge start) time of PEV e in a station.
a
5=0.

td Departure (charge end) time of PEV e in a station.

Tk Required charging time for a (type k) PEV, in h.

yfz) The arrival number of (type k) PEVs in a charging
station.

Parameters of the transportation network

d; ; Distance between node ¢ and j, in km.

Ag( k) Volume of (type k) PEV traffic flow on path ¢, in
h*l

Agikw,t Volume of type k£ PEV traffic flow (Poisson
parameter) on path ¢, at node ¢, during time ¢,
in scenario w, in hl.

Parameters of the planning model

a Service level of charging stations.

Cl,i Fixed costs for building a new charging station at
node 4, including buildings costs etc, in $.

C2i Costs for adding an extra charging spot in a

station at node ¢, including land use costs, spot
purchase costs etc., in $.

€3, Per-unit cost for distribution line at ¢, in
$/(kVA-km).

Ca Per-unit cost for substation capacity expansion at
i, in $/kVA.

Ce Per-unit cost for energy purchase, in $/kWh.

¢ Per-unit penalty costs for unsatisfied PEV power,
in $/kWh.

At Time interval, representing one hour in this paper.



Upper limit of branch current of line (m,n), in
KA.

Required distribution line length to install a charg-
ing station at transportation node ¢, in km.
Capital recovery factor, which converts the
present investment costs into a stream of
equal annual payments over the specified time
of Y at the given discount rate r. { =
(r(4+r)Y)/((1+7)¥ —=1). Y is the service
live of the charging stations, in year.

Probability of scenario w, in %.

Rated charging power of a charging spot, in kW.
Initial substation capacity available at node ¢, in
kVA.

Apparent base load at bus m, in kVA.
Lower/upper limit of nodal voltage at bus m, in
kV.

Maximum number of charging spots located at
node 3.

Impedance of branch (m,n), in ohm. 27,
conjugate.

n 18 its

Decision Variables
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LUG-IN electric vehicles (PEVs) are regarded as a
promising tool to promote energy sustainability and com-

Volume of (type k) PEVs that need charging (at
node ¢, during ¢, in scenario w), in h .

Charge choice of (type k) PEVs on path ¢ at node
© Yq,i(,k) = 1, if PEVs get charged; g,k = 0,
otherwise.

Square of the magnitude of line (m,n)’s current
during ¢ in scenario w, in KAZ.

Active PEV power at node ¢ during ¢ in scenario
w, in kKW.

Unsatisfied active PEV charging power (at node
1) during ¢ in scenario w, in kW.

Total active power injection at bus m during ¢ in
scenario w, in kW.

Substation capacity expansion at node ¢, in kVA.
Total apparent power injection at bus m during ¢
in scenario w, in kVA. For a distribution system,
50,w,¢t (at bus 0) is also the power consumption of
the whole distribution system.

Apparent PEV power at bus m during ¢ in sce-
nario w, in kVA.

Apparent power flow in line (m,n) (from bus m
to bus n) during ¢ in scenario w, in kVA.
Square of the nodal voltage at bus m during ¢ in
scenario w, in kV?2.

Charging station investment decision at node :
x; = 1, if there is a station at node i; z; = 0,
otherwise.

Number of invested charging spots (at node 7).
Charge choice of PEVs on sub-path o at node :
Zo,,i = 1, if charged; z,, ; = 0, otherwise.

I. INTRODUCTION

bat climate change. Compared with traditional internal com-
bustion engine vehicles, PEVs have higher energy efficiency.
According to a report from the Argonne National Laboratory
[1], the electrification of transportation can significantly reduce
petroleum energy use and help to relief the pressure of
energy crisis. The emissions of PEVs strongly depend on
their electricity generation mix for recharging. With the fast
development of sustainable resources, e.g., wind, photovoltaic
and hydro power, adopting PEVs can also significantly reduce
the global greenhouse gas emissions [1]. Furthermore, because
PEV charging demands are usually flexible, they may provide
various power grid services under proper management, e.g.,
load valley filling [2]-[4], participating energy market [5], [6],
promoting renewable power adoption [7], [8], or providing
ancillary services [9]-[11]. This will also enhance the sustain-
ability and low-carbonization of future power systems.

Because of the aforementioned advantages of PEVs, gov-
ernments around the world have devoted great efforts to
promoting their development. As a result, the PEV market has
experienced an explosive growth in recent years. Over 774,000
PEVs were sold worldwide in 2016, which increased by 42%
compared to 2015 [12]. A report by Bloomberg forecasted
that the sales of PEVs will hit 41 million by 2040 worldwide,
accounting for 35% of new light duty vehicle sales [13].

Well developed infrastructure for PEV charging is the
prerequisite for the promotion of PEV adoption. The growing
PEV population is leading to massive investments in charging
infrastructure. For example, in China, 4.8 million distributed
charging spots and more than twelve thousand fast-charging
stations are planned for construction by 2020 [14]. PEV charg-
ing facilities generally fall into two categories: 1) distributed
charging spots with slow (or normal) power chargers; 2)
centralized fast-charging stations with high power chargers
[15]. In urban areas, the distributed charging spots, located
in private or public parking lots etc., serve as the primary
means for PEV charging; while on intercity corridors, the
fast-charging stations are the major charging infrastructure
for PEVs. Driven by the urgent demands from industry, the
planning of both kinds of PEV charging facilities have become
important research focuses [15]-[18]. This paper studies siting
and sizing of fast-charging stations on coupled transportation
and power networks, solving three major sub-problems:

1) How to model a fast-charging station’s service ability
considering heterogeneous PEV charging demands? In
other words, when heterogeneous PEV charging de-
mands are given at a charging station, how many spots
should be installed there to offer adequate charging
service quality?

2) How to model PEVs’ charging behaviors on transporta-
tion networks? In other words, where should PEVs get
charged (or charging stations be located) so that their
driving demands can be satisfied?

3) PEV charging stations are the coupling points of the
transportation and power networks. How to describe
the two networks’ coupling relationship so that we can
optimize the sites and sizes of fast-charging stations
subjected to their coupled constraints?



Modeling one single fast-charging station’s service ability,
i.e., the number of demands that a station with a certain
number of charging spots can satisfy, is the first step for
the planning. PEVs’ long and heterogeneous charging time
makes the modeling of charging stations different from that
of traditional gasoline stations. Some previous literature [19]-
[21] studied un-capacitated charging station planning, which
assumed infinite service ability for each station. Some others
(e.g., [22]) approximated a station’s service ability to be
proportional to its facility number. This linear model ignores
the “scale effect” of stations’ service abilities, i.e., when the
facility number in a station grows, the average service ability
of a single facility increases because of the randomness of
demands. To handle the “scale effect,” queuing theory was
widely adopted, e.g., in [23]-[26]. Though queuing models
provide a comparatively precise way to model a PEV charging
station’s service ability, they have no closed-form formula-
tions. Users have to solve difficult nonlinear optimization
problems to obtain the required number of charging spots for a
certain number of demands, which makes it hard to be directly
implementable in the planning model. Most of the published
papers that have adopted queuing models applied heuristic
algorithms to solve their problems [23]-[26]. Besides, because
the battery capacities of PEVs on the market are heteroge-
neous, their required service durations in a charging station
may have heterogeneous distributions, which is not considered
in the aforementioned models.

The limited driving range is another key characteristic
that distinguishes PEVs from traditional internal combustion
engine vehicles. Unlike gasoline stations, planning PEV fast-
charging stations should consider PEVs’ driving range con-
straints, which determine where and when their charging de-
mands may happen on transportation networks. Two different
ways to explicitly model PEVs’ driving range constraints
proposed in published literature are respectively named in
this paper as: 1) the flow refueling location model based
on expanded networks (FRLM_EN); 2) the flow refueling
location model based on sub-paths (FRLM_SP). Both models
use origin-destination (OD) traffic flow to estimate charging
demands. FRLM_EN was first proposed in [19] and then
reformulated and simplified in [20], [21]. FRLM_SP was
developed in [27] for battery swapping station planning. In
both FRLM_EN and FRLM_SP, only peak-hour OD traffic
flow is considered. However, modeling time-varying traffic
flow is necessary to evaluate the impact of PEV charging on
dynamic power networks.

PEV charging stations are the coupling points of transporta-
tion and power networks. Their investments and operations
are constrained by both networks. Hence, planning PEV
charging stations should consider the coupling relationship
between the transportation and the power networks. Very few
published papers study this coupling. In [24], [25], [28]-[31],
detailed power network constraints were considered. However,
references [24], [25], [28] modeled the transportation net-
work without explicitly considering driving range constraints
and they considered low voltage distribution networks with
service radiuses much smaller than a typical PEV’s driving
range. Reference [29] assumed the PEV charging demands

to be uniformly distributed across the target area. In [30],
the authors studied charging station siting problem based on
game-theoretical modeling and simulation. The impact of PEV
charging on the power grid was assumed to be proportional
to the charging power. In [31], an equilibrium modeling
framework for PEV charging station planning in a coupled
transportation and power network is proposed. The authors
assumed the transmission nodal electricity prices will influence
PEV charging choices and the traffic flow. In practice, the
geographical distance between two transmission nodes and the
costs for a PEV to travel from one node to another is high so
that the nodal prices effect may be insignificant.

In our previous work [32], we proposed a mixed integer
linear programming model for PEV fast-charging station plan-
ning on coupled transportation and power networks. We used
queuing theory to model charging stations’ service abilities
for PEVs with homogeneous driving ranges and adopted
piecewise linearization to retain linearity (at the price of in-
troducing additional binary variables). We utilized capacitated
FRLM_EN (CFRLM_EN) to model the transportation network
and only considered peak-hour OD traffic flow. Kirchhoffs
Law was utilized to roughly approximate the electrical con-
straints of distribution networks.

Compared with the published literature including our previ-
ous work [32], the major contributions of this paper include:

1) We propose a service performance metric for PEV fast-
charging stations, i.e., the service level. It measures
the probability that the charging demands arriving in
a given time interval can be directly fulfilled without
extra waiting time (caused by limited charging capacity).
Then, we develop a closed-form model based on the
service level metric to describe the service abilities
of PEV fast-charging stations. Compared with linear
models and queuing models in published literature, the
advantages of the proposed model are twofold:

a) It is in a simple closed form and can be modeled
as an SOCP constraint so that it can be easily
implemented in the planning model and solved by
an off-the-shelf solver, which ensures optimality;

b) It considers heterogeneous PEV driving ranges so
that the modeling is more practical and accurate.

2) A modified capacitated FRLM_SP (CFRLM_SP) is de-
signed to explicitly capture time-varying PEV charging
demands generated from dynamic OD traffic flow on the
transportation network under driving range constraints.
The advantages of this model are threefold:

a) Compared with the CFRLM_EN, it introduces
fewer binary decision variables so that the problem
scale is reduced;

b) We develop extra constraints based on practical
operation analysis to further enhance its compu-
tational efficiency;

¢) Modeling dynamic OD traffic flow allows us to
evaluate time-varying PEV charging power, which
is crucial for the secure operation of distribution
systems considering that the base load profiles are
also time-varying.



3) A stochastic mixed-integer SOCP is developed for PEV
charging station planning considering both the trans-
portation network constraints and the power network
constraints with AC power flow. By modeling AC power
flow instead of its linear approximation in [32], we can
evaluate the planning results’ influence on important
parameters of distribution system operations including
active power losses and voltage deviations. Besides, we
adopt convex SOCP relaxation of AC power flow so that
its global optimal solution can be obtained [33]. The
planning model can be efficiently solved by the branch-
and-cut method using an off-the-shelf solver.

Besides, numerical experiments are conducted to validate the
proposed planning method.

Note that we study this problem from the perspective of
a social planner with an objective to maximize the social
welfare. We assume that the planner has access to both
transportation and power system information. In scenarios
when the power utility companies are also the charging station
investors, e.g., State Grid Corporation of China, the proposed
method is also applicable in practice. The targeted planning
area in this paper is a highway transportation network powered
by a high voltage distribution network with large service radius
as in [32]. The proposed method can be easily extended to
scenarios when higher voltage level transmission systems are
also covered in the targeted planning area.

The service performance metric and the service ability
model are introduced in Section II. The latter is used to
determine the sizes of fast-charging stations given the de-
mands. Section III introduces the modified CFRLM_SP, which
determines the feasible set of the locations where PEVs get
charged (or fast-charging stations are constructed). Section
IV formulates the mixed-integer SOCP planning model which
subjects to the aforementioned service ability model and the
CFRLM_SP. The AC power flow model and other constraints
are also introduced. Case studies are described in Section V
and Section VI concludes the paper.

II. SERVICE ABILITY MODEL OF CHARGING STATIONS

This section first proposes a service performance metric, i.e.,
the service level, for PEV fast-charging stations. Then, based
on the proposed metric, we develop a closed-form model to
describe the service ability of a PEV fast-charging station,
which is called the service level model in this paper. This
model is used to size a PEV fast-charging station, i.e., to
determine the required number of charging spots in a station
given the number of charging demands.

A. The Service Level Metric

Given the charging demands at a candidate location, the
planer should determine the number of charging spots to be
constructed there. To guarantee that the designed station can
provide adequate service quality in the future, the planner
should determine this number according to a proper charging
service performance metric. This section introduces a novel
performance metric, i.e., the service level, for PEV fast-
charging stations. The service level is a popular performance

metric in inventory management. It measures the probability
(rate) that all customer orders arriving within a given time
interval will be completely delivered from stock on hand, i.e.
without delay [34]. Reference [27] used it to describe the
service quality of a battery swapping station. Inspired by this
metric in inventory management, we define the service level
of a fast-charging station as follows:

Definition 1 (Service level): The service level of a fast-
charging station represents the probability that any PEV can
be charged for at least its required units of time, i.e., T, for
PEV e, without waiting in the station.

Since the user experiences in a fast-charging station are
strongly related to the users’ waiting time before getting
charged, the proposed service level metric can effectively
describe the service quality of a fast-charging station.

Based on the service level metric, we propose that the
planner determine the number of charging spots at a candidate
location subject to the following service quality criterion:

Criterion 1: The service level of the fast-charging station
is « or greater. Mathematically, Pr(t$ = 2 & t9—¢ > T,) >
a, Ve.

By tuning the parameter o (which is called the service level
criterion in this paper), the planner can effectively control the
designed station’s future service quality.

When the charging demands are given, the minimum num-
ber of charging spots that should be installed in the station,
ie., ¥, is a function of the service level criterion «. In the
following subsections, we derive a closed-form approximation
for this function (denoted by y**(«)). We begin the derivations
assuming that the PEVs have homogeneous driving ranges.
Then, we extend the result for the scenarios when PEVs are
heterogeneous. This function y**(«) defines the service ability
of a fast-charging station subject to the service level criterion
«, 1.e., the service level model. At the end of this section,
we show how to reformulate this service level model into a
mixed-integer SOCP.

B. The Service Level Model with Homogeneous PEVs

We first consider the scenario when all the PEVs are
homogeneous so that the required time to fully charge them
with depleted batteries are the same. We denote the time by 7',
ie., T, =T, Ve. To derive the closed-form approximation for
the function y*(«), we introduce the following assumptions:

[A1] The PEVs arrive in a fast-charging station following
a Poisson process.

[A2] The PEVs are served based on a first-in first-out rule
and new arriving PEVs need not to wait, which means that,
when all the charging spots are occupied and a new PEV
arrives, the on-board PEV that has been charged the most must
leave and spare its spot to the new one. Thus, a PEV e may
leave the station if it : 1) has got charged for 7, units of time;
2) has to spare its spot to a new PEV. Therefore, with this
assumption, we always have ¢ = 2.1

Let y°¥ denote the arrival number of PEVs in the station in
a duration of 7T"; A\ denote the Poisson arrival rate; then, based

!"This mild assumption is made for the convenience of modeling. In practice,
a new arriving PEV may need to wait before one spot is spared for it.
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Fig. 1. The Poisson arrivals of PEVs (homogeneous driving ranges).

on assumption [Al], y*¥ follows a Poisson distribution with
parameter T\, i.e., ¥ ~ Poisson(T\). The characteristics
of Poisson process lead to the following Proposition:

Proposition 1: With [A1] and [A2], Pr(t¢ = 2 & t4—1¢ >
T) =Pr(y® <y, y*¥ ~ Poisson(T\),Ve.

Proposition 1 is intuitive: if the number of PEV arrivals in
a duration of T is larger than the number of charging spots,
ie., y& > y, there will be at least one PEV that can not
get charged for 7" units of time with [A2]. A diagram of the
Poisson arrivals of homogeneous PEVs is shown in Fig. 1.
The rigorous proof of Proposition 1 is given in the appendix.

Based on Proposition 1, Criterion 1 is equivalent to:

Criterion 2 (Homogeneous PEVs): Pr(y® < y*) >
a, Y= ~ Poisson(T)\).

The Poisson distribution can be approximated by a Normal
distribution, i.e., y* ~ N(T'A, T'\) [34]. Then, Criterion 2 is:

ev ev __ cq _ ycs — T

Thus, we have the number of spots in a station limited by:
(@) =TA+ O ()VTA. 2)

The right-hand side of the above constraint is the closed-
form approximation for function y* (). Constraint (2) is the
service level model subjected to the service level criterion a.

)>a. (1)

ycs Z F—l

C. The Service Level Model with Heterogeneous PEVs

In practice, PEVs on the market usually have heterogeneous
driving ranges, which results in different charging behaviors,
i.e., a PEV with longer driving range may charge fewer times
with longer duration each time than a PEV with shorter driving
range. Therefore, one single charging station may have to
serve PEVs with heterogeneous service time requirements. To
effectively model the heterogeneous PEV charging demands,
we divide PEVs into different types by their driving ranges,
e.g., 200 km, 300 km etc. PEVs with similar driving ranges
belong to a same “type” and have similar charging behaviors.
We let KC denote the set of PEV types, and T} denote the
required charging time of type k PEVs.

To derive the closed-form approximation for the function
y* () of a fast-charging station serving PEVs with heteroge-
neous driving ranges, we still need to make assumptions [Al]
and [A2]. We let )\ denote the Poisson arrival rate of type k
PEVs. Then, similar to Proposition 1, we also have:

Proposition 2: With [A1] and [A2], Pr(t{, =12 & td —
te, = Tr) = Pr(y™ < y*), y~ DA/ A
Poisson(TypA), Ve, Vk € K.
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Fig. 2. The Poisson arrivals of PEVs (heterogeneous driving ranges).

The proof of Proposition 2 is similar to that of Proposition 1,
which is omitted for brevity. A diagram of the Poisson arrivals
of two types of PEVs is shown in Fig. 2.

Based on Proposition 2, Criterion 1 is equivalent to:

Criterion 3 (Heterogeneous PEVs): Pr(y® < y*) >
a, Yy =3y, uy ~ Poisson(Ti\), Yk € K.

We approximate each independent Poisson distribution
Poisson(TyAr) by a Normal distribution, ie., 35" ~
N(TgAg, T A). Because the sum of different independent
Normal distributions is still a Normal distribution, we have
Y ~ N rei Tedk, 2 pexc TeAr). Then, Criterion 3 is:

[ s = p = o ke T

vV Zkelc T Ak

3)

Thus, we have the number of spots in a station limited by:

P2 F ) =) T+ @7 a) D Tide. @)
kex kek

The right-hand side of the above constraint is the closed-
form approximation of y*(a) for a fast-charging station
servicing heterogeneous PEVs. Constraint (4) is the corre-
sponding service level model subjected to the service level
criterion a.

D. Second Order Cone Reformulation of the Model

Though constraint (4) is in a simple closed-form, it is non-
convex and intractable. In this subsection, we show how to
reformulate it into a mixed-integer SOCP.

For a transportation network with multiple paths, the type k
PEV traffic flow (with Poisson arrival rate A4 1) to be charged
at a node ¢ is given by:

Ak = Y AgkVaiks )
q€Q;
where, the charge choice variable vy, ; 5 is binary; 74 = 1,
if PEVs get charged; 7, % = 0, otherwise.

Thus, the closed-form service level model (4) for a station
at node ¢ serving PEVs with heterogeneous driving ranges is:

>ZZT’C)“1’”‘”’“+@ ZZTk)\qﬂqzk-

qeQ; kel qeQ; kek
(6)



Because 7,51 = 7271-7 & holds, constraint (6) is equivalent to
the following one [27]:

2 D0 D Tedawaik + @) [0 Y Tidaws g

qeQ; kek qeQ; kek
(N

which is a mixed-integer SOCP and can be efficiently solved
by the branch-and-cut method in an off-the-shelf commercial
solver, such as CPLEX [35].

Remark 1 Given a service level criterion «, constraint (7)
provides the minimum required number of spots in a station.
The first term in (7) is the required number of spots to satisfy
the expected charging demands and is proportional to the
Poisson arrival rate. The second term corresponds to the extra
spots to satisfy any demand in excess of the mean and can
be viewed as the “safety stock.”?> In practice, high o leads
to more investments and ensures better service quality of the
charging stations.’

Remark 2 The service level model based on assumption
[A2] guarantees a lower bound for the future charging station’s
service quality. If the operator of the designed station follows
the first-in first-out rule in [A2], the service quality is exactly
what we have designed. If the operator smartly manages the
station, e.g., allowing waiting or letting the PEV with the
highest SoC' leave first, the service quality can be higher.

Remark 3 The service level criterion, i.e., «, provides a
meaningful and intuitive service quality criterion for future
operations. In practice, waiting is usually allowed; then, «
is approximately equal to the probability that a PEV can get
instantly charged right after arriving at the station; while 1 —«
is the probability that the PEV has to wait. The probability
of waiting in a public charging station is an important service
quality criterion in practice and can be easily controlled by 1 —
« in the proposed model. We conduct numerical experiments
to validate the performance of this model in Section V-C.

III. MODIFIED CAPACITATED FLOW REFUELING
LOCATION MODEL BASED ON SUB-PATHS

This Section describes the transportation network model,
i.e., the CFRLM_SP. It models the PEVs’ driving range
constraints on the transportation network, which provides the
feasible set of the charging station locations in the planning.

Note that the proposed model is based on the origin one first
introduced in [27]. We modify it to make it more accurate and
consider time-varying OD traffic flow.

A. PEV Driving Range Constraint Based on Sub-paths

We assume that the highway networks for PEVs are oper-
ated by the following rules:

1) Entrance rule: The PEVs should enter the transportation
network with battery SoC's enough to travel a distance
of D,. Because PEVs have limited driving ranges, this

2The “safety stock” reflects the “scale effect” of a station’s service ability,
i.e., the average required spots per demand decreases as the demands increase.

3Note that « is usually required to be above 50% so that the second term
(safety stock) in (6) is above 0 [34].
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Fig. 3. Driving range logic based on sub-path (100 km driving range).

rule guarantees the PEVs to be able to reach a charging
station without running out of energy.

Exit rule: The PEVs should leave the transportation
network with sufficiently high battery SoC's enough to
travel another distance of Dg. This threshold guarantees
the service quality of the charging network and ensures
that the PEVs leave the network with sufficient energy
to arrive at their final destinations.

2)

Based on the above operation rules, we explain the driving
range logic by Fig. 3. A PEV with a driving range of 100 km
arrives at node 1 with D, = 50 km (which means the PEV
has already traveled 50 km before arriving at node 1) and
needs to depart at node 6 with Dy = 50 km. We add pseudo
nodes o and d to denote the original node and destination node
respectively and let d, ; = 50 km and dg 4 = 50 km. Then,
the problem becomes that a PEV with its battery fully charged
leaves at node o and needs to arrive at node d without running
out of energy on the road. The travel trajectory of the PEV, i.e.,
{0,1,2,3,4,5,6,d}, is called a path, i.e., ¢, and a segment of
path ¢ is its sub-path. The real nodes on path ¢, i.e., {1, 2, 3,
4, 5, 6}, are the candidate locations for charging stations. The
driving range constraint for a PEV on path ¢ is that any sub-
path in ¢ with a distance longer than the PEV’s driving range,
i.e., 100 km, should cover at least one charging station so that
the PEV can travel through path ¢ with adequate charging
services. In Fig. 3, the set of sub-paths is {I,II, III,IV,V}.
Thus, on every sub-path in {I,II,II1 IV,V}, there should
be at least one charging station located on one of its covered
nodes. For the case in Fig. 3, two stations are required and
the candidate locations may be any of {1,4}, {2,4}, {2,5},
{3,4}, {3,5}, {3,6}.

The CFRLM_SP in [27] assumed that the PEVs are fully
charged before arriving at the highway network, which may
not hold in practice. Besides, to consider round trip, [27]
defined the sub-path length to be half of the PEVs’ driving
ranges, which would make the planning result very conser-
vative. By contrast,we define the sub-path length to be equal
to the PEVs’ driving ranges to enhance modeling accuracy.
Because the PEV traffic flow with round trips should follow
the operation rules described above in both the departure and
the return trips, we can model both trips separately.

B. Capacitated Flow Refueling Location Model

Based on the driving range constraint described in Section
III-A, the CFRLM_SP considering time-varying OD traffic
flows can be formulated as follows:

Service ability constraint (7), Vi € Z,Vw € Q,Vt,

®)
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Fig. 4. Two paths, i.e., g1 and g2, with a same arrival node 1 and an identical
sub-path, i.e., {1, 2, 3, 4, 5}.
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Each station’s service ability is constrained by (8). To consider
time-varying OD traffic flows, the service ability constraint (8)
should be satisfied for every hour in every scenario.* Equation
(9) ensures that the PEVs get charged for at least once in each
sub-path. This is the formulation of the driving rang constraint
introduced in Section III-A. Equation (10) constrains that the
PEVs can only get charged at the nodes with charging stations.
Equation (11) upper-bounds the number of charging spots, if
there is a charging station at that node.

C. Extra Constraints for CFRLM_SP

In the CFRLM_SP, the scale of the binary variables increase
linearly with the scale of the transportation network. In prac-
tice, the transportation network may be complicated so that the
optimization model may be intractable. To decrease the scale
of the problem, we make the following mild assumption:

[A3] The PEVs with the same arrival node traveling on
identical sup-paths have the same charge choices before they
separate with each other at the end of the identical sub-paths.

Take Fig. 4 as an example. PEVs traveling from node 1
to node 7 (path ¢;) have the same charge choices between
node 1 and 5 with those PEVs traveling from node 1 to node
9 (path ¢2). This assumption actually has practical meaning
that the PEVs on path ¢; and g» will have the same traveling
experiences before they depart with each other at node 5.
Therefore, they tend to have the same charge choices when
they visit a charging station.

With [A3], the scale of binary variables, i.e., 74k, de-
creases significantly so that the computational efficiency is
enhanced. Note that the reduction of the scale of v, ; ; depends
on the structure of the transportation network. Take a scenario
with two paths, e.g., Fig. 4, for example. If the identical sub-
path has oy candidate locations, and the separate sub-paths
respectively have o1 and o, variables, then, the scale of v, ; »
is reduced from og X 2 + 01 + 02 to og + 01 + 09 with [A3].
Apparently, if different paths share longer identical sub-paths,
the scale of 7, will reduce more significantly. When the
lengths of the separate sub-paths, i.e., 0y and o9, are very
short compared to that of the identical path, i.e., og, the two
paths can be regarded as a single path.

IV. CHARGING STATION PLANNING MODEL

As introduced earlier, the service ability model in Sec-
tion II determines the sizes of the charging stations given

4We utilize the hourly average traffic flow, i.e., Aq,i,k,w,¢» in this constraint.

the demands; and the transportation network model (the
CFRLM_SP) in Section III defines the feasible set of the PEV
charging sites. This section formulates the complete model
for siting and sizing PEV fast-charging stations subjected to
the aforementioned two models. Furthermore, we introduce
the AC power flow model to describe the power network
constraints’ impact on the planning.

A. Objective

Considering that the traffic flow and traditional base loads
are uncertain over the target planing horizon, a set of finite
potential future scenarios (£2) are forecasted. Then a two-stage
stochastic programming model is adopted to plan fast-charging
stations. The objective is formulated as follows:

Obj = ¢ Z (crimi + 2,y + c3,ili PY + ca i PP™)

ieT
27 9) SN CRURENER pP LY AYTE
wen ¢ i€l
where:
P =p™hyR, VieT (13)
Pisub _ maX(O,W — ]Disvl(l)b% Viel. (14)

The first two terms in the first line of (12) represent the fixed
cost of building charging stations and the variable building
cost in proportion with the number of charging spots. The
last two terms in the first line of (12) together account for
power distribution network upgrade costs, which include the
costs for distribution lines and the costs for substation capacity
expansion. The first term in the second line is the annual
expected energy purchase costs of the whole system and the
second term is the penalty for unsatisfied charging demands.
The maximum charging power in each station, i.e., P, is
calculated by (13). The corresponding substation capacity
expansion is calculated by (14).

B. Constraints

1) Transportation Network Constraints: The model should
satisfy the constraints of CFRLM_SP, i.e., (8)—(11).

2) Power Network Constraints: The branch currents and
nodal voltages of the distribution network must satisfy the AC
power flow constraints. In this paper, the SOCP relaxation of
AC power flow model [33] is adopted, as follows:

Ym € M,V (m,n) € L,Yw € Q,Vt:
Smn,w,t = Sm,w,t + Z (Shm,w,t - thlhm.,w,t)a (15)

heM_ .,
0=s0wi+ > (Showt—2n0lhow.t); (16)
heM_,o
Vot — Unwt = 2Re(25 0 Smnot) — |2mn 2 lmn.w.ts  (17)
|Smn.,w,t\2 < lmn,w,tvm,w,ta (18)
Smawt = ~Smwt — Smw,t- (19)

Note that, in this paper, we assume that the coupled power sys-
tem is a radial high-voltage distribution network. Considering



that the system only have unidirectional power flow, the SOCP
relaxation is exact [33]. For scenarios when higher voltage
level transmission systems are also covered in the targeted
planning area, using the SOCP relaxation for the whole system
may not provide a feasible solution for the problem. In that
case, we can adopt the linear direct current (DC) power flow
to model the transmission networks’; meanwhile, we can still
apply the SOCP relaxation to model the AC power flow of
the radial distribution networks. This modification is easy
to implement and will not impact the characteristics of the
planning model. For brevity, we omitted the corresponding
formulations in this paper.

The distribution line currents and nodal voltages must not
violate their permitted ranges:

lmmw,t < |m|27 V(m,n) € E,Vw S Q,Vt,
Vinl? € vt < |Vinl?, Ym € M,Yw € Q, Vt.

(20)
2n

3) Coupled Constraints of Transportation & Power Net-
works: The PEV charging load at each distribution bus is
calculated as follows:

Smwit = Pmwt T Jtantpn .. ¥m € M,Vw € Q, Vt,

m,w,t
(22)

Ym € M,Vw € Q,Vt, (23)

ev _ § ev
pm,w,t - pi,w,t’
€L,

where, 0 is the phase angle between the PEV charging voltage
and current; cos 6 is the power factor of the PEV charging load.
Considering that battery chargers usually have high power
factors (close to 1.0, see [37], [38]), we can approximately
assume cos = 1 so that tanf = 0.

The average PEV charging power at each transportation
node is calculated as follows:

ev ev spot
Piw.t +pun,i,w,t =P P E § Tk/\q,i,k,w,th,i,ka
qeQ; ke

Vi € T,Vw € Q, Vt. 24)

Note that when the PEV traffic is low, P, ,, = 0 and
the PEV charging power p7Y, , is proportional to the average
traffic flow that required charging services. On the other hand,
when the traffic flow grows beyond the system’s service ability,
some charging demands are not fulfilled and P{; ,; > 0,

which reveals the power network’s influence on the planning.

The base loads are required to be satisfied in the model,
e, 80 i = Qi+ 80w VM € M, Vw € Q,Vt.

The above formulated model, i.e., objective (12) subjected
to constraints (8)—(11) and (13)-(24), is an MISOCP. It can be
directly solved by the branch-and-cut method in a commercial
solver such as CPLEX [35]. Because the charging demands
can be unsatisfied when the system operation constraints, e.g.,

AC power flow, are binding, the model is always feasible.

SIn transmission systems, the line resistances are negligible compared to
the reactances, the per-unit voltage amplitudes of different nodes are approx-
imately equal to 1.0, and the voltage angle differences between neighboring
nodes are small. As a result, the DC power flow model is an accurate
approximation for the AC power flow model [36].

Fig. 5. A 25-node transportation network used for the case study [32]. The
number in each circle is the node ID. The number on each line represents the
distance between the corresponding two nodes and the per-unit distance is 10
km. The decimal next to each node is its weight, i.e., W, which represents
its traffic flow gravitation [32]. To enhance network granularity, we add extra
auxiliary nodes on the long line segments so that the longest distance between
any two nodes is 20 km. As a result, the modified network has 93 nodes.

9 node 10

Fig. 6. A 110 kV distribution network used for the case study [32]. Node 1
is connected to a 220 kV/110 kV transformer with 150 MVA capacity. The
voltage constraints are Vi, = 0.95 and Vi, = 1.05, Vm, in per unit values.
The line current limits are conservatively set at 85% of their rated capacities.
The detailed parameters of the distribution network are given in [39].

TABLE I
NODE COUPLING RELATIONSHIP OF THE TWO NETWORKS

Distribution Node ID 01 02 03 04 05 06 07
Transportation Node ID - 13 08 12 22 14 24
Distribution Node ID 08 09 10 11 12 13 14
Transportation Node ID 04 02 05 09 15 17 20

V. CASE STUDIES

A. Case Overview and Parameter Settings

We consider a 25-node highway transportation network
(see Fig. 5) coupled with a 14-node 110 kV high voltage
distribution network (see Fig. 6) to illustrate the proposed
planning method. Note that we adopt the power system
structure in China as the basis of this case study, where
the 110 kV power networks are usually operated radially
and categorized as high-voltage distribution systems [40].
The node coupling relationship between the distribution and
transportation network is recorded in Table I. We assume the
transportation nodes not included in Table I are connected
to the nearest distribution nodes geographically. The gravity



TABLE II
BENCHMARK CASES OF THE PLANNING

Extra constraints

Case  Driving range

Electrical constraints

Distribution system Traffic flow per day in

in Section III-C

upgrade cost

the highest traffic scenario

1 heterogeneous Consider AC power flow Consider 20000
2 heterogeneous Consider AC power flow Consider 40000
3 homogeneous Consider AC power flow Consider 20000
4 heterogeneous Ignore AC power flow Consider 20000
5 heterogeneous Consider DC power flow Consider 20000
6 heterogeneous Consider DC power flow Consider 40000
7 heterogeneous Consider Ignore Ignore 20000
8 heterogeneous Consider Ignore Ignore 40000

spatial interaction model utilized in [32] was used to generate
a daily OD flow structure based on node weights and arc
distances. Twenty-four representative scenarios, i.e., weekday
and weekend of 12 months, of base load profiles and traffic
flow profiles are generated based on PG&E load profiles [41]
and NHTS data [42]. Due to limited space, the parameters
of the distribution network and the details of the generated
scenarios are omitted, but can be downloaded in [39].

We assume four types of PEVs on road with equal market
share, and their driving ranges per charge are respectively 200,
300, 400 and 500 km. We assume the energy consumption of
all types of PEV are all 0.14 kWh/km [15]. The rated charging
power for each charging spot (p) is 44 kW, and the charging
efficiency () is 92% [15]. Consequently, the average service
time to recharge the four different types of PEVs with empty
batteries is about 42, 63, 84, 105 minutes. We also assume
D, = Dg =100 km for all PEVs and y; = 200.

The costs of charging station investment c¢; ; = $163,000
and c2,; = $31,640. The distribution line cost c3; = 120
$/(kVA-km) [43]. The distance from the PEV charging station
to its nearest distribution substation, i.e., [;, is assumed to be
10% of the distance between the PEV charging station and
its nearest 110 kV distribution node. The substation expansion
cost ¢4 ,; = 788 $/kVA [24]. In practice, the land use and labor
costs vary by location. To model this feature across nodes, the
per-unit costs, i.€., ¢1;, c2,; and c4;, at each location ¢ are
assumed to be greater than the base values introduced above
by 5W,; x 100%. We assume each original transportation node
has 1 MVA surplus substation capacity which can be utilized
by charging stations, while the auxiliary nodes have no spare
capacity. The electricity purchase cost ¢. = 0.094 $/kWh [15]
and the penalty cost for unsatisfied charging demand ¢, = 103
$/kWh. The service quality oo = 80%.

Note that the above parameters are for illustration pur-
poses. In practice, the planner should adopt the actual PEV
parameters in current and future markets based on a practical
business survey and substitute their own parameter values for
the transportation and power networks.

We design eight cases to illustrate the proposed method
(see Table II). Case 1 is the basic case utilizing the proposed
method. In Case 2, the daily PEV traffic flow is twice of
that in Case 1. In Case 3, we ignore the heterogeneity of the
PEV driving ranges. For planning purposes, we conservatively
assume all the PEVs are homogeneous and have the shortest

driving range, i.e., 200 km, as [32] suggested. Case 4 does
not consider the extra constraints introduced in Section III-C.
In Cases 5 and 6, we adopt the DC approximation for the
power flow constraints which was also used in reference [32].
In Cases 7 and 8, the electrical constraints and the distribution
system upgrade costs are ignored at the planning stage.

We use CPLEX [35] to solve the optimal PEV charging
station planning problem on a laptop with a 12 core Intel
Xeon E5-1650 processor and 64 GB RAM. To accelerate the
optimization speed, we relaxed the integer variable constraints
for the number of spots y:°. The optimization problem stops
when the relevant gap decreases below 0.5%.

B. Planning Results and Analysis

The summary of the planning results for the eight cases
are given in Table III. In Cases 3, 5 and 6, the electricity
cost, the total cost, and the ratios of unsatisfied PEV load
in the parentheses are the direct outputs (solutions) of the
optimization models. However, these solutions do not reflect
the true operation scenarios. After the investment decisions
are obtained, we conduct extra optimizations, which utilize the
proposed model in Case 1 but fix the investment decisions, to
calculate their actual values. These values are listed outside of
the parentheses in Table III. For Case 3, the actual values are
calculated considering the heterogeneity of the PEV driving
ranges. For Cases 5 and 6, they are calculated by modeling AC
power flow. Because the electrical constraints in Cases 7 and 8
are ignored at the planning stage, the optimization models will
not calculate the grid upgrade cost, the electricity cost and the
ratios of unsatisfied PEV load for the planning results. The
corresponding values in Table III are also calculated by the
model in Case 1 after the planning results, i.e., the number
of charging stations and the number of charging spots in each
station, are given. The site and size of each station in case 1
are given in Fig. 7 for demonstration.

Hereinafter, we will discuss the impact of various factors
on the planning results comparing the above eight cases.
These factors include the PEV population, the heterogeneity
of PEV driving ranges, and the extra constraints introduced
in Section III-C etc. We will also discuss the modeling
accuracy of AC power flow in Section V-B4 and the necessity
of considering the coupled constraints of transportation and
power networks in Section V-BS.



TABLE III
THE PLANNING RESULTS OF DIFFERENT CASES
Case No. of  No. of Expected annual costs (M$) Unsatisfied No. of binary Solution
stations spots Station Investment  Grid upgrade Electricity Total PEV load (%) variables time (min)
1 28 1169 5.13 4.37 38.33 47.83 0 5,761 9.37
2 45 2340 9.91 12.41 49.27 71.59 1.89 5,761 11.10
3 46 2722 11.30 14.86 38.07 (51.35)  64.32 (77.50) 0 (5.76) 1,509 8.10
4 19 1017 4.40 2.93 37.43 44.75 0 21,757 92.02
5 29 1183 5.20 4.54 38.36 (42.53)  48.10 (52.27) 0 (0.006) 5,761 8.01
[§ 47 2308 9.85 12.19 48.94 (52.50)  70.97 (74.54) 2.04 (3.55) 5,761 10.35
7 21 1160 4.88 6.47 38.45 49.80 0.034 5,761 16.81
8 26 2211 8.99 12.64 48.27 69.89 4.53 5,761 30.67

Note: In Cases 3, 5 and 6, the values in the parentheses are the direct outputs of the optimization models while those outside are the actual values.

57

[J Coupled Node
Y% Charging Station

Fig. 7. Planning result for Case 1. The integer represents the number of
charging spots in the charging station.

1) PEV population: In the long term, the PEV population
is uncertain, some sensitivity analysis is necessary. Compared
with case 1, the PEV population in Case 2 is increased
by 100% so that its investment and operation costs both
increase significantly. Furthermore, a noteworthy portion of
PEV charging load, i.e., 1.89%, is unsatisfied, which reveals
the impact of the power network’s constraints. The power
flow congestion level, i.e., the ratios of the distribution lines’
currents to their capacities, at 12:00 p.m., weekday, July of
Case 1 and Case 2 are respectively depicted in Fig. 8 and
Fig. 9. Obviously, the congestion level of Case 2 is much
more serious than that of Case 1. Besides, we can observe
that the capacity of distribution line 2 is the bottleneck of the
system, which provides guidance for future distribution system
expansion.

2) Heterogeneity of PEV driving range: When all the PEVs
are assumed to have homogeneous driving ranges, the model
tends to construct more charging stations and spots, which
leads to a very conservative planning result. Compared with
Case 1, the total investments in Case 3 is about 100% higher.
The estimated electricity consumption costs also increase
significantly. This is because when assuming all PEVs have the
same shortest driving range, those with longer driving ranges
would charge more times than actually needed. Similarly, the
estimated unsatisfied PEV load ratio in Case 3 is very high,
i.e., 5.76%, because of over-estimated demands. However, in

practice, since the planning result is very conservative, the
PEVs will get sufficiently charged and the spots will be under-
utilized. That would be a waste of investments.

3) Extra constraints in Section III-C: Case 4 does not
consider the constraints introduced in Section I1I-C, so that the
planning results are very aggressive: the investment costs are
reduced by 22.8% and the total costs are reduced by 6.4%. The
physical meaning of these gaps are the revenue that the system
can reap by smartly navigating all the PEVs’ charge choices so
that the utilization of charging stations can be maximized. Note
that, in practice, the planner should also consider the smart
navigation system’s costs in the planning model in Case 4 to
make an economic decision, i.e., whether invest the navigation
system or not. However, if the smart navigation system is
not guaranteed to be implemented and the PEVs may not
adopt their optimal (for the whole system) charge choices,
this planning strategy may lead to congestion at some stations.
To promote the future PEV adoption and guarantee adequate
service quality, it is wise to make a conservative infrastructure
investment plan. Regarding the computational efficiency, the
scale of binary variables in Case 4 is about four times of that
in Case 1. Hence, Case 4’s solution time is much longer. In
reality, the highway networks may be very complicated and
will limit the applicability of the strategy utilized in Case 4.
Therefore, we recommend the proposed strategy with the extra
constraints introduced in Section III-C.

4) Modeling accuracy of AC power flow: The DC approx-
imation for the power flow model in distribution systems is
inaccurate. We can observe that the actual values (utilizing
AC power flow) and the estimated values (utilizing DC power
flow) in Cases 5 and 6 have apparent differences. The elec-
tricity costs in both Cases 5 and 6 are overestimated by about
10%. While, in Case 5, though the PEV charging demands
can be fully satisfied, we observe that 0.006% of the demands
are unsatisfied in the optimization model. Similarly, the ratio
of unsatisfied charging demands in Case 6 is overestimated by
about 74%. This inaccuracy will lead to sub-optimal planning
decisions. Compared with Case 1, the actual investment cost
and the actual total annual cost in Case 5 increased by 2.5%
and 0.6%, respectively. Compared with Case 2, the actual ratio
of unsatisfied PEV charging load in Case 6 increased by 7.9%.
Therefore, if possible, it is better to utilize AC power flow in
the planning model.
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Fig. 8. Distribution line congestion level (20000 PEVs/day).
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Fig. 10. Accuracy of the service level model.

5) Necessity of considering coupled transportation and
power network constraints: When ignoring the power network
constraints, i.e., the AC power flow constraints, the unsatisfied
PEV charging demands will increase. In Case 1, all the PEV
charging demands are satisfied; while, in Case 7, 0.034% of
the PEV charging demands can not be fulfilled. Compared with
Case 2, the ratio of unsatisfied PEV charging demands of Case
8 increased significantly by 139.7%. When the PEV population
is large and the power supply capacities are binding in some
distribution nodes, the planner prefers to invest more charging
stations elsewhere to avoid distribution system congestion. As
a result, the numbers of charging stations and spots in Case
2 are much higher than those in Case 8. Besides, the total
investment costs in Case 2 are also higher than that in Case 8
(in order to satisfy more charging demands).

When ignoring the distribution system upgrade costs in the
planning model, the planner may conduct myopic investment
decisions based on limited information. As a result, though the
PEV charging station investment costs may be minimized, the
system planner has to invest more in distribution system up-
grades, which will surpass the savings in PEV charging station
investments. This is predominant under low PEV population
scenarios when almost all the PEV charging demands can be
satisfied (see Case 1 and Case 7). Considering distribution
system upgrade costs helps reduce total investment costs.

C. Performance of the Service Level Model

We utilize the proposed model to design the number of
charging spots in a fast-charging station under different PEV
Poisson arrival parameters, i.e., from 20 to 300 PEVs/h, and
different service level criterion, i.e., from 70% to 90%. Then,
we utilize the Monte-Carlo method [44] to simulate the real-
time operation including PEV arriving, charging and leaving
behaviors of the designed station for 1000 hours.
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Fig. 9. Distribution line congestion level (40000 PEVs/day).
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Fig. 11. Probabilities that the PEVs get instant charging services.
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Fig. 12. The average waiting time of all the PEVs.

1) Accuracy of the service level model: We first assume that
the charging stations are operated based on the first-in-first-out
rule in assumption [A2]. We counted the number of unsatisfied
charging demands (those leave before getting charged for their
required time units), the corresponding actual service levels are
plotted in Fig. 10. The actual service levels in the experiments
are very close to the designed values under different PEV
Poisson arrival parameters and designed service level criterion.
This demonstrates the accuracy of the proposed closed-form
approximation for the service level model.

2) Waiting time analysis in real-time operations: We then
assume that the PEVs will wait in the station if all the charging
spots are occupied until one PEV has got fully charged and
spare a spot for it. We calculated two service quality criterions,
i.e., the ratios that the PEVs get instantly charged without
waiting (see Fig. 11), and the average waiting time of all the
PEVs (see Fig. 12).

On one hand, the experiment results show that the probabil-
ities that the PEVs get instantly charged without waiting are
close to the designed service level criterion. This is especially
true when the designed service level criterion is high and
few PEVs have to wait. Even though the two values, i.e., the
probability of instant services and the designed service level
criterion, are not equal, the former is still well controlled by



TABLE IV
COMPUTATIONALLY EFFICIENCY OF DIFFERENT MODELS
No. of No. of binary Solution
Case Model PEV types variables time (min)
1 CFRLM_SP 4 5761 9.37
3 CFRLM_SP 1 1509 8.10
1 CFRLM_EN 4 74441 00
3 CFRLM_EN 1 15198 120

Note: The program in Case 1 utilizing the CFRLM_EN was out of memory.

the latter. The results show that the differences between the
two values under different designed service level criterion are
stable and insensitive to the volumes of the PEV arrivals. That
means, we can realize an one-to-one mapping between the two
values so that we can use the service level to accurately control
the actual probability of waiting.

On the other hand, we can also conclude from Fig. 12 that
the average waiting time of the PEVs are also well controlled
by the designed service level criterion. When the service level
criterion increases, the average waiting time decreases.

Therefore, though the assumption [A2] may not be true in
practice, the service level criterion in the proposed model is
still meaningful because it provides the planner an intuitive
and specific service quality criterion for the designed system.

D. Computationally Efficiency Compared with Transportation
Model CFRLM_EN

In our previous work [32], we utilized the CFRLM_EN to
model the transportation network. The CFRLM_EN expands
the original transportation network by adding a pseudo arc
(an arc is a road segment between two adjacent transportation
nodes in a path) between any two nodes in any path whose
distance between each other is shorter than the PEVs’ driving
range. The scale of the binary charge decision variables of
one path in the CFRLM_EN is equal to the number of arcs
(including the original arcs and the pseudo arcs)®. By contrast,
the scale of the binary charge choice variables of one path
in the CFRLM_SP is equal to the number of transportation
nodes. Because that the number of transportation nodes is
approximately equal to the number of original arcs, the sale
of binary decision variables in the CFRLM_SP is smaller than
that in the CFRLM_EN. Interested readers can refer to [32]
for detailed introduction of the CFRLM_EN.

We compare the scales and solution time of Cases 1
and 3 (see Table II for the parameter settings) utilizing
the two different models in Table IV. Note that the extra
constraints introduced in Section III-C are included in both
of the two models. As expected, the scales of the binary
variables of CFRLM_SP are much smaller than those of the
CFRLM_EN. When assuming all the PEVs are homogeneous,
the solution time of CFRLM_EN is about fifteen times that of
CFRLM_SP. When the PEVs are categorized into four types,
the CFRLM_EN is intractable while the CFRLM_SP can still
be solved in less than 10 minutes.

SNote that, to utilize the proposed service level model in this paper, the
continuous charge decision variables in the CFRLM_EN should be binary.

VI. CONCLUSION

In this paper, we study the planning of PEV fast-charging
stations on coupled transportation and power networks. We
address three core questions in this problem: 1) how many
charging spots should we construct in each station? 2) where
should we locate these charging stations? 3) how do the
transportation and power networks jointly impact the charging
stations and the planning results? Specifically, first, we develop
a closed-form service level model to describe a fast-charging
station’ service ability. This model can be used to determine
the size of a station servicing heterogeneous PEV charging
demands. Then, we propose the modified CFRLM_SP to
explicitly capture time-varying PEV charging demands under
driving range constraints in the transportation network. This
model defines the feasible set of the PEV charging locations.
At last, we formulate a stochastic mixed-integer SOCP model
to site and size fast-charging stations considering both the
transportation and power network constraints.

Numerical experiments validate the proposed methods. The
simulation results show that the proposed service level model
has high accuracy with heterogeneous PEV driving demands.
The modified CFRLM_SP can effectively describe the PEV
driving range constraints considering time-varying traffic flow.
It is also more computationally efficient than its counterpart
in published literature. Simulation results also show that
considering both the transportation constraints and the power
network constraints with AC power flow at the same time leads
to more economical investment decisions.

In practice, the distribution networks may not be radial,
as a result, the SOCP relaxation for the AC power flow
model may not be exact. In that case, the planner may adopt
alternative methods, e.g., the DC approximation used in our
previous work [32] or the semi-definite programming (SDP)
relaxation [45]. Adopting DC approximation for distribution
systems in the planning will be computationally efficient.
However, it may be less accurate (as discussed in Section
V-B4). Adopting SDP relaxation for power flow models in
meshed networks may provide accurate solutions’; however,
it is generally less computationally efficient than the SOCP
relaxation®. The computational efficiency is predominant in the
proposed planning model with a significant number of integer
decision variables. However, to the best of our knowledge,
there is no mature off-the-shelf commercial solver that can
efficiently solve large-scale mixed-integer SDP problems.

Modeling the planning problem with meshed distribution
networks are beyond the scope of this paper and will be our
future work. Computationally efficient solution method for
the planning model in large-scale transportation and power
network scenarios is also our future focus.
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"Note that the exactness of the SDP relaxation for AC power flow may not
hold in some scenarios so that its solution may not be optimal or feasible for
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efficiency of both models.



APPENDIX A
PROOF OF PROPOSITION 1

In the following proof, we let index e also denote the order
of the arrival of a PEV, and PEV e+ y® is the y“st PEV that
arrives after PEV e.

With [A2], t; = t2 is always satisfied, and we also have
that tJ = min(¢2 + T, 2, ); therefore:

-8B >T < 8, —12>T, Ve, (25)
Pr(te =13 & 2 — 18 >T) =Pr(td, .« — t2 > T),Ve. (26)

With [A1], the PEV arrival events are Poisson so that they
are independent and identically distributed:

Pr(t, o — 12 > T) = Pr(t —t4 > T), Ye.  (27)

The probability that we observe the y“*st PEV arrives after
time ¢ + 1" is the same as the probability that we observe less
than y* PEVs that arrive from t§ to ¢§ + 1"

Pr(th — th > T) = Pr(y™ < y*)

=Pr(tS =t & t3—1£>T), Ve. (28)

This completes the proof. (]
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