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Abstract—This paper examines modeling and control of a large
population of grid-connected plug-in electric vehicles (PEVs).
PEV populations can be leveraged to provide valuable grid
services when managed via model-based control. However, such
grid services cannot sacrifice a PEV's primary purpose —
mobility. We consider an aggregator, which can control a fleet of
PEVs with three possible charging rates: charging at a constant
rate, discharging at a constant rate or idle. We develop a system
of coupled partial differential equations (PDEs) for aggregating
large populations of PEVs and transform its discretized version
into a state space representation. We propose a Linear Quadratic
Regulator (LQR) to track a power signal that provides load
following services. We investigate the sensitivity of controller
parameters, different bidding strategies and their impact on the
performance of the provided balancing service. We examine this
control design on a simulated case study, and analyze sensitivity
to a variety of assumptions and parameter selections.

Index Terms—Aggregator, Linear Quadratic Control, Load
Following, Partial Differential Equations, Vehicle-to-grid (V2G).

I. INTRODUCTION

PEVs provide a compelling opportunity for supplying
demand-side management services in the smart grid. Namely,
a vehicle-to-grid (V2G) capable PEV communicates with the
grid, stores energy, and can return energy to the electric grid.
If properly managed, PEVs can enhance energy infrastructure
resilience, enable renewable integration, and reduce economic
costs for consumers and energy providers [1]. In addition to
these societal-level infrastructure and environmental benefits,
V2G strategies may provide additional revenue streams to
PEV owners [2]. Underscoring this opportunity, U.S. personal
vehicles are parked and un-used 96% of time [3]. A single
PEV typically charges or discharges at 5-20 kW, which is
insufficient to participate in power grid markets. However,
populations of PEVs can be aggregated to collectively provide
grid services [4]. The main challenge, however, is monitoring
and managing a large population of distributed PEV resources
without sacrificing their primary function of personal mobility.
As such, this paper examines modeling and control of grid
integrated PEV populations.
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A growing body of literature addresses design of charging
algorithms for PEV control, and base their method on differ-
ent charging infrastructure scenarios: either a continuous or
discrete charging rate. In the first case, the charging rate takes
values in a continuous range and both centralized algorithms
[5], [6] and distributed algorithms [7]-[10] have been proposed
to compute optimal load profiles. Distributed optimization
leads to protocols where each PEV solves a local problem
and communicates independently to a central system. This
distributed architecture is particularly adapted to large scale
systems. However, in reality, the vast majority of electric
vehicle supply equipment only enables a discrete range of
charging rates. For example, the North American standard
SAE J1772 defines two types of charging rates: AC Level
1 chargers provide charging through 120V AC plugs and AC
Level 2 chargers provide charging through 240V or 208V AC
plugs [11]. In practice, this leads to combinatorial optimization
problems, where the aforementioned distributed methods are
not applicable, and where direct centralized algorithms are in-
tractable to study large systems. In this case, available methods
include unit commitment [12], simulation-based algorithms
[5], stochastic protocols [13] or dynamic programming [14].
However, for all these methods, the problem becomes harder
to solve as the number of PEVs grows: either the convergence
time increases or the optimality of the computed solution
decreases.

In this paper we examine a significantly different approach
for PEV charging with discrete charging rates that utilizes par-
tial differential equations (PDEs). Rather than modeling each
agent individually, we use aggregation methods to model and
control the population dynamics [15], [16]. Continuum models
have been largely applied to the case of Thermostatically
Controlled Loads (TCLs) where PDEs represent the diffusion
of air conditioning loads’ temperatures within the deadbands
of their thermostats [17]-[19]. In this paper we use a similar
modeling framework and consider a PEV as a load, which
diffuses along the State Of Energy (SOE) axis. We utilize
a discretized form of PDEs and propose a novel state space
model, where we can control flows between different discrete
charging rates. Contrary to other methods, the complexity
of our problem does not depend on the number of agents,
and the accuracy of the model increases as the number of
PEVs increases. The main contributions of the article are the
following:

« We propose a novel state-space modeling framework for



TABLE I. PDE aggregation symbols
Symbol Description
X PEV battery SOE
t Time
u(x,r) Density of charging PEVs (nb of PEVs per SOE)
v(x,1) Density of idle PEVs (nb of PEVs per SOE)
w(x,t) Density of discharging PEVs (nb of PEVs per SOE)
Oise(x,1) Flow of PEVs from Idle to Charge
Oia(x,1) Flow of PEVs from Idle to Discharge
0i0r(x,t)  Net Flow of PEVs from Idle to On Road

large fleets of PEVs, via aggregation and continuum
modeling.

« We formulate a Linear Quadratic Regulator (LQR), and
use Model Predictive Control (MPC) techniques to track
a power reference signal with PEVs. To the best of our
knowledge, power and voltage signal tracking with MPC
methods has been proposed for continuous charging rate
[20], [21] or semi continuous charging rate [22], but this
is new to the field of PEV control with discrete charging
rate.

The remainder of the paper is organized as follows. Sec-
tion II develops a system of coupled PDEs to model PEV
aggregations. Section II transforms the discretized version of
this system into a state space model and proposes a model
predictive controller to track a power signal. Section IV
presents different case studies, shows how to tune the LQR
parameters, and explores the problem of maximum capacity
bidding.

II. MODELING AGGREGATIONS OF PEVs

We seek to model a large homogeneous population of N
discrete PEVs as a continuous representation, mathematically
represented by three coupled PDEs. PEVs in the population
fall into three discrete states:

o Charging: a PEV receives energy from the grid (Grid-to-
Vehicle or G2V)
e Idle: a PEV is plugged-in but does not charge, nor
discharge.
e Discharging: a PEV gives energy to the grid (Vehicle-to-
Grid or V2G)
Each discrete state will be described by a transport PDE, i.e.
a first order hyperbolic PDE. The aggregator controls how
PEVs switch from one discrete state to another. This ultimately
renders coupling terms and forms a system of three coupled
transport PDEs.

A. PDE model

Consider a large homogeneous population of plugged-in
PEVs over the State of Energy (SOE) interval [0, 1] at some
fixed time, as visualized by Fig. 1. PEVs can be in three states:
charge u(x,t), idle v(x,t), and discharge w(x,¢). The o terms
model PEVs moving between individual states 0;_., 6;—4, and
between states and the environment, i.e. checked-in or out by
drivers on the road o;_.p,. The three states described above
(i.e. charging, idle and discharging) only account for plugged-
in PEVs. Hence, this framework does not model the dynamics
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Fig. 1. PEV population state dynamics (see zoom on Fig. 2)
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Fig. 2. Zoom over an infinitesimal segment of charging PEVs: flows between
x and x+dx

of cars that are on the road (uncontrollable). Instead, the
contribution coming from departures and arrivals is modeled
by the uncontrollable flow o;_; 0,

To derive this aggregated PDE population model, we con-
sider a simple PEV battery model. Denote the i’th PEV battery
SOE and power by x;(¢) and P;(), respectively. Then a simple
battery model is given by

xi(t) = %Lwa(t)v i:17"'7Na (1)
1 ifR@ >0,
"= {1 if P() <0, @

where Enax, N, N are parameters that represent the battery
energy capacity, power conversion efficiency, and PEV popu-
lation size. Efficiency 1 € [0, 1] is generally a function of SOE
x;. We assume Ep,,x and 1) are homogeneous across the entire
population. In this article we choose to express x in terms
of SOE instead of SOC because 4¥/a: is linearly related to
power.This provides a linear model (see Eq.1) that is amenable
to the aggregation process we employ to derive a PDE.
Note that unit-wise, 9*/dr is normalized kWh. Furthermore,
the cumulative power consumption from charging and power
generation from discharging is given, respectively, by

P(t)=Y" P-1(B>0), P(t)=Y) P-1(P<0), (3)

where 1(-) is the indicator function. More complex battery
models could be considered in future work.



Consider an infinitesimal segment of u(x,7) as shown in Fig.
2. The number of charging PEVs at SOE level x at time ¢ is
denoted by u(x,t) and charge at rate g.(x,7) =1 (x)/Emax - P(t)-
We seek to model the evolution of the number of charging
PEVs contained in the infinitesimal volume between x and
x+dx. Let F(x,t) denote the flow of PEVs at SOE x and
time t, the entering flow and exiting flow are respectively:

F(x,t) =
F(x+dx,t) =

qc‘(x7t)u(x7t)7 (4)
qc(x+dx,t)u(x+dx,1). (5)

An additional flow of PEVs from the idle state to charging
state are denoted o;_.(x,7) (see Fig. 1). As illustrated in
Fig. 2, u(x,t)dx is an approximate measure of the number
of PEVs with SOE between x and x+dx at time t. Therefore,
the conservation law during the infinitesimal time interval dt
gives:

[u(x,t +dt) —u(x,t)]dx = (6)
qe(x, ) u(x,t)dt — qe(x + dx,t)u(x + dx,t)dt + 06—, (x,1)dt.
In Eq. 6, PEVs should pass through the idle state to go from

the G2V state to the V2G state. When dtf — 0 and dx — O,
the relation becomes:

M) = o el (0] 4 0cle). D

PDEs for the idle and discharging are similarly derived as

2 (61) =~ s (5.) ~ Orelt) — O (1), (8)
W) = Pl )]+ Oaler). O

B. Boundary Conditions

For the system to be well posed, we need to define boundary
conditions at x =0 for u(x,¢) and x = 1 for w(x,#) [23]. We
set the following Dirichlet conditions:

e u(0,7) =0: no flow of charging PEVs from the SOE range
x <0.

e w(1,#) =0: no flow of discharging PEVs from the SOE
range x > 1.

In addition, we must define boundary values for g.(x,¢) and
qa(x,t) to ensure physical meaning of the system:

e gc(1,¢) =0: no charging at x = 1.

e ¢4(0,¢) = 0: no discharging at x = 0.
Figure 3 illustrates the PDE dynamics with the above boundary
conditions. It shows the uncontrolled evolution of the PEV
fleet during four hours when the boundaries of the system
are SOE € [0.5,1]. In this case Oj. = Ojor = Ojq = 0.
All G2V PEVs charge until they reach SOE = 1. Then they
are transferred to the Idle category. Similarly, V2G PEVs
discharge until SOE = 0.5. Then they are transferred to the
Idle category. Figure 3 shows that PEVs tend to accumulate
in the Idle category at the boundary points SOE = 0.5 and
SOE =1.

TABLE II. State Space symbols
Symbol  Description
k Discrete time index
X (k) State: number of PEVs in bins
U (k) Control input (flow Idle-G2V and Idle-V2G)
Y (k) Output vector (eg: total power)
S(k) Uncontrollable input (flow from drivers and SOE < SOE)

C. Dynamic System Properties

In this section we verify the conservation of mass (i.e. the
conservation of PEVs in the system) when there is no external
ﬂOW, Oi0or = 0.

Proposition 1: The system defined by the coupled dynamics
(7, (8), (9) and the boundary conditions in Section II-B
verifies the following property when o;_, 0, = O:

8NprVS (l)
ot

where Nbpgys () = /0 ) v, 1) + w1 dx

=0

Proof 1: When 0,0, = 0, summing Eq (7), (8) and (9)
leads to:

d d
(v W) = o (—qu+gaw)(nr)  (10)
By integrating each term of on x € [0, 1], we obtain:
d 1
S Noeevs(f) = | (=qeu+gaw)(x,1)
t x=0
=0 (11)
where Eq. (11) comes from the boundary conditions defined
in Section II-B. ]

III. STATE SPACE REPRESENTATION

In this section, we discretize the previous system of PDEs to
represent the dynamics in state space form, and we formulate
a model predictive controller to track a power signal.

We assume that the aggregator is free to control vehicles
in a specific SOE range [SOE,SOE] C [0, 1] as shown in Fig.
4. In practice, drivers agree to receive their PEV with any
SOE € [SOE,SOE] upon departure (i.e. SOE is the minimum
SOE when PEVs depart). In exchange, the aggregator manages
the charging and discharging of PEVs between these bounds
and bids this aggregated storage capacity for load following
applications. Figure 4 shows the boundaries of the system:
the grey part is not modeled in this framework, and any
contribution from this part is considered as an uncontrollable
input.

A. State Space model

We divide the space [SOE,SOE] into N,, bins and discretize
the system in time and SOE as shown in Fig. 3. The variables
u’j‘., v’/‘. and w’j‘. denote the number of charging, idle and
discharging PEVs in bin j at time k, respectively. The flows
between bins are due to transportation dynamics (charging
and discharging), controllable flows (cj—. and ©;_4), and

uncontrollable flows due to driving (0Cj_,,). We discretize
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Modeled SOE Region, S
1

1 1 1 1 1 1 1 1 1 1 1 1
GV 1 o0 oati2no0o =0y
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 l...... L 1 1 1
1 1 1 1 1 1 Ill 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
w— 1 2
0 e o R I R ALY
L T —— I_1 ! ! | === Controllable flows
B 1 |I| 1 | === Uncontrollable flows
1 1 1 1 1 1 1 1 1 1 1 1 1 1
V2G 1,2 1N, .
LR e N e Dyamics
1 1 1 1 1 1 1 1 1 1...... L 1 1 J
0 SOE SOE

Fig. 4. State transition model

the system with the Lax-Wendroff discretization scheme [24].
The Lax-Wendroff method is a second order explicit dis-
cretization scheme. The result for the scalar advection equation
% —I—a% =0 reads:

aAt | k

2A2
K+l ok a A
u;" =u; (Ufyy —ujy)+

J I oAx m(ujH—Zu];—ku/;_l)
where Ax is the SOE discretization step, Ar is the time
discretization step and u’; = u(jAx, kAt).

Reference [23] shows that the Lax-Wendroff scheme is both
consistent and conditionally stable for advection PDEs, and
reference [16] shows that it performs well for the system of
PDEs (7), (8), (9) (error less than 3% in average).

We will use this discretization method in the remainder of
this article. Because the numerical scheme is explicit in time,
we are able to represent the discretized dynamics of the system
with the following state-space model:

X(k+1) = AX (k) + BoU (k) + BgS(k)
Y (k) = CX (k)

12)
(13)

The variable X represents the state of the system, which is
the number of PEVs in each category: (G2V, idle, and V2G).
The variable U is the control input, which controls the flows
of PEVs between the three categories. Finally, the variable
S is the uncontrollable input, which comes from arrivals and

departures of PEVs. This relates to the PDE model described
in Section II as follows:

u(-, kAr)
v(-, kAt)
w(-,kAt)

Gi%c(ﬁkAt)

X (k)= Uk) = LM O AZ)] ,S(k) = Gi_yor (-, kAT

Matrix A is the dynamic transition matrix, which includes
boundary conditions and results from the Lax Wendroff dis-
cretization scheme. The output Y (k) = CX (k) gives the power
consumed or supplied by the fleet of PEVs. We assume a
uniform power rate p such that:

C:[fp...fp 0---0 p...p] (14)

In practice, U gives the SOE distribution of PEVs that
are shifted from one charging category to another. In the
proposed aggregate model, all the PEVs with the same SOE
x at time k are indistinguishable. Thus, to implement the
optimal control signal on the real system at time k, the
controller chooses |max(0, ;. (x,kAt))| PEVs at random in
the idle category and shifts them to the charging category.
Similarly, it selects |max(0, —0;_.(x,kAr))| PEVs at random
in the charging category and shifts them to the idle category.
The implementation of o;_,; follows the same control rule.
Note that the control signal needs to be rounded before it is
implemented.

B. Uncontrollable input and modified State Space model

As specified in Section III, the contribution from drivers and
PEVs with SOE < SOE is incorporated into the uncontrollable
input 6;_,0,(x,t) in the PDE model, and S(k) € R in the
state space model. The uncontrollable flow S(k) only impacts
idle cars and can be divided into negative contributions due
to arrivals Arr(k), and positive contributions due to departures
Dep(k) such that: S(k) = Arr(k)+ Dep(k) and a corresponding
Bs=[0,-1,0]7.

Arrivals into the system comes from drivers who plug-in
with SOE € [SOE,SOE] and from PEVs reaching SOE = SOE;
this input is completely uncontrollable. In contrary, departures
occur at any SOE € [SOE,SOE], and depends on the state
dynamics and the previous control signals. Consider two
distinct control inputs [U(0),...,U; (k)] and [U2(0), ..., U2 (k)],




which result respectively in the state values Xj(k+ 1) and
Xo(k+1) at time k+ 1. The distribution of PEVs at time &+ 1
in scenario 1 and scenario 2 are distinct, which implies that
Depi(k+1) and Dep,(k+ 1) may be distinct (i.e. drivers don’t
get their cars with the same amount of energy). However, the
total number of departures, calculated by the sum of departures
from each bin as 17Dep;(k+ 1) = 1" Dep,(k+ 1), remains
the same in both scenarios We incorporate this characteristic
by modeling Dep € RM by a controllable input with equality
constraint 17 Dep(k) = d(k), where d(k) is the expected num-
ber of departures at time k. In contrary Arr is modeled as an
uncontrollable input. Thus, we augment the state space model
as follows:

X(k+1) = AX (k) +ByuU (k) + BsDep(k) + BsArr(k)
Y (k) = CX (k)

5)
(16)

We will use the state space model (15), (16) in the remainder
of this paper.

C. Linear Quadratic Regulator for Signal Tracking

Regulation and load following are ancillary services pro-
vided to balance the short term mismatch between generation
and demand. Their main difference is their time horizons:
while regulation occurs on the second-to-second basis, load
following addresses longer-term changes in demand [25], [26].
Regulation and load following are particularly interesting for
storage and PEV smart charging because they require fast
response and are high price energy markets (see [2], [27]),
Since we propose a single discrete charging rate for PEVs that
is managed by hysteresis type actions, we choose a longer
time horizon and assume that the aggregator provides load
following reserves and is located in a unique balancing area.

1) Objective: The problem is formulated as a tracking
problem where the reference Py.(¢) is updated every 15
minutes. The controller penalizes three items: deviation from
the reference signal, battery degradation and large controllable
flows. Experimental aging studies [28] have shown aging is
highly correlated to the integral of power transferred through
the battery. Therefore, degradation at time / is measured using
Dy (1) = CgX (1) where C, is defined as follows:

Cg(l):[p--~p 0---0 p...p] (17)

The objective function then becomes:

Jk(Xa UaY) = Z?’:J;k Qtrack[Y(l) - Pdes(l)]z + U(l)TRU(l)
+ Qdegrad [CgX(l)]z (18)

In this formulation R penalizes large control values and thus
limits flows between the three states G2V, Idle and V2G. The
relative value of Qack and Qgegraa shows how much the
aggregator prioritizes the compliance to balancing services,
versus battery degradation.

2) Linear Quadratic Regulator: The optimal smart charg-
ing control comes from the solution of the following LQR -
MPC scheme:

N+k

min Ji = Y Qerack[Y () — Pues(D)]* + U (1) "RU (1)
U.Dep =
+  Qdegrad[CeX (D)) (19a)
st X(I+1) =AX()+BuU(l) +Bs(Dep(l) +Arr(l)) (19b)
Y(I) = CX(l) (19¢)
X(1)>0 (19d)
1"Dep(l) = d(1), Dep(l) >0 (19e)
X (k) = X; measured at time k (191f)
X(N+k+1)>0 (19g)

lefk,...k+N}

In this MPC formulation, the control horizon is Tjgr = NAt,
the full horizon is Ty = LAt and the MPC is computed for
k€ {0,...L—N}. At each time step, we consider the control
horizon Ty pg but implement only the first control action. The
MPC stops when we reach the full horizonT;. We assume Py
and d are known or forecasted a priori.

Assumption 1: We assume that the number of departures is
always smaller than the number of PEVs in the system, i.e.

i[d(k) —1TArr(k)|] < 1T[A'X(0)] Vi€ {0,...,L}.
k=0

(20)

Proposition 2: Under Assumption 1, the LQR (19) is
recursively feasible: for all initially feasible points, X, and for
all optimal sequences of control inputs, the MPC optimization
problem remains feasible at all times.

Proof 2: In practice, this comes directly from the PDE
aggregation model, where we formulate boundary and initial
conditions to ensure that the problem is well posed (Section
II-B). In the case of convection PDEs, this guaranties the
conservation of loads. We denote U,y (I) the control sequence
that transfers all the PEVs in the Idle category Then, under As-
sumption 1, we can show that the following control sequence
is feasible:

Uidle(l)—{_(l)Nb 8 _(I)N}Ax(l) (21)
Dep(l) = d(1) ) + BuU (D) + BoArr(]) (22)

1IT[AX (1) +ByU (1) + BsArr(l))

The detailed derivation is presented in the Appendix.

IV. SIMULATIONS WITH REAL-WORLD MOBILITY DATA

In this section, we demonstrate how the proposed LQR
framework applies to a particular case study, and provides
general intuition for other cases. We use data presented in ref-
erence [29], which comes from more than 2000 non residential
charging equipments in Northern California for the year of
2013. Figure 5 shows the maximum capacity of PEVs in the
modeled aggregate system (see Fig 4) for a typical weekday.
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Thus, we derive the time-dependent forecasted maximum
capacity based on the forecasted number of PEVs

Cap = p x Nbpgys (23)

where p is the power rate of the charging stations and Nbpgy,
the number of PEVs in the system.

Most Independent System Operators (ISO) have not devel-
oped a regulated market for load following yet. Because load
following and regulation applications share a lot of similarities
(see NERC operating manual [25]), we use existing attributes
for regulation markets to base our performance analysis. In
particular, if the aggregator bids the available capacity Cap,
we assume that the load following signal Py, € [—Cap,Cap]
has a zero average over the horizon time. In the following
cases studies, we draw a signal uniformly in [—~Cap,Cap] and
subtract the average to simulate realistic balancing signals.

We measure the performance of the aggregator with the
Pennsylvania - New Jersey - Maryland Interconnection (PJM)
precision score for regulation services. Specifically, the preci-
sion score is defined as follows [30]:

Y (i) — Paes (i)

Error(i) = R0

; (24)

1 N
Precision score =1 — — Z Error(i).
i=1

(25)

PJM sets a resource compliance score that includes the preci-
sion score defined in (25). In their market eligibility rules, PJM
requires that the compliance score be higher than 0.75 [30].
For the purposes of this paper, we use a 0.75 precision score
as a metric to represent acceptable performance.

We define the time step Af = 15min, the time horizon
Ty =24h and the control horizon Tz gr =4h. Every 15 minutes,
the values of P, and d are updated for the next four following
hours, a new control sequence is computed based on the LQR
(19) for the next four following hours, and only the first control
response is executed. This MPC algorithm is iterated until it
reaches the time horizon 7 =24h. In the next section, we show
how to tune the controller parameters to satisfy the minimum
0.75 precision score condition.

A. Impact of the LOR parameters

In the LQR (19), the parameters R, Qack and Qgegrad
penalize, respectively, large control values, large deviations
from the reference signal and large numbers of non-idle cars.
These parameters must be tuned to meet the aggregator’s
objectives. Figure 6 depicts a signal Py, between [—Cap, Cap].
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Fig. 6. Load Following signal (every 15min)
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The signal is zero-mean over the entire horizon, it is updated
every 15 minutes and sent to the aggregator. We assume
SOE = 0.8, SOE = 0.95. Figure 7a shows the precision score

for different ratios H(y:RHkH and Qgegraa = 0. As expected, the
racl
tracking improves when the ratio H(‘!‘tRHkH decreases and in
rac

this specific case study, the aggre%ator meets the acceptable
performance requirement for HQH::n‘ckH < 10. Figure 7b shows
the number of PEVs during the day in each category G2V,
V2G or Idle and Table III shows the precision score for four
different ratios. The number of idle PEVs tends to increase
when less importance is given to tracking, however this has
an impact on the aggregator performance and Table III shows
that only HQ:ackH < 10 satisfies the acceptable performance
requirement.

Figure 8a shows the precision score for different ratios of
[Qaegraal| 14 R — 0, Fig 8b visualizes the distribution of PEVs.

| ‘Qtrack | ‘

TABLE III.  Precision scores

10
0.77

100
0.40

200
0.26

HRH/HQtrackH 1

Precision Score  0.91
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As before, the tracking improves when the ratio %
rac

decreases. The effect of ||Qgegraa|| > 0 is to limit the number
of PEVs in the G2V and V2G categories. Figure 8b shows
that when ||Qqgegrad|| > 0, one of the G2V or V2G categories
is empty at each time step: a positive reference signal is
attained with only V2G PEVs and a negative reference signal
is attained with only G2V categories, which is the minimum-
degradation solution to attain this signal.

B. Impact of the SOE range [SOE,SOE)

As stated in Section III, [SOE,SOE] defines the boundaries
of the system. The lower bound SOE comes from a tradeoff
between flexibility in driver mobility and flexibility in storage
capacity for the aggregator. Figure 9 shows the performance
of the aggregator for different values of SOE, when SOE =
0.95 is fixed. The green curve illustrates a pessimistic case,
where the reference signal is always positive Py, = 0.7Cap
(i.e. not zero mean) and shows that the aggregator is not able
to meet the requirements for SOE > 0.5. The aggregator looses
flexibility as the interval [SOE,SOE] becomes narrower. Let
1756 denote the longest time period a PEV can stay in the
V2G category, i.e. can produce a positive balancing signal.
According to Equations (1) and (2), for a constant power p:

En
Ty (SOE) = [SOE — SOE] ! e,

(26)

Thus, for high values of SOE, the aggregator is unable to track
an all positive reference signal, which results in low precision
scores when P,,, = 0.7Cap.

The blue curve shows the average and the interquartile range
(IQR) error bars of the precision score after 50 simulations of
zero-mean reference signals. In this case, simulated reference
signals fluctuate between positive and negative values, and a
small SOE range suffices to create short charge and discharge
cycles to track the load following signal. However, IQR error
bars show that the statistical dispersion increases as the SOE
range narrows, and the risk to violate the acceptable perfor-
mance requirement increases. In particular, the aggregator is
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Fig. 9. Average precision score and IQR error bars for different values of
SOE

unable to meet the acceptable performance requirement in
more than 25% of cases when SOE > 0.85.

C. Analysis on capacity bidding

In this section we are interested in finding the best capacity
to bid Cp;y. We assume the aggregator bids a percentage o of
its available capacity Cap:

Cria(a) = aCap 27)

We seek to examine the impact of conservative bidding strate-
gies a < 1 versus aggressive bidding strategies o > 1.

Figure 10 shows simulation results for o € [0,1.5], SOE =
0.75, ||Qtack|| = ||R||, and Qgegraa = 0. For each o, we
simulate 400 reference signals Pyes € [—Cpig(@),Cpig(@)], and
we compute the average precision score and the interquartile
range. We compare this result with the precision score obtained
for the worst-case scenario where Py = Cpig(0) = aCap.
Figure 10b shows that the reference signal generally does not
attain the maximum bid capacity, and the average performance
of the aggregator is higher than 75% for a € [0,1.5]. The
statistical dispersion tends to increase when  increases, and
the aggregator is able to meet the acceptable performance
requirement in more than 75% of cases, only when ¢ € [0,1.2].
This shows that the aggregator could bid more than its actual
capacity, and still reach the necessary precision score with a
high probability.

However in the worst case scenario, the aggregator cannot
bid more that 50% of its capacity. Figure 10a shows the
cumulative power during the day when Py.s = Cpig (o) = aCap.
The total supplied power increases when ¢ increases, until
it attains a maximum reachable power around 1MW: the
aggregator is not able to provide an all-positive or all-negative
signal during the day. This example justifies that it is essential
that the aggregator participates in a market with zero average
signals and it confirms the relevance of balancing markets.

V. CONCLUSION

In this article we propose a novel state space modeling
framework for large fleets of PEVs with discrete charging
rate. First we aggregate PEVs in three different states, namely
G2V, idle and V2G. We derive the dynamics of the fleet as
a system of three coupled PDEs, with uncontrollable flows
coming from drivers. We use a Lax Wendroff discretization to
transform the system of PDEs into a state space representation,
where the flows between the three different charging categories
are controlled. We propose a Linear Quadratic Regulator
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with the objective to track a power signal, while respecting
drivers' mobility constraints. We use Model Predictive Control
techniques to solve this problem in real time. We perform
various case studies and examine how the performance of
the aggregator depends on LQR parameters, drivers' flexibility
and capacity bidding strategies. These examples show that the
system is particularly adapted to load following, with zero-
mean reference signals.

APPENDIX

Proof of Proposition 2:
We assume that X (0) > 0 and that Assumption 1 is verified.
Then, we show that the problem is feasible with the control se-

quence described in Section III-C2. We consider k € {0,...,N},
and apply the control sequence Uiy (k) at time k:
X(k+1)
= AX (k) +ByUy. (k) +Bs(Dep(k) + Arr(k))
_szGu(k) _szau(k) 0
= | Aev(k) | + [Avgu(k) +Agyw(k) | — | Dep(k) +Arr(k)
| Agyw(k) —Agyw(k) 0
[ 0
- sz(;u(k) +Acsz(k) +A,‘dlev<k) - Dep(k) —Arr(k)
0
UX(k+1) = 17 [Avou(k) +Agyw(k) + Auev (k)]
—17(Dep(k) + Arr(k))
= 1"X (k) —d(k)+ 17 |Arr(k)|  (28)

The last equality results from the system dynamics properties:
the matrices Ayyg,Aq. and Agpy are obtained from the dis-
cretization of convection PDEs, which ensure the conservation
of loads. Then:

X(k+1)—1"X(k) =
Then, by induction:

1T|Arr(k)| —D(k)

1TX(k+1)—17x(0) = i1T|Arr(l)|—D(l) (29)
1=0

Assumption 1 and relations (28), (29) give:

17X (k+1)
—d(k)+ 1T |Arr(k)|

> 0

17X (k) > 0 (30)

We define:

AVZGu(k) + AGZVW(k> + Axdlev(k) + |Arr(k)|
1T[A s ou(k) + Aoy w(k) + Asev(k) + |Arr(k)|
Avcu(k) +Agyw(k) + Ayev(k) + |Arr(k)]

17X (k) +|Arr(k)|]

Dep(k) = d(k)

= d(k)

We conclude:

1" Dep(k) = d(k) 3D

Dep(k) >0 (32)
0

X(k+1) = |Avu(k) + Agyw(k) + Aev(k) + |Arr(k)| x &

0

>0 (33)

where

B d(k)

= T X+ T A ()] (34)

where the last inequality comes from relation (30).
Equations (31), (32), (33) show that the problem is feasible at
time k. ]
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