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Abstract—This paper proposes a stochastic dynamic program-
ming framework for the optimal energy management of a smart
home with plug-in electric vehicle (PEV) energy storage. This
work is motivated by the challenges associated with intermit-
tent renewable energy supplies and the local energy storage
opportunity presented by vehicle electrification. This paper seeks
to minimize electricity ratepayer cost, while satisfying home
power demand and PEV charging requirements. First, various
operating modes are defined, including vehicle-to-grid (V2G),
vehicle-to-home (V2H), and grid-to-vehicle (G2V). Second, we
use equivalent circuit PEV battery models and probabilistic
models of trip time and trip length to formulate the PEV to
smart home energy management stochastic optimization problem.
Finally, based on time-varying electricity price and time-varying
home power demand, we examine the performance of the three
operating modes for typical weekdays.

Index Terms—Vehicle to Grid, Energy Management, Stochastic
Dynamic Optimization, Smart Home, Plug-in Electric Vehicle.

NOMENCLATURE

∆t The time-step
c The time-varying electricity price
d The trip distance
Eff The overall electric drive efficiency
I Current
Imax The maximal current
Imin The minimal current
Imin
bat The physical limits of battery discharging current
k Time index
mhg The probability that pluggging-in SOC SOCpi =

SOCh, given plugging-out SOC SOCpo = SOCg

p The transition probability of plugging-out
Pbatt The PEV battery power
Pdem The power demand of the house
Pgrid The electric power from the grid
q The transition probability of plugging-in
Qcap The charge capacity
Qeap The energy capacity
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Rint The internal resistance
S The PEV state
SOC The battery state-of-charge
SOCmax The maximal SOC
SOCmin The minimal SOC
SOCmin

c The constant minimal SOC
SOCg The sample values from the discretized set of feasible

SOC values
SOCh The sample values from the discretized set of feasible

SOC values
SOCinit The initial SOC
SOCpi The SOC at plugging-in time
SOCpo The SOC at plugging-out time
ta The plugging-in time
td The plugging-out time
Voc The open circuit voltage

I. INTRODUCTION

A. Motivation and Background

PEV energy storage provides a compelling opportunity to
address several challenges for the security and economic sus-
tainability of our energy supply [1]. These challenges include
renewable energy integration, distributed energy resources,
resilience during natural/man-made disasters (e.g. the tsunami-
induced Fukushima nuclear meltdown), and rapidly evolving
markets for demand-side management. If left unmanaged,
however, PEVs can exacerbate peak loads and overstress local
distribution circuits, resulting in less stable electricity supply
and higher costs ultimately passed on to the consumer. As a
consequence, researchers have recently focused on developing
effective control strategies for integrating PEVs into building
loads and the grid.

B. Literature Review

Researchers have examined PEV charging schedule designs
for objectives such as ancillary services, frequency regulation,
battery health, and effective utilization of renewable energy.
The application of aggregators to frequency regulation by
making fair use of PEVs’ energy storage capacity is addressed
in [2], [3]. Vehicle to Grid (V2G) ancillary services, such
as load regulation and spinning reserves are studied in [4]
by incorporating probabilistic vehicle travel models, time
series pricing, and reliability. The cost of PEV battery wear
due to V2G applications is presented in [5], [6]. Renewable
integration is considered in [7], which derives optimal PEV
charging schedules based on predicted photovoltaic output and
electricity consumption.



The literature provides various V2G energy management
approaches [8], [9], which can be generally categorized into
linear programming (LP) [10], [11], dynamic programming
(DP) [12]–[14], convex programming (CP) [15], [16], model
predictive control (MPC) [17], and game theoretic approaches
[18], [19]. An optimal centralized scheduling method to jointly
control home appliances and PEVs is constructed as a mixed
integer linear program (MILP) in [11]. A globally optimal
and locally optimal scheduling scheme for EV charging and
discharging are proposed using convex optimization in [16].
Energy management system for smart grids with PEVs based
on hierarchical model predictive control (HiMPC) is presented
in [17]. The problem of grid-to-vehicle energy exchange
between a smart grid and plug-in electric vehicle groups
(PEVGs) is studied using a noncooperative Stackelberg game
in [18]. A strategic charging method for plugged in hybrid
electric vehicles (PHEVs) in smart grids are introduced based
on a game theoretic approach in [19]. Rayati et al. [20] present
a smart energy hub for a residential customer and use rein-
forcement learning and Monte Carlo estimation to find a near
optimal solution for the energy management problem. These
approaches all share a common goal, namely, to meet overall
home electric power demand while optimizing a metric such
as electricity consumption, reliability, or frequency regulation.

Most of this literature pursues a V2G technology potential
evaluation objective. Few pursue a real-time control system
that optimizes energy management with an explicit consider-
ation for stochastic home loads and mobility patterns. Iverson
et al. consider probabilities of vehicle departure time and
trip duration to formulate a stochastic dynamic programming
(SDP) algorithm to optimally charge an EV based on an
inhomogeneous Markov chain model [21]. Donadee et al. [22]
use stochastic models of (i) plug-in and plug-out behavior,
(ii) energy required for transportation, and (iii) electric en-
ergy prices. These stochastic models are incorporated into an
infinite-horizon Markov decision process (MDP) to minimize
the sum of electric energy charging costs, driving costs, and
the cost of any driver inconvenience. A later study by [14] con-
structs a Markov chain to model random prices and regulation
signal and formulates a SDP to optimize the charging and fre-
quency regulation capacity bids of an EV. The previous three
studies, however, do not consider integrated PEV charging
with building loads. Liang et al. [23] provide a comprehensive
literature survey on stochastic modeling and optimization tools
for microgrids and examine the effectiveness of such tools.

C. Main Contribution

The main contribution of this paper is to model PEV
energy storage availability by incorporating multiple random
variables into a SDP control formulation of smart home energy
management. The random variables include PEV arrival time,
departure time, and energy required for mobility. We also
quantify the potential cost savings of various operating modes,
including V2G, V2H, and G2V. Our procedure provides a
systematic methodology to quantify the potential cost savings
to home ratepayers in smart homes with PEV energy storage.

Fig. 1. Structure of PEV to smart home.

D. Outline

The remainder of the paper is arranged as follows. Section
II details the models of PEV to smart home and the random
variables. The SDP framework is described in Section III. The
optimization results are discussed in Section IV followed by
conclusions presented in Section V.

II. PEV TO SMART HOME MODEL DEVELOPMENT

A. Operating Modes

We consider a smart home with PEV energy storage as
shown in Fig. 1. The smart home is composed of the house
load demand, the utility grid, a PEV with a Li-ion battery pack,
and associated power electronics. The PEV battery interfaces
with the utility grid and house loads via power electronics,
namely a DC/AC converter. The power electronics are de-
signed and controlled to allow bidirectional or unidirectional
power flow according to the different operating modes. The
controller is used to manage the power flow between the
battery, house appliances and utility grid. We apply a stochastic
optimal control approach to synthesize an energy management
controller.

There are four operating modes in PEV to smart home
systems, as shown in Fig. 2. Mode A allows PEV battery
charging only (uni-directional power flow), called grid-to-
vehicle (G2V). Mode B allows battery charge and discharge
with the home, but does not export power to the grid. This is
called vehicle-to-home (V2H). Mode C allows battery charge
and discharge and may sell power to the grid, called vehicle-
to-grid (V2G). The V2G mode with renewable energy (such
as solar rooftop photovoltaics or wind power) is considered
in mode D. Renewable energy sources will not be considered
in this paper, however it is a direct extension of the proposed
framework and a topic for future investigation.

To develop and evaluate our control methods, we consider
load data from a single family home in Los Angeles, Califor-
nia. The collected data corresponds to date range 2013-04-01
to 2014-03-31. Figure 3 plots the hourly average electricity
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Fig. 2. Operating modes of PEV to smart home: A) grid-to-vehicle (G2V);
B) vehicle-to-home (V2H); C) vehicle-to-grid (V2G); D) V2G with renewable
energy generation.
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Fig. 3. Hourly electric power demand on each weekday (blue) and power
demand average across year (red).

consumption on summer (May 1 - Oct 31) and winter (Nov 1
- Apr 30) weekdays.

B. Model of PEV to Smart Home

At all points in time, the system must sastify the following
power balance equation,

Pgrid,k = Pdem,k + SkPbatt,k, k = 0, ..., N − 1, (1)

Sk =

{
0 for td ≤ k ≤ ta
1 otherwise,

(2)

where Sk denotes the PEV state at time k, i.e., plugged-in
(Sk = 1) or plugged-out (Sk = 0). In this paper we assume
the PEV plugs-out and plugs-in once per day, each.

We consider the following discrete-time equivalent circuit
model of a PEV battery

SOCk+1 = SOCk +
∆t

Qcap
Ik, k = 0, ..., N − 1 (3)

SOC0 = SOCinit (4)

Consequently, we can compute the power of the PEV battery
as

Pbatt,k = Voc(SOCk)Ik +RintI
2
k (5)

The charge power is assumed to be positive, by convention. In
this paper, we assume the internal resistance Rint is constant
and the open circuit voltage Voc is a function of SOCk [24].

C. Trip Time Model

PEV battery storage provides a unique opportunity to de-
couple energy supply from demand. A unique challenge in
smart homes, however, is uncertainty in three parameters:
PEV plug-in time, plug-out time, and charge required for
mobility. Given statistics for these uncertain parameters, we
model the PEV plug-state as a Markov chain. A Markov chain
model is a dynamic system that undergoes transitions from
one state to another on a state-space. Unlike deterministic
dynamical systems, the process is random and each transition
is characterized by statistics. Moreover, it contains the Markov
property that given the present state, the future and past states
are independent. Considering the PEV is plugged-in (Sk = 1)
or plugged-out (Sk = 0) at time k, the Markov chain model
can be written mathematically as

Pij,k = Pr[Sk+1 = j|Sk = i, k], i, j ∈ {0, 1}2,
P10,k = Pr[Sk+1 = 0|Sk = 1, k] = p(k),

P11,k = Pr[Sk+1 = 1|Sk = 1, k] = 1− p(k),

P01,k = Pr[Sk+1 = 1|Sk = 0, k] = q(k),

P00,k = Pr[Sk+1 = 0|Sk = 0, k] = 1− q(k). (6)

These dynamics are visualized by the state transition diagram
in Fig. 4. The quantity p(k) is the transition probability of
plugging-out and q(k) is the transition probability of plugging-
in.

k
kk

k

Fig. 4. State transition diagram for stochastic plug-in/out state Sk .

The start time of outgoing trips from home (or residential
area) is called the plugging-out time, and the plugging-in time
is the end of the last return trip. In order to research the
randomness of trip time, we investigated 10 individuals daily
driving schedules over 3197 person-work days. All 10 people
work in a university office in Chengdu, China and their work
hours are from 8:30 AM to 5:30 PM. Chengdu is a capital
city in the southwest of China and the core city resident
population is about 5.65 million. According to the analysis
of the daily driving schedules, the temporal distribution of
vehicle transition probability is shown in Fig. 5. The plugging-
out time distribution is concentrated around 6:45-8:30 AM,
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Fig. 5. Distribution of plugging-in and plugging-out times for 10 individuals
over 3197 person-work days in Chengdu, China.

and corresponds to morning commutes. The mean value of
the plugging-out time is 7:40 AM (7.66h), and the standard
deviation (std) is 0.57h. The plugging-in time distribution
shows the highest peak around 5:30-8:00 PM, the mean value
is 6:38 PM (18.64h), and the std is 0.89h.

D. SOC at Plugging-in Time Model

In this section, we use daily trip distance to compute the
SOC at plugging-in time, denoted SOCpi. The randomness of
SOC at plugging-in time is affected by many factors, including
the SOC at plugging-out time, driving distance, driving styles,
route choice, traffic, etc. Here we only consider the effect of
driving distance

SOCpi =

{
SOCmin

c , if SOCpo − d
Eff ·Qeap

≤ SOCmin
c ,

SOCpo − d
Eff ·Qeap

, otherwise,
(7)

where Qeap is the energy capacity [kWh] and Eff is the
overall electric drive efficiency which we assume equal to
6.7km/kWh [25]. Random variables SOCpo and d represent
the SOC at plugging-out time (see Fig. 5) and daily driving
distance. If given SOCpo and d, then SOCpi can be com-
puted. Note that SOCpi is lower-bounded by SOCmin

c , which
prevents battery depletion. Consequently, we can compute the
conditional probability distribution of SOCpi according to

mhg = Pr[SOCpi = SOCh|SOCpo = SOCg], (8)

SOCh, SOCg ∈ S =
{
SOCi = SOCmin

c + i ·∆SOC |
i ∈ N, SOCmin

c ≤ SOCi ≤ SOCmax
}
. (9)

The quantity mhg is the probability that plugging-in SOC
SOCpi = SOCh, given plugging-out SOC SOCpo = SOCg .
When given a plug-out SOCpo (SOCpo = SOCg), the
probability distribution of SOCpi is decided by the probability
distribution of driving distance. According to the statistical
daily trip length distribution from 2009 U.S. National House-
hold Travel Survey (NHTS) [26], the conditional probabilities
for the plugging-in SOC SOCpi, given the plugging-out SOC
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Fig. 6. Conditional probabilities of plugging-in SOC SOCpi, given the
plugging-out SOC SOCpo.

SOCpo are shown in Fig. 6. Note the SOC at plugging-in time
is always less than or equal to SOC at plugging-out time - that
is SOC cannot increase during driving events.

III. STOCHASTIC DYNAMIC PROGRAMMING

This section presents the stochastic dynamic programming
approach used for solving the optimal power management
problem for PEV to smart home microgrid. The objective is
to manage power flow to minimize electricity cost. The elec-
tricity cost includes household electric power demand, PEV
battery charging and discharging. This objective is oriented
toward individual homeowners. Other objectives are directly
applicable as well, e.g. minimize marginal power plant carbon
emissions, battery degradation, or distribution circuit voltage
drop. To explicitly compute the electricity cost for a PEV to
smart home microgrid, we define the instantaneous electricity
cost functional, gk(SOCk, Sk, Ik), as follows:

gk(SOCk, Sk, Ik) = ck ·∆t · Pgrid,k

= ck ·∆t · (Pbatt,kSk + Pdem,k)

= ck ·∆t · ((Voc(SOCk)Ik +RintI
2
k)Sk + Pdem,k) (10)

where ck is the time-varying electricity price [cents/kWh].
In this paper we assume deterministic home power demand.
While this assumption is clearly never true, the literature is rich
with machine learning and stochastic modeling approaches for
home power demand [27], [28], that can be incorporated into
our framework. As such, we focus on the novel aspects of this
work - modeling PEV energy storage availability.

The controller must maintain battery SOCk and current Ik
within simple bounds,

SOCmin ≤ SOCk ≤ SOCmax, k = 0, ..., N (11)

Imin ≤ Ik ≤ Imax, k = 0, ..., N − 1 (12)

The various operating modes (see Fig. 2) are incorporated by
appropriately setting values of Imin.
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Fig. 7. Block diagram of stochastic multi-stage decision process.

i) In V2G mode (Mode A),

Imin = Imin
bat , (13)

ii) In V2H mode (Mode B),

Imin = max

{
Imin
bat ,

−Voc +
√
V 2
oc − 4RintPdem,k

2Rint

}
. (14)

iii) In G2V mode (Mode C),

Imin = 0. (15)

Armed with the Markov chain modelling framework to
incorporate statistics of the random process (e.g. plugging-out
time, plugging-in time, SOC at plugging-in time), we can now
formulate a stochastic dynamic program (SDP). Consider the
block diagram in Fig. 7. The deterministic subsystem is given
in the lower-left block, and is characterized by state SOCk.
The stochastic subsystem is characterized by the pair of states
{Sk, SOCpi}, described by the Markov chain model in the
top block. The design problem is to determine the control
input Ik which minimizes the electricity cost. The control will
be synthesized as a time-varying state feedback control law.
Namely, the control is the output of a mapping that depends
on the current deterministic state SOCk and stochastic state
{Sk, SOCpi}. We formalize this as a finite-time stochastic
dynamic program [29],

min
Ik,SOCk,Sk

E
N−1∑
k=0

ck ·∆t · (SkPbatt,k + Pdem,k) (16)

s. t.

SOCk+1 =


SOCk, Sk = 0→ Sk+1 = 0

Proj[SOCpi]
SOCmax

SOCmin
c

, Sk = 0→ Sk+1 = 1

SOCk + ∆t
Qcap

Ik, Sk = 1→ Sk+1 = 0

SOCk + ∆t
Qcap

Ik, Sk = 1→ Sk+1 = 1

Eqns (1)− (9) and (11)− (15). (17)

Now we define the value function. Let Vk(SOCk, Sk) be
the minimum expected cost-to-go from time step k to N , given

the current battery SOC level and the plug-state - SOCk, Sk,
respectively. Then the principle of optimality [29] is given by:

Vk(SOCk, Sk) =

min
Ik∈Dk

{gk(SOCk, Sk, Ik) + E Vk+1(SOCk+1, Sk+1)}

= min
Ik∈Dk

{g(SOCk, Sk, Ik)+∑
j∈{0,1}

Pij,k Vk+1(SOCk+1, Sk+1 = j)}, (18)

where gk(·, ·) is the instantaneous cost in (10) and Pij,k are
Markov chain transition probabilities in (6). The minimization
operator is subject to a time-varying admissible control set Dk

characterized by (1)-(9) and (11)-(15). We can further expand
(18) by considering separate cases for Sk = 0 and Sk = 1
and substituting the SOC dynamics as follows.

Vk(SOCk, Sk = 0) =

min
Ik∈Dk

{g(SOCk, Sk = 0, Ik)

+ (1− q(k)) · Vk+1(SOCk, Sk+1 = 0)

+q(k) · Vk+1(Proj[SOCpi]
SOCmax

SOCmin
c

, Sk+1 = 1)
}
, (19)

Vk(SOCk, Sk = 1) =

min
Ik∈Dk

{g(SOCk, Sk = 1, Ik)

+ p(k) · Vk+1

(
SOCk +

∆t

Qcap
Ik, Sk+1 = 0

)
+(1− p(k)) · Vk+1

(
SOCk +

∆t

Qcap
Ik, Sk+1 = 1

)}
.

(20)

We also have the boundary condition

VN (SOCN , SN ) =

{
0, for SOCmin

N ≤ SOCN ≤ SOCmax
N

∞, otherwise.
(21)

Finally, the optimal control action is saved as

I∗k = γk(SOCk, Sk) (22)
= arg min

Ik∈Dk

{g(SOCk, Sk, Ik)

+
∑

j∈{0,1}

Pij,kVk+1(SOCk+1, Sk+1 = j}.

IV. RESULTS & DISCUSSION

This section analyses the SDP controller properties by com-
paring its performance in different operating modes. The time-
varying price signal, driving cycles and average electricity
power demand are input to the SDP control algorithm. First,
we do the SDP multi-stage decision process offline and find the
optimum charge and discharge current and minimum expected
electric energy cost, for any time k and any value of SOCk.
Then, we use the optimal control policy computed by SDP to
simulate the closed-loop system. The PEV is allowed to charge
only at home. Table I lists the parameter values used for these
optimization case studies presented in this manuscript.
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A. Time-Varying Electricity Price

Pacific Gas and Electric Company (PG&E) offers special
EV rate plans for residential customers in different seasons.
They are non-tiered, time-of-use plans shown in Fig. 8 [30].
EV charging cost is based on the time of day you consume
electricity. Costs are lowest from 11 PM to 7 AM when
demand is lowest. Electricity is more expensive during Peak
(2-9 PM) and Partial-Peak (7 AM-2 PM and 9-11 PM) periods.
Similar to the PG&E EV rate plans, we synthetically generated
a more interesting hourly time-varying electric price, as shown
in Fig. 8. The hourly time-varying electric prices vary between
6.5-47.8 cents/kWh in summer and 6.5-38.8 cents/kWh in
winter, providing an opportunity for the PEV to gain eco-
nomic benefits through off-peak charging and bidirectional
PEV to smart home power exchange. This might emulate a
future time-of-use EV pricing scenario that several utilities
are considering. In summer, both the PG&E EV price and
hourly time-varying electric price’s average is 23.8 cents/kWh.
In winter, average is 18 cents/kWh. In this paper, we examine
the performance of PEV to smart home with the hourly time-
varying electricity price.

TABLE I
SYSTEM PARAMETERS.

Parameter Description Symbol Value Unit
Battery Charge Capacity Qcap 66 Ah
Battery Energy Capacity Qeap 24 kWh
Battery Open Circuit Voltage Voc f(SOC) V
Battery Internal Resistance Rin 0.1 Ohm
Time Step ∆t 15 min
Maximum Battery SOC SOCmax 0.95 -
Constant Minimum Battery SOC SOCmin

c 0.075 -
Minimum Battery SOC SOCmin 0.075 -
Maximum Charging Current Imax

bat 20.27 A
Minimum Discharging Current Imin

bat -20.27 A
Plugging-out Time td 7:40 AM
Plugging-in Time ta 6:38 PM
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Fig. 9. SOC curves for a PEV undergoing LA92 drive cycle.

B. Average Weekday Household Power Demand

This section presents the resulting SDP control law sim-
ulated on the average weekday household power demand,
average plug-out and average plug-in times. The time horizon
is 24 hours. We assume the PEV is driven between work and
home with one LA92 drive cycle (15.8 km and 23.93 min-
utes). A simple PEV energy management control strategy is
considered. All the drive power is supplied by the battery and
all deceleration power is captured with regenrative braking,
unless: (i) the deceleration power exceeds the motor’s limits;
(ii) the deceleration power causes battery voltage to exceed
Vmax. Then it uses friction brakes for remaining deceleration
power. The SOC curves for a PEV similar to a Nissan Leaf
undergoing LA92 drive cycle are shown in Fig. 9. The SOC
at plugging-out time SOCpo is 0.94. The SOC at plugging-in
time SOCpi is 0.76.

Three different operating modes are investigated, including
(i) V2G mode; (ii) V2H mode; (iii) G2V mode. In the first
two, the battery can supply power to the home and grid.
Based on average summer weekday power demand, as well as
hourly time-varying electric price, the battery SOC trajectories,
electric power from grid, and total electric cost are depicted in
Fig. 10. Here we assume the SOCs, SOC0, at the start time of
a day (00:00) are 0.10, 0.52 and 0.76 in V2G, V2H and G2V
mode, respectively, which equal to the SOC values at the end
time of a day (24:00).

It is evident that the depth of battery discharge is larger
under V2G mode than V2H mode. Of course, more frequent
charging and discharging will affect battery life, which will be
considered in the future work. Based on the summer hourly
time-varying electric price, a majority of the charging occurs
during the low electricity price period: 2:00-5:30 AM in V2G
mode; 3:00-5:00 AM in V2H and G2V modes. A majority of
the discharging during the high electricity price period: 6:30-
9:00 PM.

The daily electricity cost based on average weekday power
demand and LA92 drive cycle are shown in Table II. In V2G
mode, the daily electricity cost is 4.50 USD less in summer



       
0

0.5

1
S

O
C

       
−5

0

5

10

P
ow

er
[k

W
]

 

 

00:00 04:00 08:00 12:00 16:00 20:00 24:00

−40

0

20

C
os

t[c
en

ts
]

Time of Day

 

 

V2G
V2H
G2V
No PEV
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and 3.65 USD less in winter relative to the No PEV case.
In V2H mode, the daily electricity cost is 1.10 USD less in
summer and 0.84 USD less in winter than the No PEV case.
In G2V mode, the daily electricity cost is 0.29 USD more
than the No PEV case in both summer and winter. Summer
is more expensive than winter due to higher electricity prices
and larger household power demand. These estimates can be
combined with charging infrastructure costs to calculate the
best-case return-on-investment (ROI) period for each working
mode, which Interested readers should pay more attention to.

TABLE II
DAILY ELECTRICITY COST BASED ON AVERAGE WEEKDAY POWER

DEMAND AND LA92 DRIVE CYCLE.

Summer cost (USD) Winter cost (USD)
Modes total PEV Total PEV
V2G 1.40 -4.50 1.15 -3.65
V2H 4.81 -1.10 3.94 -0.84
G2V 6.19 +0.29 5.07 +0.29
No PEV 5.90 0 4.78 0

Based on the previous results, it would seem necessary for
the time-of-use price to be less before morning departure than
the price after evening arrival to ensure sufficient SOC for
mobility needs. This time-of-use price characteristic is not
necessary, as demonstrated in Fig. 11(a). Namely, we have
considered a PG&E price scheme, along with a new (i.e. mod-
ified) PG&E price scheme. The new scheme has lower prices
after evening arrival than prices before morning departure. Yet,
the SOC increases. We have observed, however, that for some
other electricity price structures the proposed SDP will not
sufficiently charge the PEV to meet mobility constraints. The
reason for this behavior might be due to numerical or imple-
mentation issues in the simulation. The decisions of charging
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Fig. 11. Battery SOC if the evening electric prices are less than or equal to
the morning electric prices.

and discharging is decided by time varying electric price,
transition probability of plugging-out, constraints of current
and SOC. Here we consider one practical heuristic solution by
making SOCmin time-varying. That is, make SOCmin

k = 90%
when there’s some non-trivial probability of plugging-out, as
SOCmin

k = 90% for k’s where P10,k = Pr[Sk+1 = 0|Sk =
1, k] > 1%. SOCmin

k−u = 90%, u = 0, 1, ..., 30 for the first
P10,k = Pr[Sk+1 = 0|Sk = 1, k] > 1%. To illustrate, we
consider average summer house power demand, LA92 drive
cycle, the new electricity price, and time-varying SOCmin as
shown in Fig. 11(b). The battery SOC in V2G, V2H and G2V
mode are shown in Fig. 11(b). This time-varying minimum
SOC ensures the SOC is sufficiently high to meet mobility
demands - in all modes.

C. Impact of Varying Mobility Needs

This section investigates the impact of varying daily com-
mute distances on smart home power management. We ex-
amine daily trip lengths between 5 km and 150 km, which
includes the bulk of daily trip length distribution according to
the NHTS data. In Table III, several drive cycles, trip lengths
and SOC for driving are reported. The total electricity cost,
PEV battery electric cost and SOC value at the end of the day



TABLE III
DRIVE CYCLES CONSIDERED TO ASSESS IMPACT OF DAILY TRIP LENGTH

ON SMART HOME ENERGY MANAGEMENT.

Daily Trip
Cycles Length/km SOCd

2x(HWFET+LA92+US06+UDDS+NEDC+SC03) 147.58 0.84
2x(HWFET+LA92+US06+UDDS+SC03) 125.72 0.76
2x(LA92+US06+UDDS+NEDC) 103.22 0.61
2x(LA92+US06+UDDS) 81.16 0.49
2x(HWFET+US06+SC03) 70.32 0.47
2x(US06+UDDS+SC03) 61.28 0.37
2x(LA92+NEDC) 53.16 0.30
2x(LA92+SC03) 43.12 0.23
2xHWFET 33.02 0.21
2xLA92 31.60 0.18
2xUS06 25.78 0.21
2xUDDS 23.98 0.11
2xNEDC 21.86 0.12
2xSC03 11.52 0.05
SC03 5.76 0.03

(24:00) in summer weekday with different daily trip are shown
in Fig. 12. The total electric costs and PEV electric costs
increase as daily trip length increases, for all three operating
modes. When the daily trip length equals the PEV electric
range, then the costs are the same in all three modes. In G2V
mode, the SOC values (at 24:00) decrease as daily trip length
increases. In V2H mode, the SOC values (at 24:00) decrease
as daily trip length increases, for trip lengths less than 103
km, but are constant as the trip length increasing. In V2G
mode, the SOC values (at 24:00) are constant for all daily trip
lengths. From Fig. 12-(b), it can be seen that PEVs in V2H or
V2G mode provide net cost reductions when daily trip length
is less than 100 km.

D. Financial Analysis

To demonstrate the potential financial benefits of PEV to
smart home microgrids, this section considers the annual
profits for different operating modes. In this part, we use the
2xLA92 drive cycles as the daily trip. The daily electric cost
under no PEV case, V2G, V2H, and G2V modes are presented
in Fig. 13. The analysis summarized by Table IV examines the
annual electric cost in summer and winter.

In summer weekdays, the mean value of No PEV daily
electric cost is 5.91 USD/day, and the total summer weekday
cost is 768.8 USD. The mean value of V2G daily electric cost
is 1.42 USD, and the total summer weekday cost is 184.3 USD.
The mean value of V2H daily electric cost is 4.80 USD/day,
and the total summer weekday cost is 624.1 USD. The mean
value of G2V daily electric cost is 6.20 USD/day, and the total
summer weekdays cost is 805.8 USD. The summer weekday
total electric cost is 76.0% less for V2G mode relative to No
PEV case, and it is by 18.8% in V2H mode, but 4.8% more
for G2V mode relative to No PEV case.

In winter weekdays, the mean value of No PEV daily
electric cost is 4.61 USD/day, and the total winter weekdays
cost is 599.0 USD. The mean value of V2G daily electric cost
is 1.16 USD, and the total winter weekdays cost is 151.4 USD.
The mean value of V2H daily electric cost is 3.87 USD, and
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Fig. 12. Electricity cost in summer weekday with varying daily trip length.

the total winter weekdays cost is 503.0 USD. The mean value
of G2V daily electric cost is 4.89 USD, and the total winter
weekdays cost is 636 USD. The winter weekdays total electric
cost is 74.7% less for V2G mode relative to No PEV case, and
it is by 16.0% in V2H mode, but 6.2% more for G2V mode
relative to No PEV case.

Over one year, total electric cost is 75.5% less for V2G
mode relative to the No PEV case, and it is 17.6% less in V2H
mode. The cost increases by 5.4% in G2V mode. The energy
management strategy is exploiting price arbitrage selling
electricity to the grid when its high and buying electricity from
the grid when its low.

E. Discussion on Power Quality Problem

Power quality in distribution circuits is a key challenge
associated with PEV charging. Without coordinated charging,
PEV charging can lead to voltage loss and hence reliability
concerns and increased energy costs. Coordinated charging
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Fig. 13. Electricity cost in different modes.

TABLE IV
ANNUAL ELECTRIC COST (USD) DUE TO WEEKDAY HOUSE POWER

DEMAND, PEV CHARGING, AND LA92 DRIVING CYCLE.

V2G V2H G2V No PEV
Summer Daily Average 1.42 4.80 6.20 5.91
Winter Daily Average 1.16 3.87 4.89 4.61
Year Daily Average 1.29 4.34 5.55 5.26
Summer Total 184.3 624.1 805.8 768.8
Winter Total 151.4 503.0 636.0 599.0
Year Total 335.7 1127.1 1441.8 1367.8

can minimize the power losses and maximize distribution grid
load factors [14], [31]. According to Fig. 10, the total power
demand from the grid is reduced when grid load is high, and
is increased during the night based on SDP control. The load
shifting effect is significant and important to improve grid
power quality. However, the maximal power demand from
the grid may violate voltage deviation limits, and excessive
discharge may affect grid stability. Although this manuscript
is concerned with a single node, and not the distribution
network, we conduct a simple power quality analysis by
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Fig. 14. SDP optimized grid power trajectories, with and without the grid
power limits given in the top subplot.

considering power limits from the grid (top subplot of Fig. 14).
Specifically, we consider a scenario where the utility provides
day-ahead power limit signals, Pmin

grid,k ≤ Pgrid,k ≤ Pmax
grid,k, to

the controller which ensures distribution circuit power quality.
Thus, we regulate the PEV charging power to avoid excessive
deportation or importation of power from the local distribution
grid. To illustrate, we consider house power demand on
an arbitrary day during winter, the winter hourly electricity
price, and the LA92 drive cycle. The results are shown in
Fig. 14. With grid power limits, the magnitude of power
transferred between the grid and home is less. Consequently,
the charging/discharging times are elongated in V2G mode.
In V2H mode, the maximum power from grid is reduced. The
difference is negligible in G2V mode, since the grid power
demand constraints do not become active.

V. CONCLUSION

This paper examines a stochastic optimization framework
for energy management of a smart home with PEV energy
storage, with a specific focus on PEV energy storage uncer-
tainty. A stochastic dynamic programming problem (SDP) is
formulated to optimize the electric power allocation among
the PEV battery, home power demand, and utility grid. The
strategy explicitly incorporates probability distributions of trip
time and trip length. We quantify the potential cost savings
of various operating modes, including V2G, V2H and G2V.
We find that variable mobility patterns significantly impact the
optimal energy management behavior. Additionally, significant
operational cost savings are achievable with the V2G operating
mode, given the electricity cost structure assumed in this paper.

Future work may incorporate thermal and aging dynamics
of the PEV battery into the SDP optimization framework,
since the V2G or V2H operating modes will impact battery
health. The proposed framework can be extended to consider
additional uncertainties, such as house power demand, time-
varying electricity price, renewable power generation. Com-
bined with charging infrastructure costs, the best-case return-
on-investment (ROI) period for different working modes can



be calculated.
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