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Optimal Charging of Electric Vehicles for Load
Shaping: a Dual Splitting Framework with Explicit

Convergence Bounds
Caroline Le Floch, Francois Belletti, Scott Moura

Abstract—This paper proposes a tailored distributed optimal
charging algorithm for Plug-in Electric Vehicles (PEVs). If
controlled properly, large PEV populations can enable high
penetration of renewables by balancing loads with intermittent
generation. The algorithmic challenges include scalability, com-
putation, uncertainty, and constraints on driver mobility and
power system congestion. This article addresses computation
and communication challenges via a scalable distributed optimal
charging algorithm. Specifically, we exploit the mathematical
structure of the aggregated charging problem to distribute the
optimization program, using duality theory. Explicit bounds of
convergence are derived to guide computational requirements.
Two variations of the dual-splitting algorithm are also presented,
which enable privacy preserving properties. Constraints on both
individual mobility requirements and power system capacity are
also incorporated. We demonstrate the proposed dual-splitting
framework on a load shaping case study for the so-called
California “Duck Curve” with mobility data generated from the
Vehicle-to-Grid Simulator.

Index Terms—Communication system operations and manage-
ment, Distributed Algorithms, Optimization methods, Large-scale
systems, Load shedding.

I. INTRODUCTION

PEVs provide a compelling mechanism for demand-side
management in the smart grid. Namely, a vehicle-to-grid
(V2G) capable PEV can potentially consume, store, and supply
energy in a coordinated manner. If properly managed, PEVs
can enhance energy infrastructure resilience, enable renew-
able integration, and reduce economic costs for consumers
and energy providers [1]. In addition to these societal-level,
infrastructure and environmental benefits, V2G may provide
additional revenue streams to PEV owners [2], whose vehicles
are parked and un-used 96% of the day [3]. A single PEV can
generally consume 5-20 kW, which is insufficient to participate
in power grid markets alone. However, populations of PEVs
can be aggregated to collectively provide grid services [4].
The main challenge, however, is managing a large population
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of distributed PEV resources while ensuring (i) computational
tractability, (ii) mobility needs, and (iii) power system capacity
constraints.

A growing body of literature addresses optimal PEV pop-
ulation charging. This work can be classified into centralized
or distributed protocols. Centralized algorithms [5], [6], [7]
utilize a central infrastructure to communicate with each agent,
collect information, and compute the optimal load profile of
the fleet. The challenges for centralized methods are scalabil-
ity, with respect to communication, computation and privacy.

In distributed optimization algorithms each PEV solves a
local problem and communicates information to its neighbors
and/or a coordinator [8]. Previous work has studied various
aspects of load shaping and PEV smart-charging including
filling the night valley of loads (valley filling) in [9], [10],
more general driving behaviors in [11], [12], market bidding
strategies and market uncertainty in [13], [14], [15] and grid
constraints such as transformer overheating [16], [17] and local
distribution grid constraints [18], [19], [20]. A wide range of
distributed algorithms has been used including game theoretic
approaches and Nash Equilibrium in [9], proximal methods in
[10], Alternating Direction Method of Multipliers (ADMM)
in [11], [12], regret minimization in [21] and stochastic
protocols in [22]. The aforementioned methods successfully
address various aspects of PEV smart-charging but do not
provide precise convergence analysis. In particular, finding the
necessary number of iterations to reach a specific precision is
crucial to assess implementation burdens for practitioners. In
this article, we seek a tailored method for the distributed PEV
smart charging problem, and derive computation requirements.
We add to existing studies on optimal charging strategies for
load shaping as follows:
• We derive a distributed dual-splitting optimization

scheme that exploits the unique aggregate charging prob-
lem structure (i.e. a summed objective, strong convexity,
and independent constraints). We additionally analyze
convergence to yield explicit linear rate-of-convergence
bounds, providing precise guidance on the relationship
between iterations, error and algorithm parameters. To
the best of our knowledge, this is the first comprehensive
convergence analysis of the coordinated PEV charging
problem.

• We propose stochastic variations of the main dual-
splitting algorithm. These variations provide communi-
cation and computation trade-offs, thus providing options
for practitioners.
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As a particular case study of interest we incorporate mobility
and power system constraints to quantify demand response
opportunities coming from PEVs to shape the California
“Duck Curve”.

The remainder of the paper is organized as follows. Section
II formulates the optimal PEV scheduling problem. Section
III derives the distributed optimization algorithm via dual
splitting, analyzes convergence, and proposes two alternate
algorithm variations. Section IV incorporates grid congestion
constraints. Section V provides a case study on load shaping
to flatten the “Duck Curve” in California.

TABLE I: Nomenclature

Symbol Description
N Number of PEVs
Th Time horizon
ut

n Charging rate of PEV n at time t
ct

n Discharging rate of PEV n at time t due to driving
xt

n State Of Charge (SOC) of PEV n at time t
Dt Net Load at time t (consumption - renewable generation)
Bn Battery capacity of PEV n
Pt

n Maximum charging power of PEV n at time t
Pt

n Minimum charging power of PEV n at time t

II. PROBLEM FORMULATION

In this section, we use the notation in Table I and develop an
optimization program for synthesizing PEV charging sched-
ules. We use double brackets to denote a discrete set, e.g.
[[1,Th]] = {1,2, · · · ,Th− 1,Th} and we note the vector inner
product: 〈x,y〉= xT y, for x,y∈Rn. We use the vector notations:
un = (u1

n, ...,u
Th
n ), xn = (x1

n, ...,x
Th
n ), cn = (c1

n, ...,c
Th
n ).

A. PEV Charging constraints

Let xt
n denote the State of Charge (SOC) of vehicle n at time

t, ut
n denotes the charging rate when vehicle n is plugged-in,

and ct
n denotes the driving discharging rate when vehicle n is

on road. The battery dynamics are described by a piecewise
linear model, with a power conversion efficiency η ≤ 1.

xt+1
n = xt

n +
ηmut

n

Bn
∆t− ct

n

ηBn
∆t. (1)

m =

 1 if ut
n ≥ 0,

−1 if ut
n < 0,

(2)

xmin
n ≤ xt

n ≤ xmax
n (3)

Equations (1), (2) and (3) define a constraint set, which
is more binding as η increases, and attains the most binding
case when η = 1 (in practice, η = 1 models a perfect battery
efficiency). Therefore, satisfying the constraints associated
with a perfect efficiency ensures that the constraints (1), (2)
and (3) are true at every time step t ∈ J1,ThK, for any value
of η ≤ 1. For simplicity, and similarly to previous work ([23],
[24], [25]), we will use η = 1 to determine the PEV energy
constraints:

Bn

∆t
(xmin

n − xinit
n )+

t

∑
τ=1

cτ
n ≤

t

∑
τ=1

uτ
n ≤

Bn

∆t
(xmax

n − xinit
n )+

t

∑
τ=1

cτ
n (4)

Pt
n ≤ ut

n ≤ Pt
n, ∀t ∈ J1,ThK (5)

The variable ut
n can be non zero if and only if PEV n is

plugged-in at time t. We denote Rn as the indicator vector

Rt
n =

{
1, if EV n is plugged in at time t
0, otherwise (6)

From this definition, we can derive the equality constraint:

(1−Rn)
T un = 0 (7)

B. Finite Time Horizon constraints

The above problem has a fixed time horizon Th. In practice,
the lack of a terminal constraint could deplete all the PEVs’
energy at the end of the period Th. For simplicity, we impose
that every PEV reaches at least SOC x f inal

n at the end of the
period.

Th

∑
τ=1

uτ
n ≥

Bn

∆t
(x f inal

n − xinit
n )+

Th

∑
τ=1

cτ
n (8)

This is a conservative constraint, which can be improved in
future formulations of the problem.

C. Objective

We denote by Dt the aggregate uncontrollable electric
loads combined with the uncontrollable renewable generation.
Symbol Dt is the net load and does not include PEV loads
[26].

We seek to minimize the variance of net load while pre-
serving battery health. This is formulated by the following
optimization program:

min
u

Th

∑
t=1

(Dt +
N

∑
n=1

ut
n)

2 +σ

N

∑
n=1
||un||2 (9a)

st (1−Rn)
T un = 0 ∀n ∈ J1,NK (9b)

Pt
n ≤ ut

n ≤ Pt
n ∀n ∈ J1,NK,∀t ∈ J1,ThK (9c)

(4),(8) ∀n ∈ J1,NK,∀t ∈ J1,ThK (9d)

The first term ∑
Th
t=1(D

t + ∑
N
n=1 ut

n)
2 accounts for the vari-

ance of the total load curve. The second term σ ∑
N
n=1 ||un||2

penalizes the distance from un to the zero vector. Therefore
σ can be viewed as a battery degradation cost [27]. Battery
degradation encompasses a variety of complex mechanisms,
which partially depends on charging power magnitude among
factors such as temperature, cell chemistry, manufacturing
quality, etc. However, for simplicity, we will call this term
“degradation cost” in the rest of the paper.

The optimization program is a Quadratic Program (QP)
with Th×N linear equality constraints and 1+4Th×N linear
inequality constraints. For context, consider the Zero Emission
Vehicle (ZEV) Action Plan [28] to reach N = 1.5 million ZEVs
in California by 2025. For Th = 24h and ∆t = 1h, this yields
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a QP with 32M variables and 144M inequality constraints.
Despite the structural simplicity of a QP, the shear problem
size requires an untenable amount of memory, thus motivating
parallelization methods.

III. DUAL DECOMPOSITION

In this section we develop a dual splitting method and pro-
vide a distributed protocol to solve problem (9). Dual splitting
strategies are often used to parallelize large scale optimization
problems and various methods have been applied to computer
vision [29], machine learning [30] or signal processing [31].
Close to the setting under consideration here, the primal-dual
approaches developed in [32], [33] deal with block constrained
problems. In the following section, we leverage the particular
structure of the PEV smart charging problem and develop a
novel dual splitting strategy tailored to the average-based input
in the objective and the independent constraints. We show that
the resultant Gradient Ascent Method assumes updates from
every PEV at each time step, and converges to the optimal
solution with a linear rate. We later propose two variations
based on the Incremental Stochastic Gradient Method (ISGM),
which requires updates from only one agent at a time, but
converges with a slower rate of convergence.

A. Dual splitting

In the remainder of this paper, we will study the optimiza-
tion program (9). Let Ωn denote the feasible set of charging
schedules for PEV n given by (9b), (9c), (9d). We define the
consensus variable zt = Dt +∑

N
n=1 ut

n. Then (9) becomes:

min
u,z

Th

∑
t=1

(zt)2 +σ

N

∑
n=1
||un||2 (10a)

st zt = Dt +
N

∑
n=1

ut
n (10b)

un ∈Ωn ∀n. (10c)

The above problem is a quadratic minimization problem
with linear constraints, and therefore a convex program. We
can dualize the equality constraint (10b) and form the La-
grangian with dual variable λ . Moreover, assume there exists
a feasible point u in the convex set formed by constraints
(10c) and (10b). Since (10b) is affine and always feasible,
(10) is a convex program and admits a feasible point. Slater’s
condition holds (c.f. [34]) and the strong duality property gives
the equivalent problem:

max
λ t∈ℜ

min
u,z

Th

∑
t=1

(zt)2 +
Th

∑
t=1

λ
t(zt −Dt −

N

∑
n=1

ut
n)+σ

N

∑
n=1
||un||2

st un ∈Ωn ∀n. (11)

We first perform the minimization with respect to variable z;

∀t ∈ J1,ThK zt∗ = argmin [ ft(zt) = zt 2
+λ

tzt ]

zt∗ =−λ t

2
and ft(zt∗) =− (λ t)2

4

Now, we define µ t =−λ t and plug the value of zt∗ into (11).
Then, the problem is equivalent to:

max
µ∈ℜ

Th

−||µ||2

4
+µ

T D+
N

∑
n=1

 min
un

µ
T un +σ ||un||2

st un ∈Ωn.

 (12)

Note that the contributions of un in the objective function
(12) are decoupled along n ∈ J1,NK. The N minimization
subproblems are now independent from each other and can
be solved in parallel. In the next sections we will study
the Gradient Ascent Method and the Incremental Stochastic
Gradient Method to solve this optimization program.

B. Gradient ascent method

Algorithm 1 Gradient ascent

Initialization µ = µ0 ; Choose α ≥ 0, β ≥ 0
1) Find local optimal solution uk

n
for n=1 to N do

Solve uk
n = argmin

un

µkT un +σ ||un||2 st un ∈Ωn.

end for
2) Update µ

Compute Gradient step µk+1 = µk + α

kβ
(− µk

2 +D+∑uk
n)

if Stopping criteria not reached then
k← k+1 , Go to 1)

end if

Algorithm 1 gives the gradient ascent protocol to solve the
optimization program with parameters α ≥ 0, β ≥ 0, such that
the gradient ascent step at iteration k is α

kβ
. In this section,

we prove that Algorithm 1 converges to the optimal solution
and we give complexity bounds. Let g : ℜTh →ℜ denote the
dual objective function:

g(µ) =
−||µ||2

4
+µ

T D+
N

∑
n=1

min
un

µ
T un +σ ||un||2

st un ∈Ωn ∀n.

Theorem 1 (Gradient Ascent with constant step-size): The
dual problem in Eq (10) has a unique solution µ∗ and the
gradient ascent with step-size α = 2σ

σ+N converges according
to

g(µ∗)−g(µk)≤
( N

σ +N

)k
(g(µ∗)−g(µ0)) (13)

Proof: We will prove Theorem 1 in two steps: (i) show
strong concavity of g, then (ii) show that that function g
admits Lipschitz gradients.

Step 1: The function g : ℜTh →ℜ is strongly concave with
constant m = 1

2 .
We refer to [34] for generic results about convex functions

and for the detailed definition of the strong convexity constant
m. Function g is a sum of a strongly concave quadratic function
and N functions ψn defined by:

ψn(µ) = min
un

µ
T un +σ ||un||2

st un ∈Ωn.
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The set Ωn is a non-empty convex set. For each µ , ψn(µ)
appears as a minimum of a strongly convex function over a
convex set, thus it has a unique solution u∗n(µ). Let τ ∈ [0,1],
µ1,µ2 ∈ℜ.

τψn(µ1)+(1− τ)ψn(µ2)

= τ min
un∈Ωn

µ
T
1 un +σ ||un||2 +(1− τ)min

un∈Ωn
µ

T
2 un +σ ||un||2

≤ min
un∈Ωn

τ(µT
1 un +σ ||un||2)+(1− τ)(µT

2 un +σ ||un||2) (14)

= ψn(τµ1 +(1− τ)µ2)

Therefore, ψn is concave. Now, g(µ) = −||µ||2
4 + µT D +

N
∑

n=1
ψn. The quadratic part is strongly concave with constant

1
2 , therefore g is at least 1

2 strongly concave.

Step 2: The function g : ℜTh → ℜ has a Lipschitz con-
tinuous gradient with constant Lg = 1

2 (1+
N
σ
). Since ψn(µ)

admits a unique minimum and the function is linear in µ ,
ψn is differentiable and ∇ψn(µ) = u∗n(µ) (see [35]). Using
the characterization of minimum of convex functions with
u∗1n = u∗n(µ1) and u∗2n = u∗n(µ2), we have:

〈µ1 +2σu∗1n ,un−u∗1n 〉 ≥ 0 ∀un ∈Ωn

〈µ2 +2σu∗2n ,un−u∗2n 〉 ≥ 0 ∀un ∈Ωn (15)

Applying these relations respectively to u∗2n and u∗1n we get:

〈µ1 +2σu∗1n ,u∗2n −u∗1n 〉 ≥ 0

〈µ2 +2σu∗2n ,u∗1n −u∗2n 〉 ≥ 0 (16)

Adding these lines, and using Cauchy Schwarz yields :

〈(µ1−µ2)+2σ(u∗1n −u∗2n ),u∗2n −u∗1n 〉 ≥ 0
〈(µ1−µ2),u∗1n −u∗2n 〉−2σ ||u∗1n −u∗2n ||2 ≥ 0
||µ1−µ2||||u∗2n −u∗1n || ≥ 2σ ||u∗1n −u∗2n ||2 (17)

We conclude that ||u∗1n − u∗2n || ≤ 1
2σ
||µ1 − µ2||. Thus, with

operations (15), (16) and (17) we can conclude:

||∇ψn(µ1)−∇ψn(µ2)|| ≤
1

2σ
||µ1−µ2|| ∀n, ∀µ1, ∀µ2.

Coming back to the definition of function g, we obtain:

∇g(µ1)−∇g(µ2) = −µ1−µ2

2
+∑

n
(u∗1n −u∗2n )

||∇g(µ1)−∇g(µ2)|| ≤
σ +N

2σ
||µ1−µ2|| (18)

Therefore, g has a Lipschitz continuous gradient with constant
Lg =

σ+N
2σ

.
Now, from [34, Ch. 9, p. 466], the gradient ascent method
with stepsize 1

Lg
converges and gives

g(µ∗)−g(µk) ≤
(
1− m

Lg

)k
(g(µ∗)−g(µ0))

≤
( N

σ +N

)k
(g(µ∗)−g(µ0)) (19)

�
Remark 1: Algorithm 1 with constant step-size converges

to accuracy ε in O
(
(1+ N

σ
)log( 1

ε
)
)

iterations; the complexity
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Fig. 1: Impact of σ on convergence rate and results

is O
(
(N + N2

σ
)log( 1

ε
)
)
. In other words, the convergence rate

is linear with respect to parameter σ

N and the complexity is
quadratic with respect to N. Hence, it is important to tune the
parameter σ

N to accelerate the convergence. On the other hand,
σ

N measures how selfish the agents are: as σ

N increases, the
penalization for battery degradation increases and the result
looses optimality in terms of variance minimization. Fig 1
illustrates this tradeoff for 200 agents. In each case µ0 = D
where D is the initial load curve. We stop the algorithm when
we reach a relative duality gap of 10−5. We note that for σ

N ≥ 1,
10 iterations are enough to reach this precision.

Remark 2: The derived dual splitting algorithm and The-
orem 1 apply for any feasible convex set of constraints
Ωn. Consequently, the algorithm can be adapted to similar
problems where each agent has an independent set of convex
constraints. This feature is useful for extensions that consider
uncertainty via a robust convex set of constraints.

C. Incremental Stochastic Gradient Method

Algorithm 2 Incremental Stochastic Gradient Method

Initialization µ = µ0 , Choose α , γ , β ≥ 0
1) Find local optimal solution uk

i
Select i at random in J1,NK
Solve uk

i = argmin
ui

µkT ui +σ ||ui||2 st ui ∈Ωi.

2) Update µ

Compute Gradient update step
µk+1 = µk + α

γ+kβ
(− µk

2N + D
N +uk

i )

if Stopping criteria not reached then
k← k+1 , Go to 1)

end if
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This section develops a variation of the proposed dual-
splitting optimization framework to solve (??), called the In-
cremental Stochastic Gradient Method (ISGM). The stochastic
method is an iterative method, which uses unbiased estimates
of gradients. This is similar to standard gradient methods in
the sense that iterate directions are descent directions only in
expectation. We keep the same notations and remark that g
can be expressed as:

g(µ) =
1
N

N

∑
n=1

−||µ||2

4
+µ

T D+N min
un

µ
T un +σ ||un||2

st un ∈Ωn.

=
1
N

N

∑
n=1

gn(µ) (20)

The incremental gradient method is a version of Stochastic
Gradient Method where we pick i ∈ J1,NK uniformly at
random, and choose the iterate direction ∇gi. Note µ∗ is the
optimum for g and µ∗n is the optimum for gn. Convergence of
IGSM with constant and decreasing step-size are given by the
following two theorems.

Theorem 2 (ISGM with constant step-size): ISGM with
constant step-size α ∈ [0, 1

(1+N/σ)2 ] reaches the ball B(µ∗,r)

with precision ε where r = 1
1+2αL2

g

2α

N L3
g

N
∑

i=1
||µ∗i − µ∗||2 in

1
α(1−2αL2

g)
ln( ||µ0−µ∗||

ε
) iterations.

Theorem 3 (ISGM with decreasing step-size): ISGM with
decreasing step-size αk =

1
(1+N/σ)2+k converges to the optimal

solution µ∗ and

E(g(µ∗)−g(µk))≤
1
N

N

∑
i=1
||µ∗i −µ

∗||2 1
(1+N/σ)2 + k

(21)

Proof of Theorems: We prove Theorem 2 and 3 by showing
that we can find L and B such that E

(
||∇g(µ)||2

)
≤ L2||µ −

µ∗||2 +B2.
Step 1: The function gn : ℜTh → ℜ has a Lipschitz con-

tinuous gradient with constant Ln = Lg = 1
2 (1+

N
σ
). This is

shown by following the same procedure as Step 2 of Theorem
1 proof.
Step 2: Show E

(
||∇gi(µ)||2

)
≤ 2L2

g||µ − µ∗||2 + B2 with

Lg = 1
2 (1 + N

σ
) and B2 = 1

2N (1 + N
σ
)2

N
∑

i=1
||µ∗i − µ∗||2. Using

the Cauchy Schwarz inequality and the Lipschitz condition,
we obtain:

E
(
||∇gi(µ)||2

)
≤ E

(
L2

i ||µ−µ
∗
i ||2
)

≤ E
(
2L2

i ||µ−µ
∗||2 +2L2

i ||µ∗i −µ
∗||2
)

=
2
N

N

∑
i=1

L2
g||µ−µ

∗||2 + 2
N

N

∑
i=1

L2
g||µ∗i −µ

∗||2

= 2L2
g||µ−µ

∗||2 +B2 (22)

This is the condition E
(
||∇g(µ)||2

)
≤ L2||µ − µ∗||2 + B2.

With these particular values of L and B, results in [36] can

be used to establish the step-sizes and convergence rates of
Theorem 2 and 3. �

Remark 3: Similarly to Remark 1, Theorem 2 and Theo-
rem 3 show that the computation time depends only on the
parameter σ

N . Parameter σ

N measures the tradeoff between the
regularity of the objective function (convergence speed) and
the optimality of the solution (load shaping performance).
In particular, when σ

N increases, the number of necessary
iterations decreases but the optimal solution becomes less
optimal in terms of load shaping.

D. Comparison of algorithms

This sections shows computation and communication trade-
offs between the algorithms.

1) Convergence speed: Theorem 2 states that the conver-
gence rate of Algorithm 2 with constant step size is linear,
similar to Algorithm 1. Theorem 3 states that the convergence
rate of Algorithm 2 with decreasing step size is 1

k , which
is much slower than Algorithm 1. Note that an Incremental
Method iteration is N times faster than a Gradient Ascent
iteration. Thus, the convergence speed of Algorithm 2 with
constant step-size is usually faster, but converges only to a
certain precision r. Algorithm 2 should be used when the
aggregator needs a fast convergence and is satisfied with an
approximate solution.

2) Privacy: In the stochastic configuration, only one ran-
dom PEV needs to communicate with the aggregator at each
time step. This significantly reduces the required communica-
tion between each PEV and the aggregator, thus increasing re-
sistance to hacking attacks and improving cyber-security [37].
Consequently, Algorithm 2 with decreasing step-size should
be used when the aggregator is concerned about privacy.

Figure 2 and 3 show the values of the primal and dual
objectives for each of the three methods. We stop Algorithm
1 and 2 when the number of iteration exceeds 2× 105, or
the relative duality gap reaches 10−3; Nit denotes the number
of necessary iterations to converge to the desired precision
ε = 10−3. For each case, we choose the starting point µ0 = D
where D is the load curve (“Duck Curve”). This shows that all
the algorithms converge faster as the parameter σ

N increases.
For σ = 200, Algorithm 1 and Algorithm 2 with constant step-
size converge to the required precision:
• Algorithm 1 needs 5 full-gradient iterations.
• Algorithm 2 needs 6193 stochastic iterations, which cor-

responds to 6193
200 ' 31 full-gradient iterations.

IV. POWER NETWORK CAPACITY CONSTRAINTS

In this section we adapt the above methodology to include
grid capacity constraints, as studied in [16], [17].

A. Integration of congestion constraints

The algorithms from Section III are likely to create scenar-
ios where most vehicles charge during low net-load hours, and
discharge during high net-load hours. This coordination pattern
may provoke power congestion and reverse power flows on
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distribution lines. In particular, distribution system substa-
tions may become overloaded and induce equipment failure
and large power outages [38], [39]. We consider preventing
these dangerous side effects by setting active power capacity
constraints for each feeder.

We consider a network with S feeders and denote by Sd the
set of agents that are connected to the feeder d. The aggregator
constrains the aggregated PEV power as follows:

Lt
d ≤ ∑

j∈Sd

ut
j ≤Mt

d ∀d ∈ J1,SK, t ∈ J1,ThK. (23)

where Mt
d and Lt

d denote the remaining capacity of Sd at time t
and can be determined by forecasting the net load connected to
Sd at time t (without PEVs). In this paper we do not model the
impact of PEVs at the distribution network bus level, instead
we assume an independent system operator or utility provides
constraints for the aggregated PEV power at the feeder level
and ensures grid reliability. The optimization problem with
congestion constraints is:

min
u

Th

∑
t=1

(Dt +
N

∑
n=1

ut
n)

2 +σ

N

∑
n=1
||un||2 (24a)

st ∀n ∈ J1,NK,un ∈Ωn (24b)

∀d ∈ J1,SK,Ld ≤ ∑
j∈Sd

u j ≤Md (24c)

We define the same consensus variable zt = Dt +∑
N
n=1 ut

n, and
the conclusions from equations (11), (??) still hold. Then, the
distributed problem becomes:

max
µ∈ℜ

Th

−||µ||2

4
+µ

T D +
S

∑
d=1

∑
n∈Sd

min
un

µ
T un +σ ||un||2 (25)

st ∀n ∈ J1,NK,un ∈Ωn

∀d ∈ J1,SK,Ld ≤ ∑
j∈Sd

u j ≤Md

µ µ µ

Fig. 4: Semi distributed

µ µ µ 

λ1, γ1 λ2, γ2 λ3, γ3 

Fig. 5: Fully distributed

We can further dualize the congestion constraints with dual
variables λd ,γd to obtain:

max
µ∈ℜ

Th

λd ,γd∈ℜ
+Th

−||µ||2

4
+µ

T D+
S

∑
d=1

∑
n∈Sd

min
un

µ
T un +σ ||un||2 (26)

+λ
T
d (un−Md)+ γ

T
d (Ld−un)

st ∀n ∈ J1,NK,un ∈Ωn

Equations (25) and (26) show two ways to solve the
optimization program with congestion:
• In (25), the problem is semi-distributed (see fig 4). Each

subsystem Sd is associated with a Quadratic Program
of size Th × Nd where Nd is the number of vehicles
in Sd . Thus, the complexity of each Quadratic Program
scales as O(T 3

h ×N3
d ). All the results from Section III still

hold, where N agents are replaced by S subsystems. This
formulation is not scalable, but may be computationally
tractable if the size of each subsystem is small.

• In (26), the introduction of dual variables λd and γd
enables a fully distributed system (see fig 5). The triplet
of dual variables (µ,λ ,γ) is comprised of the global price
µ and the congestion prices (λd ,γd).

B. Distributed optimization under congestion constraints

In this subsection we study formulation (26) in more detail.
Algorithm 3 proposes an accelerated projected gradient ascent
to solve (26). Let y denote the full dual variable [µ,λ ,γ], the
dual objective f : (R×R+×R+)→ R is:

f (y) =
−||µ||2

4
+µ

T D (27)

+
S

∑
d=1

Nd(γ
T
d Ld−λ

T
d Md)

S

∑
d=1

∑
n∈Sd

min
un

(µT +λ
T
d − γ

T
d )un +σ ||un||2

st ∀n ∈ J1,NK,un ∈Ωn

Let Pr denote the projection on the set (R×R+×R+). We
can find the optimal solution of (26) with a projected gradient
ascent. Algorithm 3 presents an accelerated projected gradient
ascent using Nesterov iterations [40].

Theorem 4 (Accelerated Projected Gradient Method): The
accelerated projected gradient ascent in Algorithm 3 with step-
size α = 2σ

σ+N converges to an optimal solution y∗ with

f (y∗)− f (yk)≤
2(σ +N)

σ(k+2)2 ||y
∗− y0||
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Algorithm 3 Accelerated Projected Gradient Method

Initialization y0,y1, θ0 = 1, Choose α

1) Find local optimal solution uk
n

for d=1 to S do
for n=1 to Nd do

Solve Local Quadratic Program QPn(µ
k,λ k,γk)

uk
n = argmin

un

(µk +λ k
d − γk

d)
T un +σ ||un||2 st un ∈Ωn

end for
end for
2) Compute βk

θk =
1
2 (−θ 2

k−1 +
√

θ 4
k−1 +4θ 2

k−1)

βk = θk(
1

θk−1
−1)

3) Nesterov Gradient update step y = (µ,λ ,γ)
zk = yk +βk(yk− yk−1)
yk+1 = yk +α Pr(∆ f (zk))
if Stopping criteria not reached then

k← k+1, Go to 1)
end if
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Fig. 6: Impact of congestion constraints

Proof: Note that f is weakly concave and has Lipschitz
continuous gradients with constant Lg = σ+N

2σ
(see proof of

Theorem 1 for details). Reference [40] gives the corresponding
convergence rate for the accelerated Nesterov method.

Figure 6 shows the result for 500 EVs and 5 distribution
subsystems with and without congestion constraints. For the
5 subsystems we simulate congestion constraints, which are
proportional to the number of PEVs and charger power rate,
such that all PEVs cannot be charging or discharging at the
same time.Figure 6 shows that the congestion constraints limit
the charging and discharging flexibility of the aggregator,
especially during the peaks of underconsumption (2pm) and
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Fig. 7: Impact of PEV penetration on Demand Response

overconsumption (9pm).
Remark 4: A simple projected gradient ascent could be

performed to find the optimal solution of problem (26).
However, Theorem 4 states that the number of iterations to
reach precision ε scales as 1√

ε
for the accelerated method,

as compared to 1
ε

for a simple projected gradient ascent.
Figure 6 b) and 6 c) show the distance from the feasible
set after 200 iterations for both the accelerated and standard
projection methods. In these two plots the feasible set is the
half plan of positive Remaining Capacity values. This shows
that 200 iterations are sufficient to approach feasibility with
the accelerated method but not with the standard method.

V. RESULTS, APPLICATION TO THE DUCK CURVE

In this section we apply the proposed dual splitting
algorithm to flatten the California “Duck Curve” via managed
PEV charging. In this section, we do not consider capacity
constraints. The Vehicle-to-Grid Simulator (V2G-Sim),
developed at Lawrence Berkeley National Laboratory [41], is
used to model the driving and charging behavior of individual
PEVs. V2G-Sim is an agent-based simulator that incorporates
mobility data from the 2009 National Household Travel
Survey (NHTS) [42]. Reference [43] provides more details
about the V2G-Sim modeling methodology.

A. Impact of PEV penetration on Demand Response

In this section, we fix the scale Number of cars
Maximum Peak Load . We assume

that the total peak load in California is 26000 MW and the
total number of cars in California is 13.3× 106. This ratio
is kept constant to simulate areas of different size and study
the impact of PEV penetration in California. Figure 7 shows
the impact of PEV penetration on a 3MW peak area, which
approximately corresponds to 1600 cars. We consider the only
available charging infrastructure is Level 1 chargers at home. It
is interesting to see that 20% penetration (315 PEVs) suffices
to reduce the evening ramp by a factor of 2.

B. Comparison with other algorithms

In this section, we compare the load shaping performance
of the proposed distributed algorithm against decentralized
strategies, such as exogeneous marginal pricing and Time
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Fig. 8: Comparison of various pricing methods

Of Use (TOU) pricing ([9], [44]). We seek to assess the
performance with respect to the demand response impact. As
such, other distributed methods are not considered, since they
would yield the same load shaping result, although may require
different numbers of iteration.

• Exogenous Marginal Price: In this scenario, we consider
a fixed pricing signal µ t = σ104

Cap Dt , where Cap is the
maximum Load capacity from loads and PEVs, and D
is the Net Load without PEVs. This price signal is
synthesized by multiplying the net load signal D by
scaling factor σ104

Cap . Thus, this method naturally assigns
high prices to peak consumption times, and low prices
when total net load is low. This concept is explored in
[9] for example.

• TOU Price: This pricing method is based on off-peak,
partial peak and peak periods. It has been used by several
utilities to regulate the demand (see PG&E for example
[44]). In this scenario we divide the 24h period into 3
groups and assign the corresponding PG&E rates for off-
peak, partial-peak, and peak periods.

Figure 8 shows the effect of the 3 price signals in two differ-
ent penetration scenarios. In general, the three methods tend
to flatten the net load curve, however TOU and Exogenous
prices are suboptimal. Figure 8 b) shows that TOU pricing
yields non-flat load for a large penetration of PEVs. Because
we assume that all the agents are price takers, the transitions
between partial-peak and off-peak periods (9am and 6pm)
create large undesirable ramping. That is, all the PEVs start
charging at 9am and stop at 6pm.
This example shows that exogenous methods can be coun-
terproductive in certain scenarios. It is preferable to have a
systematic, model-based method to determine price signals.
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Fig. 9: Rolling horizon implementation: the colored lines rep-
resent the load shape after PEV smart charging, full lines are
real implementation and dashed lines planned implementation

C. Load continuity and real implementation

Equation 9 is a finite time horizon optimization program.
In practice, this method could create discontinuities (ramping)
between two separate time periods. This is critical in the
context of load shaping since we aim to flatten a continuous
energy curve. This point can be handled with rolling horizon
techniques. Let Tr define the Rolling Horizon and Te the
execution horizon, we augment the objective function (9a) with
additional costs due to time steps t ∈ JTe,TrK but implement
the given solution only for time steps in J1,TeK:

min
u

Te

∑
t=1

(Dt +
N

∑
n=1

ut
n)

2 +
Tr

∑
t=Te+1

(Dt +
N

∑
n=1

ut
n)

2 +σ

N

∑
n=1
||un||2

(28)
Figure 9 shows a four day implementation. Figure 9 a) shows
the case where Te = Tr = 24h and Figure 9 b) shows the case
where Te = 24h and Tr = 48h. In Figure 9 b) there are no
discontinuities between two distinct execution periods (full
lines), whereas figure a) shows some high power ramping
between two different days (particularly between Day 1 and
Day 2). The plot illustrates that this implementation method
ensures load continuity between different execution periods.

VI. CONCLUSION

This article studies distributed optimal charging algorithms
for PEV charging via dual splitting. We define a global
optimization problem, which seeks to coordinate PEV charg-
ing/discharging to minimize the load variance. The problem
exhibits mathematical properties, e.g. strong convexity, that
enable the utilization of dual splitting methods with analytic
convergence bounds. In the first step, each PEV solves a local
optimal program based on a broadcast price signal (the dual
variables), and communicates their response to the aggregator.
In the second step, the aggregator updates the price signal to
achieve minimal load variance.

We propose three algorithms to compute this iterative
process and analyze their convergence properties. This ex-
poses computation and communication tradeoffs between the
algorithms. (i) The gradient ascent method converges at a
linear rate but requires an update from every agent at each
iteration. (ii) The Incremental Stochastic Gradient Method
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with constant step-size converges at a linear rate, needs an
update from only one agent at each iteration but converges
to an approximate solution. (iii) The Stochastic Incremental
Method with decreasing step-size converges to the optimal
solution as 1

k and requires an update from only one agent at
each iteration.

Finally, we show that congestion constraints can be added to
this framework, and the accelerated projected gradient solves
the corresponding problem with a 1

k2 convergence rate. In the
last section we compare the proposed method against previ-
ous decentralized algorithms, and consider a rolling horizon
extension to avoid discontinuities between finite horizons. We
present California-oriented case studies using real-world data
from V2G-Sim, and quantify the potential of PEVs to flatten
net load.
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