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Abstract—Integration of plug-in electric vehicles (PEVs) with
distributed renewable power sources will reduce PEVs’ well-
to-wheels greenhouse gas emissions, promote renewable power
adoption and defer power system investments. This paper pro-
poses a multidisciplinary approach to jointly planning PEV
charging stations and distributed photovoltaic (PV) power plants
on a coupled transportation and power network. We formulate a
two-stage stochastic programming model to determine the sites
and sizes of 1) PEV charging stations; and 2) PV power plants.
This proposed method incorporates comprehensive models of
1) transportation networks with explicit PEV driving range
constraints; 2) PEV charging stations with probabilistic quality
of service constraints; 3) PV power generation with reactive
power control; and 4) alternating current distribution power flow.
The formulation results in a mixed integer second order cone
program. We then design a Generalized Benders Decomposition
Algorithm to efficiently solve it. Numerical experiments show that
investing in distributed PV power plants with PEV charging sta-
tions has multiple benefits, e.g., reducing social costs, promoting
renewable power integration, alleviating power congestion. The
benefits become more prominent when utilizing PV generation
with reactive power control, which can also help enhance power
supply quality.

Index Terms—Electric vehicle, charging station, PV generation,
second order cone programming, Benders Decomposition.

NOMENCLATURE

Indices/Sets
ω/Ω Index/set of scenarios, ω ∈ Ω.
dq/oq The destination/origin node of path q.
h/Hq Index/set of sub-paths on path q, h ∈ Hq .
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i/I Index/set of transportation nodes, i ∈ I. Im ⊆ I
is the set of transportation nodes whose electricity
are supplied by distribution bus m.

(i, j)/A Index/set of transportation arcs, (i, j) ∈ A.
k/K Index/set of PEV types, k ∈ K.
m/M Index/set of buses of the distribution network,

m ∈M. For the substation bus (root bus), m = 0.
M+ = M \ {0}. Mm ⊂ M is the set of
buses that are connected to bus m and bus m
lies between them and root bus 0.

(m,n)/B Index/set of lines of the distribution network,
(m,n) ∈ B. On line (m,n), bus n lies between
buses m and 0.

q/Q Index/set of paths, q ∈ Q. Qi ⊆ Q is the set of
paths through transportation node i.

t Index of time intervals.
Parameters
α Service level of charging stations.
λq,k Volume of type k PEV traffic demand on path q,

in h−1. λq,k,ωt is λq,k during time interval t in
scenario ω.

πω Probability of scenario ω, in %.
ξm,ωt Per unit PV power output at distribution bus m

during time interval t in scenario ω.
ζ The capital recovery factor.
∆t Time interval, one hour in this paper.
c1 Fixed cost for building a new charging station at

transportation node i, in $.
c2 Cost for adding an extra charging spot in a

charging station at transportation node i, in $.
c3 Fixed cost for building a PV power plant at

distribution bus m, in $.
c4 Cost for adding extra PV panels at distribution

bus m, in $/kVA.
c+e /c

−
e Per-unit cost for energy purchase/selling of the

whole distribution system at rood bus 0, in $/kWh.
cp Per-unit penalty cost for unsatisfied PEV charging

power, in $/kWh.
Imn Upper limit of the branch current of distribution

line (m,n), in kA.
N pv Maximum number of PV power plants.
psp Rated charging power of a PEV charging spot, in

kW.
sb
m,ωt Apparent base load at distribution bus m, in kVA.
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Spv Maximum total PV power generation capacity in
the system, in kVA.

Tk Charging time requirement for type k PEVs.
v0 Square of the nodal voltage magnitude at root bus

0.
Vm/Vm Lower/upper limit of nodal voltage at distribution

bus m, in kV.
ypv
m Maximum PV power capacity at distribution bus

m, in kVA.
zmn Impedance of distribution line (m,n), in ohm.

z∗mn is its conjugate.
Decision variables (first-stage, X)
γq,k,i Binary charge choice of type k PEVs on path q

at transportation node i: γq,k,i = 1, if they get
charged; γq,k,i = 0, otherwise.

xcs
i Binary charging station location decision at trans-

portation node i: xcs
i = 1, if there is a station at

transportation node i; xcs
i = 0, otherwise.

xpv
m Binary PV generation location decision at dis-

tribution bus m: xpv
m = 1, if there is PV at

distribution bus m; xpv
m = 0, otherwise.

ycs
i Integer number of charging spots at transportation

node i.
ypv
m Invested capacity (maximum nameplate apparent

power) of PV panels at distribution bus m, in
kVA.

Decision variables (second-stage, Yωt)
λk,i Volume of type k PEVs that require charging at

node i, in h−1. λk,i,ωt is λk,i during t in scenario
ω.

lmn,ωt Square of the magnitude of distribution line
(m,n)’s apparent current during t in scenario ω,
in kA2.

pev
i,ωt Active PEV charging power at node i during t in

scenario ω, in kW.
p

+/−
0,ωt Total purchasing/selling power at root bus 0 dur-

ing t in scenario ω, in kW. p0,ωt = p+
0,ωt− p

−
0,ωt.

pm,ωt Total active power injection at bus m during t in
scenario ω, in kW.

ploss
m,ωt Unsatisfied PEV charging demands at bus m

during t in scenario ω, in kW.
sm,ωt Total apparent power injection at bus m during t

in scenario ω, in kVA. sm,ωt = pm,ωt + jqm,ωt.
s0,ωt (at bus 0) is also the power consumption of
the whole distribution system.

sev
m,ωt Apparent PEV power at bus m during t in sce-

nario ω, in kVA.
Smn,ωt Apparent power flow from bus m to bus n during

t in scenario ω, in kVA.
vm,ωt Square of nodal voltage at bus m during t in

scenario ω, in kV.

I. INTRODUCTION

Integration of PEVs with distributed renewable resources
can help reduce PEVs’ well-to-wheel greenhouse gas emis-

sions, promote renewable power adoption, alleviate power
congestion and defer power system investment.

Facilitating PEVs to consume low-emission renewable
power is one of the key approaches to decarbonizing our
transportation systems. The emissions of PEVs depend on
their energy supply mix. PEVs in areas with high pene-
tration of coal-fired plants may emit more than traditional
electric-gasoline hybrid vehicles or even internal combustion
engine vehicles [1]. Integrating PEVs with renewable power
resources, e.g., wind and photovoltaic (PV) power etc., can
help fully realize PEVs’ emission reduction potential whilst
promoting renewable power adoption.

Building PEV charging infrastructure along with distributed
renewable power generation can also alleviate power conges-
tion, and thereafter, defer power system investments. Rapidly
growing PEV charging demands may threaten secure operation
of power distribution networks. For destination charging,
coordinated controlling or vehicle-to-grid technologies can be
utilized to alleviate PEV charging power’s negative effect,
while uncontrollable fast-charging power may cause signifi-
cant power congestion.1 Considering that upgrading distribu-
tion systems is usually expensive, installing cheap distributed
renewable generation to satisfy congested PEV load is a
promising solution.

The growing PEV population is leading to massive invest-
ments in charging infrastructure recently. In China, 4.8 million
distributed charging spots and more than twelve thousand fast-
charging stations are planned for construction by 2020 [2].
This investment boom provides an opportunity to integrate
PEVs with renewable resources at the planning stage, i.e.,
jointly plan PEV charging stations with distributed renewable
resources, so that we can more effectively reap the aforemen-
tioned benefits.

Integrating renewable power with PEV charging stations has
been a research hotspot over recent years. Most of the pub-
lished papers focus on economic benefit evaluation or coordi-
nated control strategies. Takagi et al. [3] adopted PEV battery-
swapping stations to accommodate PV power. MacHiels et al.
[4] studied the economic benefit of integrating PV generation
with fast-charging stations. Brenna et al. [5], Liao et al. [6],
and Wu et al. [7] demonstrated that coordinated PEV charging
could significantly improve distributed PV power integration.
Alam et al. [8] showed that coordinated PEV charging could
alleviate voltage rise problems caused by PV power injection.

Some papers studied the sizing problem of PEV charging
stations whose electricity is partly or totally supplied by
renewable power generation. Liu et al. [9] studied joint ca-
pacity planning of on-site PV generation and battery-swapping
stations. Mouli et al. [10] designed a workplace PEV charging
station powered by PV generation with vehicle-to-grid tech-
nology. Quoc et al. [11] studied the sizing of a PEV charging
station powered by commercial grid-integrated PV systems
considering reactive power support. Ugirumurera et al. [12]
studied the sizing of a PEV charging station whose electricity
is supplied completely from PV power generation. Zhang et al.

1This will particularly be the case in highway transportation networks on
intercity corridors, where the covered areas are mostly rural and base loads
are low with weak power systems.
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[13] developed a stochastic programming approach to jointly
size PEV chargers, PV panels and battery storage system in
one charging station.

Few published papers have studied the joint sizing and
siting problem of PEV charging stations and renewable power
generation. Shaaban et al. [14] proposed a multi-year multi-
objective planning algorithm for uncoordinated PEV parking
lots and renewable generation. Moradi et al. [15] developed
a multi-objective model to optimize the sites and sizes of
charging stations and distributed renewable generation. Amini
et al. [16] proposed a two-stage approach to simultaneously
allocating PEV charging stations with distributed renewable
resources in distribution systems. Kasturi et al. [17] and Erdinç
et al. [18] developed planning models to jointly optimize the
sites and sizes of PEV charging stations, PV power plants,
and energy storage systems in distribution systems considering
future energy management controlling. Quevedo et al. [19]
developed a multi-stage distribution expansion planning model
which also jointly optimizes investments in PEV charging sta-
tions, renewable power generation and energy storage systems.
Most of the above papers, e.g., [14]–[17], adopted heuristic
algorithms to solve their planning problems, which cannot
ensure optimality of solutions. Furthermore, in practice, PEVs’
charging power is impacted by their mobility behavior in
transportation networks. However, all of the above papers only
consider destination charging demands and do not explicitly
incorporate transportation network models.

This paper focuses on joint planning of PEV fast-charging
stations and distributed PV power plants. We advance this
research by developing a novel integrated planning model to
jointly determine the sites and sizes of 1) PEV fast-charging
stations; 2) PV power plants on a coupled transportation
and power network. The innovations of the proposed method
compared with the aforementioned literature are threefold:

1) The PEV traffic flows and charging demands are explic-
itly modeled on a transportation network by the modified
capacitated-flow refueling location model (CFRLM) un-
der PEV driving range constraints.

2) This paper considers the new PV power plants with
reactive power control so that they can help enhance
distribution system reliability. Furthermore, we use the
second order cone programming (SOCP) to describe
the power constraints of PV inverters so that both the
active and reactive power can be accurately optimized. In
contrast, the aforementioned literature does not consider
reactive power control.

3) The proposed planning model is a two stage stochastic
mixed-integer SOCP (MISOCP), which can be solved by
off-the-shelf solvers and the optimality of the solution
can be guaranteed. Furthermore, we also adopt an Accel-
erated Generalized Benders Decomposition Algorithm
to expedite the computation in large scale scenarios. We
prove that the algorithm will converge to the optimal
solution after a finite number of iterations. To the best
of our knowledge, Benders Decomposition Algorithms
are widely applied for power scheduling [20]–[22], unit
commitment [23], [24], power system planing [25] etc.,
but are not used in joint PEV charging station and PV

Fig. 1. A coupled transportation and power network.

power plant planning in published literature.
To the best of our knowledge, this is the first time that

an MISOCP planning model with explicit transportation and
power network constraints is developed for joint planing of
PEV charging stations and PV power plants. This is also the
first time that the Accelerated Benders Decomposition Algo-
rithm is developed for the planning. Numerical experiments
are conducted to illustrate the effectiveness of the proposed
method. The benefits of the joint planning of charging stations
with PV power plants and the adoption of PV reactive power
control are discussed.

Section II formulates the two-stage stochastic MISOCP
planning model. The models of transportation networks, PEV
charging stations, and PV power generation are also intro-
duced. In Section III, the Accelerated Generalized Benders
Decomposition Algorithm is given. Case studies are described
in Section IV and Section V concludes the paper.

II. JOINT PLANNING MODEL

A. Problem Statement and Major Notations

This paper studies the joint PEV charging station and
PV generation planning problem in a transportation network
coupled with a high-voltage distribution network (as illustrated
in Fig. 1). We assume the planner is a social planner and
has access to parameters of both the transportation and power
systems. It needs to optimize: 1) the sites and sizes of PEV
charging stations in the transportation network; and 2) the sites
and sizes of PV power plants in the high voltage distribution
network. Its objective is to minimize the social costs of the
whole coupled system, including the investment costs for PEV
charging stations and PV power plants, and the operation
costs for purchasing electricity etc. The planning result should
fulfill the expected PEV charging demands and satisfy the
power network’s security operation constraints. We assume
that the system can purchase electricity from and sell surplus
electricity (at a lower price) to the upper-level power grid.

We assume that future PEVs are composed by a set of PEV
types, K, with different driving ranges (battery capacities).
Considering heterogeneous PEV parameters instead of assum-
ing homogeneous PEVs (as in references [9]–[12], [14]–[16])
allows us to more realistically model future PEVs’ charging
behaviors.

Notations. We use a directed graph G(I,A) to model the
transportation network, where I denotes the node set and A
denotes the arc set. A node i ∈ I is a candidate charging
station location, and an arc (i, j) ∈ A is the road link between
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two adjacent nodes, i and j. The route that a PEV drives
from an origin node to the corresponding destination node
is called a path q ∈ Q; and a segment of a path q is its
sub-path h ∈ Hq . We apply tuples (oq, dq, λq,k), ∀q ∈ Q,
∀k ∈ K, to describe PEV traveling demands, in which λq,k
represents the Poisson volume of traffic flow from origin node
oq to destination node dq on path q of type k PEVs. We use
a directed graph G(M,B) to model the power distribution
network, where M denotes the distribution bus set and B
denotes the distribution line set. The root bus is indexed by
0. We let M+ = M \ {0}. A bus m ∈ M+ is a candidate
location for building PV power plants. The distribution line
between two adjacent buses m and n (n lies between bus m
and root bus 0) is indexed by (m,n) ∈ B. We use Im to denote
the set of transportation nodes whose electricity is supplied by
distribution bus m.

The investment decision variables are denoted by X =
{xcs

i , y
cs
i , x

pv
m, y

pv
m}. xcs

i ∈ {0, 1} is a binary PEV charging
station location decision at node i: xcs

i = 1, if there is a
station at node i; xcs

i = 0, otherwise. ycs
i ∈ Z is the number

of charging spots at location i. xpv
m ∈ {0, 1} is a binary PV

power plant location decision at distribution bus m: xpv
m = 1,

if there is a plant; xpv
m = 0, otherwise. ypv

m ∈ R is the capacity
of the PV power plant at bus m.

The probabilistic PEV charging demands and PV generation
are crucial stochastic inputs that will affect the planning
result’s actual performance. Hence, we generate a finite set
of potential scenarios (Ω), i.e., hourly typical base load,
traffic flow and PV generation curves, to represent the future
probabilistic situations for planning. Each scenario ω ∈ Ω
has an occurrence probability πω . With these scenarios, we
can evaluate the planning result’s future operation performance
on an hourly basis. Hereafter, we use index ωt to denote the
operation variables or parameters in hour t of scenario ω.

B. Planning Objective

We formulate a two-stage stochastic programming for the
planning. Its objective includes the equivalent annual invest-
ment costs and the weighted average annual operation costs
for all the future scenarios, as follows:

J = min
X

{
C I (X) +

∑
ω∈Ω

πωC
O (X,ω)

}
. (1)

The first-stage equivalent annual investment cost is:

C I (X) =ζ
∑
i∈I

(c1x
cs
i + c2y

cs
i ) + ζ

∑
m∈M+

(c3x
pv
m + c4y

pv
m) ,(2)

where, c1 and c3 are the fixed costs for building one PEV
charging station and a PV power plant, respectively; c2 and
c3 are the variable costs for adding an extra charging spot and
per-unit PV panel, respectively. ζ is the capital recovery factor,
which converts the present investment costs into a stream of
equal annual payments over the planning horizon. The first two
terms of (2) represent the fixed cost of building PEV charging
stations and the variable cost in proportion with the number
of charging spots. The last two terms represent the fixed cost
per PV power plant and the cost per kVA PV panels.

The second stage annual operation costs given the invest-
ment decision X for each scenario ω is:

CO (X,ω) = min
Yωt

{
365

∑
t

(
c+e p

+
0,ωt∆t− c−e p

−
0,ωt∆t

)
+ 365

∑
t

∑
m∈M+

(
cpp

loss
m,ωt∆t

)
+ 365

∑
t

∑
m∈M+

σ |vm,ωt − v0|

}
, (3)

where, Yωt is the second stage optimization variable including
the nodal voltages, line currents, PEV charging power, PV
generation etc. in each hour t of each scenario ω. The first two
terms in (3) are the system’s annual expected energy costs, i.e.,
the costs for purchasing electricity minus the income by selling
surplus electricity. p+

0,ωt and p−0,ωt are the purchasing and
selling power, respectively; c+e and c−e are the corresponding
per-unit price.2 The third term is the penalty for unsatisfied
PEV charging demand, ploss

m,ωt; cp is the corresponding per-unit
cost. The fourth term is the penalty for undesirable voltage
deviations.3 vm,ωt and v0 are the square of nodal voltage
magnitude at bus m and root bus 0, respectively. Coefficient
σ is used to balance it with the first two monetary objectives.4

C. Transportation Network Constraints

Given the traffic flows (oq, dq, λq,k), ∀q ∈ Q, ∀k ∈ K,
we utilize the modified CFRLM [26], [27] to explicitly model
PEVs’ driving range constraints in the transportation network.
This model requires that any sub-path with a distance longer
than a PEV’s driving range should cover at least one charging
station so that the PEVs can travel through that sub-path with
adequate charging service. Obviously, this model defines the
feasible set of a PEV’s charging locations in a path.

For completeness, we briefly introduces the CFRLM by the
illustrative transportation network in Fig. 2. We assume a PEV
with its battery fully charged (with 100 km driving range,
for example) leaves at origin node o and needs to arrive at
destination node d. It may get charged on any of the candidate
charging station locations, I \ {o, d}. The path q = o123456d
excluding nodes o and d can be divided into three sub-paths
whose length are longer than the PEV’s driving range, i.e.,
Hq = {1234, 2345, 3456}. Hence, on each sub-path in Hq ,
the PEV should get charged for at least once; otherwise, its
battery may get fully depleted on road.

Considering different types of PEVs have different driving
ranges, we can generate one sub-path set (denoted byHq,k) for

2We assume the electricity prices are static as in references [14], [15] in
this paper. Our proposed model can be readily extended to consider time-
varying stochastic electricity prices. For example, we can generate a number
of electricity price scenarios, i.e., c+e,ωt and c−e,ωt (where ω indexes scenarios

and t indexes time), as the input and substitute the price parameters c+/−e in
objective (3) by c+/−e,ωt .

3This term can be easily reformulated as an affine objective by adding two
linear inequality constraints for each || (absolute value) term.

4In practice, σ should be designed according to the system’s parameters
and the power supply quality requirement. We assume it is given in this paper.
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q : o→ d
o 1 2 3 4 5 6 d

h : I
h : II

h : III

25km

Fig. 2. An illustrative transportation network [26]. It has 8 nodes, I =
{o, 1, 2, 3, 4, 5, 6, d}, one OD pair, (o, d), and one path, Q = {o123456d}.
Every two adjacent nodes form one arc with 25 km distance.

each PEV type k on path q. Then, the driving range constraints
described above can be formulated as follows:∑

i∈Ih

γq,k,i ≥ 1, ∀h ∈ Hq,k,∀q ∈ Q,∀k ∈ K, (4)

γq,k,i ≤ xcs
i , ∀i ∈ I,∀q ∈ Q,∀k ∈ K, (5)

where, γq,k,i ∈ {0, 1} is a binary variable indicating charge
choice of type k PEVs on path q at node i: γq,k,i = 1, if
they get charged; γq,k,i = 0, otherwise. Ih ⊂ I is the set
of candidate charging locations on sub-path h. Equation (4)
ensures that the PEVs are charged at least once on each sub-
path. Equation (5) constrains PEVs to charge at nodes with
charging stations.

In a complex transportation network, the total type k PEV
traffic flow charging at location i, λk,i, is composed by
different traveling demands λq,k, which can be calculated as:

λk,i =
∑
q∈Qi

λq,kγq,k,i, ∀k ∈ K,∀i ∈ I, (6)

where, Qi is the set of paths through node i, Qi ⊂ Q.

D. Quality of Service Constraints of PEV Charging Station

Given the charging locations of PEVs determined by the
above subsection, we need to optimize the number of charging
spots at each location. We adopt a service level model [27] to
size a charging station given heterogeneous charging demands.
We assume PEVs of type k ∈ K arrive in a station at location
i following a Poisson process with parameter λk,i (given in
equation (6)) and requires Tk units of charging time.

Then, to ensure a charging station’s quality of service, i.e.,
the probability that a PEV can get instantly serviced without
waiting, is beyond a designed threshold, α, the minimum
installed number of charging spots, ycs

i , shall be constrained
by the following equation:

ycs
i ≥

∑
k∈K

Tkλk,i + Φ−1(α)

√∑
k∈K

Tkλk,i, ∀i ∈ I, (7)

where, Φ(·) is the cumulative distribution function of the
standard normal distribution. The first term in the right-hand
side of (7) is the required number of charging spots to satisfy
the expected charging demands and is proportional to the
Poisson arrival rate. The second term corresponds to the extra
spots to satisfy any demand in excess of the mean and can
be viewed as the “safety stock.” In practice, higher α leads to
more “safety stock” and ensures better quality of service.

Hence, by combining equations (6) and (7) to eliminate λk,i,
and substituting γq,k,i with γ2

q,k,i in the square root, we have

the quality of service constraint for a charging station servicing
K types of PEVs in a mixed-integer SOCP form, as follows:

ycs
i ≥ max

∀ω∈Ω,∀t

∑
q∈Qi

∑
k∈K

Tkλq,k,ωtγq,k,i+

Φ−1(α)

√∑
q∈Qi

∑
k∈K

Tkλq,k,ωtγ2
q,k,i

 , ∀i ∈ I. (8)

This equation ensures that the quality of service constraints
are satisfied for all the future scenarios.

E. Investment & Operation Constraints of PV Generation

We assume that the planner may build a PV power plant at
any distribution bus in M+, but the installed PV capacity ypv

m

at each bus is bounded by an upper limit ypv
m , as follows:

0 ≤ ypv
m ≤ y

pv
mx

pv
m, ∀m ∈M+. (9)

The planner may also need to constrain the total number and
capacity of the PV power plants in the system, respectively:∑

m∈M+

xpv
m ≤ N pv, (10)

∑
m∈M+

ypv
m ≤ Spv, (11)

where, N pv is the maximum number of PV power plants; Spv

is the maximum total PV power capacity in the system.
Given the nameplate PV capacity at a bus m, ypv

m , the active
PV power generation ppv

m,ωt is upper-bounded by the solar
irradiation (influence by both whether and time etc.). In this
paper, we assume that PV generation can be curtailed. Hence,
ppv
m,ωt is constrained by the following equation:

0 ≤ ppv
m,ωt ≤ ξm,ωtypv

m, ∀m ∈M+,∀ω ∈ Ω,∀t, (12)

where, ξm,ωt is the maximum per-unit PV power output during
hour t in scenario ω depending on solar radiation.

Besides active power generation, PV power plants with
fast-reacting and VAR-capable inverters can also generate or
consume reactive power which can help enhance security
and efficiency of distribution system operations by regulating
voltage [28], [29]. Since the modulus of a PV power plant’s
apparent power, |spv

m,ωt|, is no larger than its nameplate ca-
pacity, a PV power plant’s reactive power, qpv

m,ωt, should be
constrained as follows:√
|ppv
m,ωt|2 + |qpv

m,ωt|2 ≤ ypv
m, ∀m ∈M+, ω ∈ Ω,∀t, (13)

spv
m,ωt = ppv

m,ωt + jqpv
m,ωt, ∀m ∈M+, ω ∈ Ω,∀t. (14)

Equation (13) is in the form of an SOCP. Equation (14)
calculates the apparent power. In the above PV model, qpv

m,ωt

is adjustable and can be either negative or positive.

F. Power Network Constraints

For each line (m,n) of the distribution network, let Smn =
Pmn + jQmn, lmn, and zmn denote its apparent power flow,
square of current magnitude, and impedance, respectively. For
each bus m of the distribution network, sm = pm + jqm and
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vm = |Vm|2 denote its nodal apparent power injection, and
square of nodal voltage magnitude, respectively. v0 = |V0|2
(at root bus 0) is fixed. Mm ⊂M is the set of buses that are
connected to bus m from the opposite side of root bus 0.

Hence, the operation of the distribution system shall satisfy
the alternating current power flow constraints, as follows:

∀(m,n) ∈ B,∀ω ∈ Ω,∀t :

Smn,ωt = sm,ωt +
∑

u∈Mm

(Sum,ωt − zumlum,ωt), (15)

0 = s0,ωt +
∑
u∈M0

(Su0,ωt − zu0lu0,ωt), (16)

vm,ωt − vn,ωt = 2Re(z∗mnSmn,ωt)− |zmn|2lmn,ωt, (17)

|Smn,ωt|2 ≤ lmn,ωtvm,ωt, (18)

where, z∗mn is the conjugate of zmn and Re(·) denotes the real
part of a complex number. In the traditional power flow model
[30], equation (18) should be |Smn|2 = lmnvm, which is non-
convex. Here, we adopt its convex SOCP relaxation [31]. Due
to limited space, the detailed introduction of the power flow
model is omitted in this paper but can be found in [31].

The nodal apparent power injection is calculated as follows:

sm,ωt = spv
m,ωt − sev

m,ωt − sb
m,ωt,∀m ∈M+,∀ω ∈ Ω,∀t, (19)

where, spv
m,ωt, s

ev
m,ωt, and sb

m,ωt are the PV generation, PEV
charging load, and base load at bus m, respectively.

For a distribution network, the power injection at root
bus 0, s0,ωt, is the net power consumption/generation of
the whole system [31]. Its active part is the system’s actual
purchasing (positive) or selling (negative) electricity. We adopt
the following equation to distinguish purchasing and selling
electricity:5

p0,ωt = p+
0,ωt − p

−
0,ωt, ∀ω ∈ Ω,∀t, (20)

The line currents and nodal voltages of the distribution
network cannot violate their permitted ranges, as follows:

lmn,ωt ≤ |Imn|2, ∀(m,n) ∈ B, ω ∈ Ω,∀t, (21)

|Vm|2 ≤ vm,ωt ≤ |Vm|2, ∀m ∈M+, ω ∈ Ω,∀t, (22)

where, Imn is the line current capacity; Vm/Vm is the
lower/upper limit of nodal voltage magnitude.6

G. Coupling Constraints

The transportation network and the power network are
coupled together by the PEV charging stations. The hourly
average PEV charging power at transportation node i is:

pev
i,ωt = psp

∑
q∈Qi

∑
k∈K

Tkλq,k,ωtγq,k,i,∀i ∈ I,∀ω ∈ Ω,∀t,

(23)

where, psp is the rated charging power of a charging spot.

5Because the selling price is lower than the purchasing price, the system
will not buy and sell electricity simultaneously, which makes negative profit.

6Though the nodal voltage deviations are already penalized in the objective
(3), it is still possible that they may be too large in heavy load scenarios which
deteriorates electricity quality significantly. Hence, it is necessary to include
this constraint.

The PEV charging power at distribution bus m is:

pev
m,ωt + ploss

m,ωt =
∑
i∈Im

pev
i,ωt, ∀m ∈M+,∀ω ∈ Ω,∀t, (24)

ploss
m,ωt ≥ 0, ∀m ∈M+,∀ω ∈ Ω,∀t. (25)

We assume the base load sb
m,ωt must be satisfied. However,

when the charging demands grow beyond the system’s service
ability, part of them can be discarded, i.e., ploss

m,ωt ≥ 0.
The planning model (1)–(25) is an MISOCP and can be

solved by off-the-shelf solvers, e.g., CPLEX [32].

III. BENDERS DECOMPOSITION ALGORITHM

A significant number of scenarios should be considered to
effectively describe the stochastic inputs, i.e., hourly base load,
traffic flow and PV generation curves in different weather of
different days in a year. Thus, the planning model is of high
dimension and computationally expensive if directly using
off-the-shelf solvers. To address this challenge, we adopt the
Generalized Benders Decomposition Algorithm [33].

In each scenario, the second stage operation problem solves
a 24 hour dynamic optimal power flow problems. However,
the corresponding decision variables, e.g., the PEV charging
power and the PV generation, in adjacent hours are not
coupled. Therefore, when the first stage investment decision,
X , is given, the second stage operation problems in every
hour of every scenario can be decoupled into low-scale sub-
problems that can be efficiently solved in parallel. Based on
the above analysis, the proposed algorithm naturally decouples
the problem into a master problem, i.e., the planning problem,
and a collection of sub-problems, i.e., the operation problem
of every hour given X .

For simplicity, we reformulate the original problem (1)-(25)
into its standard MISOCP form, as follows:

min
X,Yωt

c>X +
∑
ω∈Ω

∑
t

d>ωtYωt (26)

s.t.: ‖AωtjX +BωtjYωt + eωtj‖2 ≤ c>ωtjX + d>ωtjYωt

+ fωtj , ∀ω,∀t, ∀j, (27)
X ∈ X, (28)

where, wt (hour t in scenario ω) is the index of the sub-
problems; j is the index of the second order cones. The
objective (26) is equivalent to (1); c and dωt are its coefficient
vectors. Equation (27) describes the constraints that couple the
first-stage decision variables, X , and second-stage decision
variables, Yωt; Awtj , Bwtj , cwtj , dwtj , ewtj and fwtj are
the corresponding coefficient matrices or vectors. Equation
(28) describes other constraints that are only relevant to first-
stage decision variables, X; X is the feasible set of X that is
uniform across sub-problems. Note that parts of X are integer
variables, which makes the problem hard to scale.

Given a fixed first stage solution X̂ , the sub-problem ωt is
a convex SOCP (all the variables are continuous):

min
Yωt

d>ωtYωt (29)

s.t.: ‖BωtjYωt +AωtjX̂ + eωtj‖2 ≤ d>ωtjYωt + c>ωtjX̂

+ fωtj , ∀j. (30)
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Then, we can obtain the sub-problem’s dual problem [34]:

max
µωtj ,uωtj ,∀j

{∑
j

−u>ωtj
(
AωtjX̂ + eωtj

)
− µωtj

(
c>ωtjX̂ + fωtj

)}
(31)

s.t.:
∑
j

(
B>ωtjuωtj + µωtjdωtj

)
= dωt, (32)

‖uωtj‖2 ≤ µωtj , ∀j, (33)

in which, µωtj and uωtj are the vectors of dual variables. The
complete formulation for the subproblem and the derivation for
its dual problem are given in Appendix A. The corresponding
master problem is:

min
X,z

c>X + z (34)

s.t.: z ≥
∑
ω∈Ω

∑
t

∑
j

−û>ωtjι (AωtjX + eωtj)

− µ̂ωtjι
(
c>ωtjX + fωtj

)
, ι = 1, 2, ..., (35)

X ∈ X, (36)

in which, z is an ancillary variable; ι is the index of iterations.
The Generalized Benders Decomposition Algorithm solves

the master problem (34)-(36) and the dual of every sub-
problem (31)–(33) iteratively. In each iteration ι, an optimality
cut (35) is added to the master problem to force its solution
to converge to that of the original problem (26)–(28). The
algorithm stops when a convergence criterion is met.

We prove that strong duality holds between the sub-problem
(29)–(30) and its dual problem (31)–(33) in Appendix B. As
a result, the cut (35) in each iteration is always effective, i.e.,
forcing the new master problem to obtain a better solution,
before convergence.7 Thus, the algorithm will converge to the
global optimal solution after a finite number of iterations [33].

We utilize two techniques to accelerate the algorithm:
1) Relaxing the service ability constraint (8): Constraint (8)

has no second stage decision variables but should be satisfied
for every hour in every scenario (because of different traffic
flows). However, it will be binding only in peak traffic hours
in practice.8 Therefore, we relax constraint (8) as follows:

ycs
i ≥

∑
q∈Qi

∑
k∈K

Tkλq,k,i,ω̂tiγq,k,i

+ Φ−1(α)

√∑
q∈Qi

∑
k∈K

Tkλq,k,i,ω̂tiγ
2
q,k,i, ∀i ∈ I, (37)

where, ω̂ti is the index of the sub-problem that has the highest
traffic flow at location i. We then add constraint (37) directly
to the master problem and remove constraint (8) from every
sub-problem. This approach leads to two benefits: 1) the scale
of each sub-problem decreases significantly; 2) the modified
sub-problem only solves an optimal power flow problem that

7If the new cut did not force the master problem to obtain a new solution,
then the LB and UB in Table I are equal so that the solution is optimal.

8If the constructed charging spots can satisfy peak-hour traffic flows’
charging demands, they can also satisfy the demands during other periods.

TABLE I
ACCELERATED GENERALIZED BENDERS DECOMPOSITION

01 Initialization: Set iteration number ι = 0, lower bound
LB = −∞, upper bound UB = +∞, relevant gap Gap =
+∞, flag = 0.

02 While termination criteria, i.e., Gap ≤ ε2, not fulfilled, do
03 ι = ι+ 1.
04 Step 0 If Gap ≤ ε1 and flag = 0, let UB = +∞,

flag = 1.
05 Step 1 If flag = 1, solve master problem (34)–(36);

otherwise, solve the relaxed continuous form of (34)–
(36). Update the solution X̂ and ẑ. Let LB = cT X̂ + ẑ.

06 Step 2 Solve each sub-problem’s dual problem (31)–
(33), and update each solution ûωtjι and µ̂ωtjι.

Let UB = min

{
UB, cT X̂ +

∑
ω∈Ω

∑
t

∑
j

(
−

û>ωtjι

(
AωtjX̂ + eωtj

)
− µ̂ωtjι

(
c>ωtjX̂ + fωtj

))}
.

07 Step 3 Add a new cut (35) for iteration ι to the master
problem (34)–(36).

08 Step 4 Gap = 100%× (UB − LB)/UB.
09 End while
10 Output X̂ as the solution.

allows load shedding which is strictly feasible given any X
so that we need not consider feasibility cuts.9

2) Relaxing the integer constraints of the master problem:
The master problem is computationally intensive for each
iteration, since it contains a significant number of integer
variables. We first relax its integer constraints and solve the
problem (with higher efficiency) until convergence. Then, we
add the integer constraints back to the master problem and
conduct extra iterations until the new problem converges. Note
that this approach will not affect the optimal solution because
the feasible set of the original master problem is a subset of the
relaxed master problem. Thus, the optimality cuts generated
for the latter is also valid for the former [35].

The pseudo-code of the algorithm is shown in Table I. ε1

and ε2 are the relevant gaps at convergence of the original
problem and its relaxed continuous form, respectively.

IV. CASE STUDIES AND CONCLUSIONS

A. Case Overview and Parameter Settings

We consider a 25-node highway transportation network
(see Fig. 3) coupled with a 14-node 110 kV high voltage
distribution network (see Fig. 4) to illustrate the proposed
planning method.10 The node coupling relationship between
the distribution and transportation networks is also recorded
in Fig. 4. We assume the power demand at each transportation
node is supplied by its nearest distribution bus. The gravity
spatial interaction model utilized in [37] was used to generate

9Note that, if constraint (8) is not relaxed and should be satisfied in every
sub-problem, it may be violated given some myopic X . As a result, we should
add extra iterations to generate feasibility cuts to the master problem.

10Note that we adopt the power system structure in China as the basis
of this case study, where the 110 kV power networks are usually operated
radially and categorized as high-voltage distribution systems [36].
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Fig. 3. A 25-node transportation network [38]. The number in each circle
is the node index. The number on each arc represents the distance between
the corresponding two nodes and the per-unit distance is 10 km. The decimal
next to each node is its weight, which represents its traffic flow gravitation.
To enhance network granularity, we add extra auxiliary nodes on the long
road segments so that the longest distance between any two adjacent nodes
is 20 km. As a result, the modified network has 93 nodes.
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Fig. 4. A 110 kV distribution network used for the case study [37]. Bus 0
is connected to a 220 kV/110 kV transformer with 150 MVA capacity. The
integer in each parenthesis denotes the corresponding index of transportation
node in Fig. 3 where the distribution bus is located. The voltage constraints
are Vm = 0.95 and Vm = 1.05, ∀m, in per unit values. The line current
limits are conservatively set at 85% of their rated capacities.

the OD traveling demand based on node weights and arc dis-
tances. Due to limited space, the parameters of the distribution
network and the details of the generated scenarios are omitted
but can be found from [27].

There are 72 representative scenarios. This includes three
types of weather conditions (rainy, cloudy, sunny) for typical
weekdays and weekends, across twelve months. The hourly
base load, traffic flow and PV power are generated based
on PG&E load profiles [39], the National Household Travel
Survey [40], and the National Solar Radiation Database [41].

We assume there are four types of PEVs on the road with
equal market share, and their driving ranges per charge are
200, 300, 400 and 500 km, respectively. The rated charging
power psp is 44 kW, and the average service time to charge
the four types of PEVs with empty batteries are about 42, 63,
84, 105 minutes. We also assume ycs

i = 200 and α = 80%.
The fixed cost for building one PEV charging station is c1 =
$163, 000 [42]. We consider that building a PEV charging
station usually requires significant distribution grid upgrade
costs. In this experiment, we assume that each charging station
is connected to its nearest low/medium voltage substation
which is further connected to the corresponding 110 kV
bus. Building one charging station at transportation node i
requires installing a low/medium voltage substation and a
distribution line whose power capacities are both maxωt p

ev
i,ωt.

The corresponding distribution line’s length, li, is assumed
to be 10% of the distance between the PEV charging sta-
tion and its nearest 110 kV distribution bus. The per-unit

TABLE II
THE PARAMETERS OF DIFFERENT CASES

Case Max. total number/capacity
of PV power plants

Reactive
power control

Daily PEV
traffic flow

1 0/0 MVA – 20000
2 5/90 MVA No 20000
3 5/90 MVA Yes 20000
4 0/0 MVA – 40000
5 5/90 MVA No 40000
6 5/90 MVA Yes 40000
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18
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Tranportation Node
Coupled Node
Charging Station

Fig. 5. Sites and sizes of PEV charging stations in Case 1. The number next
to each station is its capacity, i.e., number of spots.

costs for substations and distribution lines are 788 $/kVA
[43] and 120 $/(kVA·km) [44], respectively. Hence, we let
c2 = $31, 640 + (788 + 120li) maxωt p

ev
i,ωt at each node i.

The first term represents the costs for chargers, land use etc.
[42]. The electricity purchase cost c+e = 0.094 $/kWh and the
selling price c−e is 30% lower. The per-unit penalty cost for
unsatisfied charging demand cp = 103 $/kWh. The PV genera-
tion investment costs are c3 = 0 $/VA, c4 = 1, 770 $/kVA [45];
σ = $10−4, ζ = 8%(1 + 8%)15/((1 + 8%)15 − 1) = 0.1168,
Spv = 90 MVA, ypv

m =∞ MVA, ∀m.11

We design six cases, with different PEV traffic flows and
maximum numbers of PV power plants with or without reac-
tive power control to illustrate the proposed planning method.
The parameters of different cases are illustrated in Table II.

We set algorithm parameters ε1 = 0.5%, ε2 = 2% in Table I
and use CPLEX [32] to solve the master problem and sub-
problems on a workstation with a 12 core Intel Xeon E5-1650
processor and 64 GB RAM. To accelerate the optimization
speed, we relaxed ycs

i to be continuous.

B. Planning Results and Analysis

The summary of the planning results for the six cases
are given in Table III. The locations and capacities of PEV
charging stations in Case 3 are given in Fig. 5 for demon-
stration. The PV generation and their capacities in different
cases are illustrated in Fig. 6. The ratio of a line’s current

11Note that there is usually enough land available in highway networks to
build PV power plants. Therefore, we do not limit the ypv

m here.
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TABLE III
SUMMARY OF THE PLANNING RESULTS IN DIFFERENT CASES

Case
No. of No. of No. of PV PV capacity Investment costs (M$/year) Energy costs Total costs Unsatisfied Solution
stations spots power plants (MVA) PEV station PV power plants (M$/year) (M$/year) PEV load (%) time (h)

1 33 1210 0 0.0 10.62 0.0 37.94 48.56 0.0 0.5
2 26 1187 4 71.52 9.75 14.79 22.47 47.01 0.0 16
3 28 1187 4 73.20 9.79 15.14 21.95 46.87 0.0 15
4 44 2279 0 0.0 23.97 0.0 48.39 72.37 1.85 1.8
5 31 2287 5 90 20.74 18.61 28.74 68.50 0.0 18
6 30 2285 4 90 21.03 18.61 28.53 68.17 0.0 18
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Fig. 6. Sites and sizes of PV power plants and loading rates of distribution lines. The number next to each PV power plant is its capacity, in MVA.

to its thermal capacity, i.e., 100% ×
√
lmn/Imn, represents

its loading rate. The maximum loading rate, i.e., 100% ×
maxωt

(√
lmn,ωt/Imn

)
, of each distribution line in the six

cases are depicted by Colorbars in Fig. 6. The distributions
of the line loading rates and nodal voltages in all the 24× 72
hours are illustrated in Figs. 7–8, respectively.

1) Computational efficiency: When jointly planning PEV
charging stations and PV power plants, the scale of the prob-
lem is larger; as a result, the solution time is also longer. When
directly adopting the Branch-and-Bound Algorithm to solve
the MISOCPs, the solver went out of memory. In contrast,
the proposed Accelerated Generalized Benders Decomposition
Algorithm can still solve the problems in less than 18 hours.
Besides, the solution time is longer when the PEV population
is larger. That is because larger PEV population leads to higher
charging demands and more binding power flow constraints.
As a result, the feasible set of the problem is smaller and the
algorithm has to conduct more iterations to converge.

As mentioned earlier, we add extra auxiliary nodes on the
long road segments to enhance network granularity so that
the modified transportation network has 93 nodes. Though
a network with 93 nodes may cover a large area for inter-
city scenarios, it is possible that some target transportation
networks may be much larger than the studied case. In the
proposed generalized Benders Decomposition Algorithm, the
master problem is an MISOCP and the sub-problems are
convex SOCPs. Though the sub-problems can be efficiently
solved in parallel in polynomial time, the master problem’s
solution time (adopting the Branch-and-Bound algorithm) may
grow exponentially with the scale of the transportation nodes.

Hence, for large-scale transportation networks, the planing
problem may still be intractable even with the proposed
algorithm. Nevertheless, we can adopt different approaches
to solve the problem at the cost of optimality, such as: 1)
Decrease the granularity of the transportation network; 2)
Increase the relevant gaps, ε1 and ε2, when the algorithm
stops; 3) Divide the large-transportation network into several
smaller sub-networks and solve the planning problem in each
sub-network.

2) Direct financial benefit for saving total cost: The plan-
ning results show that by jointly building PEV charging
stations and PV power plants, the total cost of the system is cut
down: the total cost in Case 2 is reduced by 3.19% compared
to Case 1 and the total cost in Case 5 is reduced by 5.35%
compared to Case 4. Though the equivalent annual investment
cost is increased, the installed PV power plants generate and
sell electricity to the power grid, which significantly decreases
the operational costs.

By utilizing distributed PV generation to supply power
locally, the planner has larger flexibility to build PEV charging
stations. Compared to Case 1 and Case 4, the overall invest-
ment costs on PEV charging stations and the corresponding
power grid upgrades in both Case 2 and Case 5 are reduced.
This phenomenon is especially prominent in heavy load sce-
narios. We can observe that in Case 4, much more charging
stations are installed than in Case 5. Because some parts of
the distribution system are congested, the planner has to build
more charging stations elsewhere with higher costs to avoid
the PEVs being charged at congested areas.

The total PV generation capacity and the direct financial
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Fig. 7. Boxplot of distribution line thermal loading rates. Line 2 is typically the most congested.

benefit of integrating PEV charging stations with PV genera-
tion increase as the PEV population (or load) increases.

3) Indirect benefit by deferring power system investment:
Figs. 6–7 show that investing distributed PV generation can
significantly ease distribution line congestion, and therefore,
defer power system investment. In Case 2, line 2 is the
only one that is congested, which reflects the bottleneck of
the system. In Case 4, several distribution lines’ capacity
constraints are binding, and as a result, 1.87% of the PEV
charging demands cannot be satisfied. By contrast, in the cases
with PV generation, no line is congested. Without building
new PV power plants, the planner has to upgrade the congested
distribution lines (line 2 would be the first choice), which
would be much more expensive.

4) Benefit of utilizing reactive power control: By adopting
reactive power control for PV generation, the system has
larger operational flexibility. As a result, the total cost and
the voltage deviations of the system are reduced. Though the
monetary benefits seems to be insignificant (less than 1%’s
total cost reduction), Fig. 8 shows that the system with reactive
power control has much lower voltage deviations so that it can
provide higher reliability electricity to customers. Note that,
in both Case 2 and Case 4, we can observe significant voltage
rises caused by inverse PV power flow. By contrast, in both
Case 3 and Case 6, the voltage rises are mild. This advantage
will also be much more pronounced at heavy load and high
PV penetration scenarios when voltage drops and rises will
significantly deteriorate the power quality.

C. Sensitivity Analysis

The planning results of the proposed model may be signif-
icantly affected by several important parameters such as the
rated charging power of EV charging spots and the electricity
price from the main grid. This section conducts sensitivity
analyses on these parameters to validate their influence.

1) Rated charging power: In the previous experiments, we
assumed the rated charging power of a charging spot, psp, to
be 44 kW. We adjust this value to its 50%, 75%, 125% and

150%, then adopt the proposed method to reoptimize the PEV
charging stations and PV power plants. In these experiments,
we assume that the variable cost to buy a charging spot is
proportional to its rated charging power. The total invested
numbers of charging spots, capacities of PV power plants are
illustrated in Fig. 9. As expected, when the rated charging
power increases, the total number of charging spots decreases.
This is also indicated in the quality of service constraint (8):
with higher rated charging power, the mean charging time of
PEVs, Tk,∀k ∈ K, decreases so that the same volume of
charging requests can be satisfied by fewer charging spots.
However, we can observe that the invested capacity of PV
power plants is insignificantly affected by rated PEV charging
power. That is because changing rated charging power will
not affect the total energy consumption of the PEVs. Besides,
when a single PEV’s charging power increases or decreases,
the number of PEVs charging at the same time will inversely
decrease or increase. As a result, the hourly average charg-
ing power profiles of the charging stations are not affected
significantly.

2) Electricity price from main grid: The total invested
numbers of charging spots and capacities of PV power plants
to install with different electricity prices from the main grid are
illustrated in Fig. 10. Because the penalty for unsatisfied PEV
charging demands is high, the investment in PEV charging
stations is not sensitive to the electricity price. In contrast, the
investment in PV power plants are remarkably affected by the
electricity price. When the electricity price rises, it is more
expensive to buy electricity from the main grid. As a result,
the system tends to install more PV power plants to boost local
power supply.

V. CONCLUSION

This paper develops a two-stage stochastic SOCP for jointly
planning PEV fast-charging stations and distributed PV power
plants on coupled transportation and power networks. This
model incorporates comprehensive models of 1) transportation
networks with explicit PEV driving range constraints; 2)
PEV charging stations with probabilistic quality of service
constraints; 3) PV power generation with reactive power
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Fig. 8. Boxplot of voltages. The reference voltage is 1.03 at root bus 0.
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Fig. 10. Sensitivity analysis on electricity price.

control; and 4) alternating current distribution power flow. The
formulation results in a MISOCP. To address the uncertainty
of future scenarios, a significant number of future typical load,
traffic flow and PV generation curves are adopted. This makes
the problem large scale. We then design a Generalized Benders
Decomposition Algorithm to efficiently solve the program by
decoupling it into an MISOCP master problem and a set of
convex SOCP sub-problems.

We conduct numerical experiments to illustrate the effec-
tiveness of the proposed method and quantify the benefits

of the joint planning model. Simulation results show that
jointly planning PEV charging stations and PV power plants
can significantly reduce total investment and operation costs
for the system. Compared with scenarios when only PEV
charging stations are constructed, jointly investing in PEV
charging stations and PV power plants can reduce total costs
by 3.19% to 5.35%. The direct financial benefit of integrating
PEV charging stations with PV generation increases with the
PEV population. Jointly planing distributed PEV charging
stations and PV power plants can also help alleviate power
congestion caused by large-scale PEV integration. This will
thereafter defer the demand for expensive investment in power
system upgrades. The aforementioned benefits become more
prominent when utilizing PV generation with reactive power
control which can help reduce voltage deviations and enhance
power supply quality. This advantage will also be much more
pronounced at heavy load and high PV penetration scenarios
when voltage drops and rises will significantly deteriorate
the power quality. Sensitivity analyses show that the required
number of PEV charging spots in the system decrease when
the rated PEV charging power rises; the capacity of PV power
plants is very sensitive to the electricity price from the main
grid.

Though the proposed Generalized Benders Decomposition
Algorithm can help accelerate the optimization for cases
with a large number of uncertain scenarios, it still has non-
negligible limitation on handling large transportation networks
that require large-scale binary variables for charging station
investment decisions. Efficient algorithms for planning in
large-scale transportation networks will be our future focus.
Energy storage systems can help balance power supply and
demand in the distribution systems. This will further promote
synergies between PV generation, PEV charging demands,
and other distributed resources. Joint planning PEV charging
station and PV power plants with energy storage systems is
also an interesting future research topic.
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APPENDIX A
THE DUAL PROBLEM

A. The Full Formulation of the Sub-problem

Given a fixed first stage solution X̂ , the sub-problem ωt is
a convex SOCP, as follows (the index ωt in the variables is
omitted for brevity):

min
Y

{(
c+e p

+
0 − c−e p

−
0

)
∆t+

∑
m∈M+

cpp
loss
m ∆t

+
∑

m∈M+

σvd
m

}
, (38)

s.t.: ∀i ∈ I,∀m ∈M+,∀ (m,n) ∈ B :√
|ppv
m|2 + |qpv

m|2 ≤ ypv
m, (39)

0 ≤ ppv
m ≤ p

pv
m, (40)

spv
m = ppv

m + jqpv
m, (41)

Smn = sm +
∑

h∈Mm

(Shm − zhmlhm), (42)

0 = s0 +
∑
h∈M0

(Sh0 − zh0lh0), (43)

vm − vn = 2Re(z∗mnSmn)− |zmn|2lmn, (44)

|Smn|2 ≤ lmnvm, (45)

sm = spv
m − sev

m − sb
m = pm + jqm, (46)

p0 = p+
0 − p

−
0 , (47)

sev
m = pev

m, (48)

pev
m + ploss

m =
∑
i∈Im

pev
i , (49)

pev
i = psp

∑
q∈Qi

∑
k∈K

Tkλq,kγq,k,i, (50)

0 ≤ lmn ≤ |Imn|2, (51)

|Vm|2 ≤ vm ≤ |Vm|2. (52)

vd
m ≥ vm − v0 (53)

vd
m ≥ −vm + v0 (54)

ploss
m ≥ 0, (55)

in which, vd
m is the nodal voltage deviation compared to

the reference v0 (at root bus 0). The objective (38) is
linear; constraints (39) and (45) are second order cones;
the other constraints are all affine. The decision variables
Y = {lmn, pev

i , p
loss
m , s0, s

pv
m, sev

m, Smn, vm, v
d
m,∀i ∈ I,∀m ∈

M+,∀ (m,n) ∈ B} are all continuous.
We let D denote the domain of the sub-problem (38)–(55),

i.e., the intersection of the domains of the objective and the
constraint functions of (38)–(55). It’s obvious that D = Rd =
relint D (d is the dimension of Y ).

B. The Sub-problem’s Dual Problem

For simplicity, we reformulate the sub-problem (38)–(55) in
its standard form:

p∗ = min
Y

d>Y (56)

s.t.: ‖BjY +AjX̂ + ej‖2 ≤ d>j Y + c>j X̂ + fj , ∀j, (57)

in which p∗ is the primal objective.
We follow the procedure in [34] to obtain its dual problem.

First, we have

p∗ = inf
Y

sup
µ≥0

d>Y +
∑
j

µj

(
‖BjY +AjX̂ + ej‖2

−
(
d>j Y + c>j X̂ + fj

))
(58)

= inf
Y

sup
‖uj‖2≤µj ,∀j

d>Y +
∑
j

(
−u>j

(
BjY +AjX̂ + ej

)
−µj

(
d>j Y + c>j X̂ + fj

))
, (59)

where we have used the dual representation of the Euclidean
norm. µj is the dual variable vector of each second order cone
and uj is the dual variable vector of each Euclidean norm.

Then, adopting the max-min inequality [34], we have

d∗ = sup
‖uj‖2≤µj ,∀j

inf
Y

d>Y +
∑
j

(
−u>j

(
BjY +AjX̂ + ej

)
−µj

(
d>j Y + c>j X̂ + fj

))
, (60)

which makes d∗ ≤ q∗.
Solving (60) for variable Y , we obtain the dual problem:

d∗ = sup
µj ,uj ,∀j

{∑
j

−u>j
(
AjX̂ + ej

)
− µj

(
c>j X̂ + fj

)}
(61)

s.t.:
∑
j

(
B>j uj + µjdj

)
= d, (62)

‖uj‖2 ≤ µj , ∀j, (63)

which is still a convex SOCP.

APPENDIX B
PROOF OF STRONG DUALITY

A. The Slater’s Condition
The Slater’s Condition provides a sufficient condition for

strong duality. We give a brief introduction for it in this part.
For a convex optimization problem:

p∗ = min
x

f0(x) (64)

s.t.: fi(x) ≤ 0, i = 1, ...,m, (65)
hi(x) = 0, i = 1, ..., q, (66)

we still let D denote the domain of the problem. Then, we
have the following proposition:

Proposition 1 (Slater’s conditions for convex programs)
Let fi, i = 0, ...,m, be convex functions, and let hi, i =
0, ..., q, be affine functions. Suppose further that the first
k ≤ m of the fi functions, i = 1, ..., k, are affine (or let
k = 0, if none of the fi, i = 0, ...,m, is affine). If there exists
a point x ∈ relint D such that

fi(x) ≤ 0, i = 1, ..., k, (67)
fi(x) < 0, i = k + 1, ...,m, (68)
hi(x) = 0, i = 1, ..., q, (69)

then strong duality holds between the primal problem (64)–
(66) and its dual problem. Moreover, if the primal problem is
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bounded, i.e., p∗ > −∞, then the dual optimal value equals
to the primal optimal value. [34]

In the following section, we will use the above proposition
to prove strong duality of the sub-problem (56)–(57) and its
dual problem (61)–(63). We say an inequality constraint to be
“strictly satisfied” to refer to that it is “satisfied with strict
inequality” as (68).

B. Proof of Strong Duality

We assume that the system can be operated without PV
generation and PEV charging power, and the constraints of
nodal voltages of the distribution system is not binding. Note
that this is a very mild assumption, because the distribution
system is usually operated with the voltage deviations being
well controlled. Otherwise, the power quality is poor and extra
voltage control devices should be installed for the system.

We first let spv
m = 0 and sev

m = 0, ∀m ∈ M+. With
constraints (49)–(50), we can directly calculate variables
pev
i = 0 and ploss

m = psp∑
i∈Im

∑
q∈Qi

∑
k∈K Tkλq,kγq,k,i,

∀m ∈ M+. As a result, the sub-problem (38)–(55) is
reduced to a simple optimal AC power flow problem.
Based on the above assumption, there is a feasible solution
Y ∗ = {lmn, pev

i , p
loss
m , s0, s

pv
m, sev

m, Smn, vm, v
d
m,∀i ∈ I,∀m ∈

M+,∀ (m,n) ∈ B} ∈ relint D subjects to:

|Vm|2 < vm < |Vm|2, ∀m ∈M+. (70)

Furthermore, ∃∆v > 0, subjects to:

|Vm|2 < vm + ∆v ≤ |Vm|2, ∀m ∈M+. (71)

When spv
m = 0, ∀m ∈ M+, the active and reactive

power injection at each node (except the root node 0) are
both negative. Therefore, the distribution system have nonzero
unidirectional power flows so that we also have:

lmn > 0, ∀(m,n) ∈ B. (72)

There are only two non-affine constraints in each sub-
problem, i.e., PV generation constraint (39) and AC power
flow constraint (45). We discuss how we can construct a
feasible solution based on Y ∗ which strictly satisfies (39) and
(45).

1) PV generation: In the first non-affine constraint (39),
the nameplate apparent power, i.e., ypv

m,∀m ∈ M+, are
nonnegative and given by the master problem. ∀m ∈ M+:
a)

1) If ypv
m = 0, there is no PV generation at bus m so that

constraints (39)–(41) can be omitted;
2) Otherwise, ypv

m > 0, for spv
m = 0 in Y ∗, it satisfies√

|ppv
m|2 + |qpv

m|2 = 0 < ypv
m, ∀m ∈M+. (73)

Therefore, ∀m ∈ M+, if ypv
m = 0, constraint (39) can be

omitted; otherwise, it is strictly satisfied for spv
m = 0.

2) AC power flow: We slightly increase vm,∀m ∈M+, in
Y ∗ by the ∆v in constraint (71) and adjust the corresponding
nodal voltage deviations, i.e., vd

m,∀m ∈M+, to construct an-
other solution Y ∗∗ = {lmn, pev

i , p
loss
m , s0, s

pv
m, sev

m, Smn, v̂m =
vm + ∆v, v̂d

m = max{vd
m, v

d
m + ∆v},∀i ∈ I,∀m ∈

M+,∀ (m,n) ∈ B} ∈ relint D. The other variables are equal
to those in Y ∗. Then, we have

∀m ∈M+,∀ (m,n) ∈ B :

v̂m − v̂n = vm − vn, (74)

|Vm|2 ≤ v̂m = vm + ∆v ≤ |Vm|2, (75)

|Smn|2 ≤ lmnvm < lmn(vm + ∆v) = lmnv̂m, (76)

As a result, the new solution Y ∗∗ is still feasible and strictly
satisfies the non-affine constraint (45), i.e., (76). Besides,
from Appendix B-B1, we also know that Y ∗∗ strictly satisfies
constraint (39), when ypv

m > 0.
To conclude, Y ∗∗ ∈ relint D is a feasible solution for the

sub-problem (38)–(55), i.e., problem (56)–(57), and it strictly
satisfies all the non-affine constraints. Based on Proposition 1,
we can conclude that strong duality holds between the sub-
problem (56)–(57) and its dual problem (61)–(63).

Moreover, because the total PV generation is constrained,
the selling power of the system, i.e., p−0 , is limited and the
second term in (38) is bounded below. The other terms in
(38) are all nonnegative. Thus, we can conclude that the sub-
problem’s objective (38) is bounded below. As a result, there
exist a primal solution Y ∗∗ and a dual solution {µ∗, u∗} that
let the primal optimal objective p∗ equal to the dual optimal
objective q∗.
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