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Abstract—Recent advances in traffic monitoring systems have
made real-time traffic velocity data ubiquitously accessible for
drivers. This paper develops a traffic data-enabled predictive
energy management framework for a power-split plug-in hybrid
electric vehicle (PHEV). Compared with conventional model
predictive control (MPC), an additional supervisory state of
charge (SOC) planning level is constructed based on real-time
traffic data. A power balance-based PHEV model is developed
for this upper level to rapidly generate battery SOC trajectories
that utilized as final state constraints in the MPC level. This
PHEV energy management framework is evaluated under three
different scenarios: (i) without traffic flow information, (ii) with
static traffic flow information, and (iii) with dynamic traffic
flow information. Numerical results using real-world traffic data
illustrate that the proposed strategy successfully incorporates
dynamic traffic flow data into the PHEV energy management
algorithm to achieve enhanced fuel economy.

Index Terms—Traffic Velocity, Fuel Economy, Plug-in Hybrid
Electric Vehicle, Supervised Energy Management, Power Balance
Model.

I. INTRODUCTION

A. Motivation

TRAFFIC monitoring systems are now ubiquitous com-
ponents of modern intelligent transportation systems [1],

[2]. Many types of sensors, such as loop detectors, pneumatic
sensors, and cameras, are employed to monitor traffic con-
ditions [3]. Several traffic monitoring projects, such as the
Caltrans Performance Measurement System (PeMS) [4] and
Houston TranStar [5], have been successfully implemented
and currently provide real-time traffic data on the Internet. As
such, access to real-time traffic data is now fairly ubiquitous.
This information complements existing in-vehicle navigation
systems that include GPS [6] and 3-D terrain maps [7],
[8]. These information systems provide the opportunity to
incorporate more environmental information than ever before
into PHEV energy management [9], [10]. This paper system-
atically integrates real-time traffic velocity data into the energy
management of a power-split PHEV.

In the energy management problem (EMP) of PHEVs, SOC
is an important state in determining the optimal power split
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Fig. 1. SOC trajectories derived from the CDCS strategy and DP.

ratio between the engine and battery [11]. If no future driving
information is available, the charge depleting and charge
sustaining (CDCS) strategy is commonly used [12], [13], as
shown by the blue curve in Fig. 1. When the trip distance
exceeds the all-electric range, CDCS is suboptimal [14]. As
can be seen in Fig. 1, the optimal SOC trajectory solved by
dynamic programming (DP) differs significantly from CDCS
[15]. In particular, the CDCS strategy consumes 22.17% more
fuel than DP. Given more information about the velocity
profile – enabled from traffic data – we hypothesize that a
near-optimal energy management strategy can be developed.

Previous work has examined the EMP for pre-planned
driving tasks. The authors of [16] developed a SOC reference
generator for hilly driving profiles, and demonstrated improved
fuel economy. In this paper, we consider a SOC pre-planning
approach under time-varying traffic conditions. Consider the
traffic map in Fig. 2, which displays the instantaneous traffic
flow velocity in the San Francisco Bay Area according to
Google Maps at 9:15 AM, on Feb 3, 2014. Red road segments
indicate slow traffic velocity from a congestion event. If a
PHEV knows when and where the congestion occurs, then the
controller can pre-plan a corresponding optimal SOC trajec-
tory and adjust the energy management strategy accordingly.
As shown by the block diagram in Fig. 2, real-time traffic
data is utilized for SOC planning and control. Meanwhile,
vehicle velocities are continuously monitored and fed back into
the traffic monitoring system. Consequently, this paper adds
dynamic traffic feedback to the existing literature on PHEV
energy management [15], [17], including DP [18], equivalent
consumption minimization strategy (ECMS) [19] and model
predictive control (MPC) [20].
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Fig. 2. Traffic data feedback framework, and the traffic flow velocity provided
by Google Maps on 02/03/2014, 9:15 AM. Road colors indicate the traffic
flow velocities. The area marked by the purple ellipse is the experiment field
for traffic data collecting (see Section II).

B. Literature Review of PHEV Energy Management

Most studies that employ DP for energy management as-
sume that the entire driving profile and terrain information
is fully known [21], [22]. DP provides a provably optimal
energy management strategy. However, exact knowledge of
the driving profile is seldom known in practice. As a result,
DP solutions are mainly used as benchmarks for optimality
[23]. In many cases, statistics about routine driving profiles,
e.g. bus routes or everyday commutes, are known beforehand
and can be reliably modeled via Markov chains [24], [25].
Iterative learning also shows excellent performance in pre-
dicting driving profiles for repeatable trips [26]. Nevertheless,
these methods perform poorly when the driving route changes
dramatically, e.g. due to traffic congestion, or no historical
data is available.

ECMS is an established approach that determines the opti-
mal power split at each time instant rather than over a time
horizon [19], [27]. Therefore, no future driving information
is needed. Given an appropriate equivalence factor, ECMS
can achieve near-optimal fuel economy [14], [28]. However,
tuning the equivalence factor is nontrivial and there is no
guarantee that ECMS produces globally optimal performance.
If the driving profile can be recognized in real time, ECMS
can adjust the equivalence factor accordingly to achieve better
fuel economy via Adaptive-ECMS [27], [29].

MPC can be viewed as a compromise between DP and
ECMS. That is, MPC minimizes a series of cost functions over
receding time horizons [30], whereas DP and ECMS optimize
over global and instantaneous cost functions, respectively.
The predictive ability of MPC over instantaneous approaches
helps achieve better performance. This attractive property
has generated increased attention from automobile industry
practitioners [31], [32]. In the literature, many researchers have
examined MPC to solve the EMP for HEV/PHEVs. Nonlinear
programming [33], quadratic programming [34], Pontryagin’s

minimum principle [35], and DP [20], [36] have all been ap-
plied. These predictive energy management strategies provide
improved performance over instantaneous or rule-based energy
management strategies, and are real-time implementable [17].
However, to the authors’ best knowledge, the study of dynamic
traffic feedback data enabled MPC energy management for
PHEVs has not been investigated.

C. Main Contributions

The main contribution of this paper is a traffic data-
enabled predictive control framework for PHEV energy man-
agement, to achieve near optimal fuel consumption. Com-
pared with conventional MPC, this framework includes a
higher supervisory battery SOC planning level, aiming to
improve the controller performance from a global perspective.
A power balance PHEV model is developed for reference
SOC trajectory generation based on the obtained traffic data.
Compared with conventional PHEV models, the power bal-
ance model significantly reduces SOC trajectory computation
time, thereby enabling real-time implementation at updates
rates commensurate with traffic data. In this paper, a real-
world highway driving scenario is used for validation and is
based on collected traffic flow data from the Mobile Century
project [37]. Although the foregoing contributions are made
specifically for a power-split PHEV in a highway driving
scenario, the proposed approach extends to other HEV/PHEV
configurations or other driving situations when traffic velocity
information is available.

D. Outline

The remainder of the paper is arranged as follows. In
Section II, the obtained traffic data is presented and ana-
lyzed. Section III introduces the supervised predictive energy
management strategy. Section IV details the control-oriented
PHEV model and formulates the nonlinear control problem.
Simulation results are illustrated in Section V, followed by key
conclusions in Section VI.

II. TRAFFIC FLOW VELOCITY INFORMATION

Large scale traffic monitoring systems have been deployed
across the world. Reference [37] presents a traffic monitoring
system, nicknamed Mobile Century, based on GPS-enabled
smartphones. This system exploits the extensive coverage of
the cellular network, position and velocity measurements of
GPS, and the communication ability of cellphones. A field
experiment was conducted to measure traffic velocities and
flow on a 10-mile stretch of I-880 near Union City, California,
for 8 hours, as shown in Fig. 2 between points A and B.
We leverage this data to study traffic-enabled PHEV energy
management in this paper.

A. Traffic Flow Velocity Extraction

The Mobile Century vehicles were all equipped with GPS-
enabled smartphones that produce time-stamped position and
velocity measurements every 3 seconds. A traffic estimation
server is used to collect all the GPS data and analyze traffic



3

3000 4000 5000 6000
23

23.5

24

24.5

25

25.5

26

26.5

P
os

iti
on

 (
m

ile
)

17
 1

8 
19

 
20

 2
1 

22
 2

3 
24

 
25

 2
6 

27
 

11:10
Time of Day

12:33 13:56 15:20 16:43 18:06

11:10 11:2710:5310:36

Fig. 3. Time-position trajectories of individual trips from the Mobile Century
field experiment on highway road I-880, from 16 to 28 mile north bound.

flow dynamics. Figure 3 plots the time-position trajectory for
each trip in the field experiment. A traffic congestion event
can be identified within the red rectangle marked in the figure.
All vehicles were forced to decelerate when driving through
the congestion area. Over time, the congestion attenuates and
vehicles gradually accelerated back to normal speeds. The
propagation of a shock-wave can be observed clearly.

The traffic congestion period, from 10:20 AM to 13:40 PM
is selected deliberately as the object of study. This is because
a traffic congestion event can fully reflect the uncertainty
and complexity of the driving environment. Note that the
flow velocity data received by the drivers is only a static
reflection of the traffic. The information is more valuable when
it updates in real-time. In this paper, we assume the driver can
obtain the traffic velocity data every 300 seconds, which is
consistent with the update rate of PeMS [4]. The road is split
into 120 segments for vehicle velocity sampling (160 meters
per segment which is approximately the length of a postmile
interval in California). The average velocity of all vehicles
that drive through a specific road segment is assumed to be
the traffic flow velocity of this segment, which is calculated
by

V SI
avg(t) =

N∑
i=1

V SI
i (t)

N
, (SI = 1, 2, ..., 120). (1)

where V SI
avg(t) indicates the average velocity of the SIth

(segment index) road segment at time t, V SI
i (t) is the velocity

of one individual vehicle and N represents the total number
of vehicles driving through segment SI .

B. Trip Analysis and Processing

The extracted traffic velocity is depicted in Fig. 4. Note that
velocity reduces from 70 mph to less than 10 mph near the
24-mile position at 10:45 AM, which is the beginning of the
traffic congestion event. The velocity of the congested segment
starts to increase around 11:20 AM, which is the end of the
traffic congestion event.

We assume the PHEV follows the same velocity profile as
the traffic flow velocity. Due to low spatial resolution, the
extracted traffic velocity profile is piecewise constant. We
smooth Vavg with a Butterworth filter to produce a more
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Fig. 4. Extracted traffic flow velocity distribution from 10:20 AM to 13:40
PM. Sampling time interval is 300 seconds and the road resolution is 0.1 mile.
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Fig. 5. Extracted velocity profile example, before and after filtering.

realistic and trackable velocity signal (Vflow in Section III Part
A). Fig. 5 illustrates an extracted and filtered velocity profile.
We can see that the extracted profile is piecewise constant
(blue line). The red curve is the filtered result, which is smooth
and follows the original cycle reasonably well. Each time the
traffic flow velocity information is received, the velocity profile
is filtered.

III. SUPERVISED PREDICTIVE ENERGY MANAGEMENT

A. Traffic Enabled Energy Management

The structure of the supervised predictive energy man-
agement is demonstrated in Fig. 6. In the upper level, the
traffic flow velocity Vflow obtained from real-time traffic
data is utilized to calculate the optimal SOC trajectory. In
the lower level, a horizon velocity predictor is employed to
forecast the future driving velocities in each receding horizon.
These two aspects correspond to the long-term and short-term
disturbances, respectively.

It is important to note that the acquired traffic flow velocity
will differ from the actual vehicle velocity. Thus, errors exist
in the generated SOC reference trajectory. The generated SOC
trajectory is introduced into the MPC level as a terminal SOC
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Fig. 6. Control structure for the supervised predictive energy management
scheme. The upper level uses real-time traffic flow velocity to compute a
global SOC trajectory. The lower level applies a receding horizon control,
using the SOC trajectory as a final state constraint and a short-term velocity
predictor.

reference during each control horizon. This provides the lower-
level MPC feedback loop with additional control flexibility to
compensate for SOC reference errors, denoted as

SOC = SOC∗ (2)

where SOC is the terminal SOC reference of each control
horizon and SOC∗ is the generated optimal SOC trajectory.
The detailed control procedure is described as below:

• Acquire real-time traffic data and route information, cal-
culate the optimal battery SOC trajectory;

• Predict the short-term future velocity profile for the
current control horizon;

• Given the SOC reference and the predicted velocity
sequence Vpredict, the MPC controller calculates the
optimal control policy;

• Apply the first time-step of the optimal control policy in
the quasi-static PHEV model;

• Feed back system states, update system constraints, and
repeat the computation procedure at the next time instant.

Note that step 1 of the control procedure is activated only
when the traffic and route information is updated. Also note
that the upper and lower levels utilize different PHEV models
for optimization. In the upper level, a simple power-based
model is utilized for SOC trajectory generation. In the lower
level, a higher fidelity PHEV model is used for MPC. We
describe each level in the following subsections. The quasi-
static PHEV model is a detailed plant model furnished by
the QSS-toolbox developed at ETH Zürich, which has been
validated against experiments (see [38] for details).

B. Long-term SOC Trajectory Generation

The optimal SOC trajectory calculation must be fast enough
to follow the traffic flow dynamics. The commonly used
control-oriented PHEV model [18], [21] is proficient for
powertrain control, but excessively complex for SOC trajectory
calculation for this particular purpose. This paper introduces a
reduced power balance based PHEV model for this purpose.
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Energy
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Fig. 7. Structure of the simplified power-split PHEV powertrain.

This model is much more computationally efficient, yet suffi-
ciently accurate for the purpose of SOC trajectory calucations.

The power balance model is based on a simplified power-
split PHEV powertrain, as shown in Fig. 7. Instead of estab-
lishing physical models for all the powertrain components,
the power balance model only describes power flows and
conversion efficiencies. The tank/engine converts chemical
energy into mechanical energy with efficiency denoted by η1.
The battery and two motor/generators (M/Gs) convert between
chemical battery energy and mechanical energy with efficiency
denoted by η2. The sum of the engine and M/Gs’ mechanical
powers must equal power demand, Pdemand.

Mathematically, the simplified powertrain is governed by
power balance equation

η1Ptank(t) + η2Pbatt(t) = Pdemand(t) (3)

where Ptank is the chemical energy supplied by the tank,
Pbatt is the electro-chemical energy supplied by the battery
and Pdemand is the vehicle power demand. Positive Pbatt

denotes discharging. Parameters η1 and η2 are synthetic energy
conversion coefficients of the mechanical propulsion path
(engine side) and the electrical propulsion path (M/G side),
respectively. The power demand is provided by

Pdemand(t) =

(
ma+ Crmg +

1

2
ρACdv

2(t)

)
v(t) (4)

where m is the vehicle mass, a is the vehicle acceleration, g
is gravitational acceleration, v(t) is the vehicle velocity, Cr

represents the rolling resistance coefficient and 1
2ρACd is the

aerodynamic drag resistance. The battery package is modeled
as an equivalent circuit [39]. The battery power and the battery
SOC is derived with

Pbatt(t) = V Ibatt(t)− I2
batt(t)R (5)

˙SOC(t) = −Ibatt(t)
Q

(6)

where V and R are the open circuit voltage and internal
resistance, respectively; Ibatt(t) and Q are the battery current
and capacity, respectively.

In this power balance PHEV model, the number of con-
trol variables is reduced from two to one compared with
the control-oriented model (to be presented in Section IV).
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Battery output power is selected as the control variable, where
u = Pbatt. Battery SOC and the engine on/off state (denoted
as O) are selected as state variables, where x = [SOC,O]T .
O = 1 means the engine is on, and O = 0 means the engine
is off. Define switching of the engine state as

δO(k∆t) = |O(k∆t)− O((k − 1)∆t)| (7)

The cost function is formulated as

J =

∫ T

0

[Ptank(u(t)) + wδO(t)]
2
dt (8)

where Ptank(u(t)) penalizes fuel consumption and w is
the penalty for engine state switching. The expression for
Ptank(u(t)) is derived as follows. From (3) we have

Ptank(t) =
Pdemand(t)− η2Pbatt(t)

η1
. (9)

Note that u(t) = Pbatt(t). Moreover, consider the conversion
efficiencies with the following arguments

η1 = η1(Peng), (10)
η2 = η2(Pbatt) = η2(u). (11)

Note that Peng = Pdemand − η2Pbatt = Pdemand − η2(u) · u.
Consequently, we obtain

Ptank(t) =
Pdemand(t)− η2(u(t)) · u(t)

η1(Peng(t))
=

Peng(t)

η1(Peng(t))
(12)

DP is used to minimize J , subject to

SOCmin ≤ SOC ≤ SOCmax, Pmin
tank ≤ Ptank ≤ Pmax

tank;
Imin
batt ≤ Ibatt ≤ Imax

batt , P
min
batt ≤ Pbatt ≤ Pmax

batt .

The energy conversion coefficients η1 and η2 are very
important in describing the nonlinearity of the powertrain.
Efficiency η1 can be calculated by assuming the engine always
operates on the optimum operating line (OOL). In contrast, η2

involves the combined operating efficiencies of both M/G1 and
M/G2, and it is therefore not possible to assume operation
along the individual OOLs. Thus, this paper proposes an
empirical approach to determine η1 and η2, based on the
optimal operating behaviors yielded from the control-oriented
model. Details are shown below:

• First, utilize DP to solve the EMP with the control-
oriented PHEV model across a variety of driving cycles;

• Second, collect the optimal solutions for powertrain be-
havior analysis. Coefficients η1 and η2 are calculated by

η1 =
ωeng · Teng
Ptank

(13)

η2 =
ωM/G1 · TM/G1 + ωM/G2 · TM/G2

Pbatt
(14)

where ωeng , ωM/G1, ωM/G2 and Teng , TM/G1, TM/G2

are corresponding rotation speeds and torques of the
engine, M/G1 and M/G2 from the control-oriented model.

• Last but most important, formulate η1 and η2 by least
squares curve fitting.

In step one, four driving cycles, including both urban
and highway types, are used for the optimal energy man-
agement simulation: WVUCITY, NYCC, Artemis-highway
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and HWFET provided by the U.S. Environmental Protection
Agency and [40]. In order to cover as much of the operating
envelope as possible, different battery discharging depths are
investigated.

The operating points for functions η1 and η2 are plotted in
Fig. 8 and Fig. 9. It can be seen that η1 and η2 are strongly
correlated with Peng and Pbatt, respectively. Consequently,
the hypotheses in (10) and (11) are verified. Interestingly,
the fitting results for η1 prove to be consistent with the
engine OOL approach. Piecewise functions are employed for
curve fitting of η2, including polynomial functions and mixture
Gaussian functions.

The complete power balance-based model is validated in
Section V-A against a more detailed control-oriented model.
Next we consider the issue of velocity prediction in the MPC
level from Fig 6.

C. Short-term Velocity Prediction

Next we develop a forecasting technique to predict short-
term vehicle velocities. This paper employs a data driven
approach to velocity prediction. Vehicles with forward radar
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devices can utilize lead vehicle measurements to improve
velocity prediction [41], but this is not considered in this paper.

In recent work on velocity prediction [42], artificial neural
networks (ANN) have proven effective in terms of both
accuracy and ease-of-use. Here, a radial basis function neural
network (RBF-NN) [43] based velocity predictor is developed
for short-term velocity prediction. The predicted future ve-
locity sequence is sent to the MPC controller as the vehicle
speed request in each receding horizon. Through learning
from representative driving cycles, the predictor captures the
highly nonlinear driving patterns in a comprehensive sense.
Other velocity prediction methods, such as Gaussian mixture
modeling or stochastic approaches, could also be implemented
in this part [44], [42].

The input of the ANN-based predictor is a historical velocity
sequence, and the output is short-term future velocity sequence
Vpredict, as illustrated in Fig. 10. The length of the historical
velocity sequence Hh and the length of the prediction horizon
Hp are all set as 10. Different tuning of the neural network
may produce different performance. However, the trials are
omitted here as this is not the focus of this paper. Interested
readers may refer to [41] for more details.

Four standard driving cycles are used for the network train-
ing, including both highway and urban types: UDDS, HWFET,
NEDC, US06. A real driving cycle is selected for validation
from the highway driving data collected from Mobile Century.
The predicted velocity sequences and the resultant root-mean-
square errors (RMSE) are shown in Fig. 11. From the upper
part of Fig. 11, we can see that the RBF-NN based velocity
predictor predicts the micro-trip behaviors effectively. The
lower part of Fig. 11 demonstrates the empirical cumulative
distribution function (CDF) of the RMSE for all the prediction
processes. Nearly 90% of the RMSEs are below 1.5 m/s.
Considering that the prediction horizon is 10, which is rel-
atively long, we conclude that the RBF-NN velocity predictor
is accurate enough for MPC-based PHEV energy management.
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IV. MPC LEVEL CONTROL FORMULATION

A. Control-oriented PHEV Model

A control-oriented power-split PHEV powertrain model is
used in the MPC level. A planetary gear set couples the
engine, M/G1, and M/G2. As shown in Fig. 12, the engine
and M/G1 are connected to the planet carrier and the sun gear,
respectively. A torque coupler is used to connect the ring gear
with M/G2 to propel the final drive.

The schematic structure of the planetary gear set is shown
in the left-hand side of Fig. 13. The right-hand side of Fig. 13
shows a lever diagram, which is commonly used to describe
the kinematic constraint on the ring, carrier, and sun gear
angular velocities. This constraint is given mathematically by

ωsS + ωrR = ωc(S +R) (15)

where S and R are the radii of the sun gear and the ring
gear, respectively. Angular speeds of the ring gear / M/G2,
sun gear / M/G1, and carrier gear / engine are denoted as
ωM/G2, ωM/G1 and ωeng , respectively. They are represented
by the three vectors in the lever diagram. The length and
direction of the vectors denote the magnitude and direction
of the respective rotational speeds. The node ‘Carrier’ divides
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the lever into two segments, defined by the relative ratio of S
and R. The dashed line connecting the three vector arrowheads
signifies that the kinematic constraint in (15) must be verified.

By neglecting the inertia of the pinion gears and assuming
that all the powertrain shafts are rigid, the inertial dynamics
of the powertrain are derived as

JM/G1

dωM/G1

dt
= TM/G1 + FS (16)

Jeng
dωeng

dt
= Teng − F (S +R) (17)

JM/G2

dωM/G2

dt
= TM/G2 − (Taxle/gf ) + FR (18)

where JM/G1, Jeng and JM/G2 are the lumped inertias of
M/G1, engine and M/G2, respectively; TM/G1 = Ts, Teng =
Tc and TM/G2 = Tr are torques of M/G1, engine and M/G2,
respectively; F represents the internal force on pinion gears;
gf is the gear ratio of the final drive; Taxle is the torque
produced from powertrain on the drive axle. To reduce the
control-oriented model’s complexity, we disregard the inertial
dynamics, and use the steady-state values of (16)-(18). The
rotational speed of M/G2 and the axle torque are given by

ωM/G2 =
gf

Rwheel
V (19)

m
dV

dt
=

Taxle + Tbrake
Rwheel

+mg sin(θ)

−1

2
ρACdV

2 − Crmg cos(θ) (20)

where Rwheel is the wheel radius, Tbrake is the friction brake
torque and θ denotes the road grade.

At each time instant, the MPC controller computes an
optimal split between the engine, M/G1, and M/G2 to mini-
mize fuel consumption. Fuel flow rate of the engine (ṁfuel)
and power transfer efficiencies for M/G1 and M/G2 (ηM/G1

and ηM/G2) are extracted from empirical maps. They are all
functions of angular speed and torque

ṁfuel = ψ1(ωeng, Teng) (21)
ηM/G1 = ψ2(ωM/G1, TM/G1) (22)
ηM/G2 = ψ3(ωM/G2, TM/G2) (23)

where ψ1, ψ2 and ψ3 are empirical maps of the engine fuel
flow and M/G efficiencies, respectively [45].

The equivalent circuit battery model is employed in the
control-oriented model, and has been presented in (5) and
(6). The battery in a power-split PHEV is connected to a
bi-directional converter to supply power or recuperate energy

from the electrical machines. Terminal battery power is de-
scribed by

Pbatt = PM/G1/(ηM/G1ηinv)kM/G1+PM/G2/(ηM/G2ηinv)kM/G2

(24)
where PM/G1 and PM/G2 are shaft powers of M/G1 and
M/G2, respectively; ηinv is the inverter efficiency;

ki =

{
1 if Pi > 0
−1 if Pi ≤ 0

, for i = {M/G1,M/G2}. (25)

A complete description of the battery SOC dynamics can
therefore be obtained. Equations (5)-(6) and (15)-(25) sum-
marize the control-oriented model used for MPC, and more
details can be found in [25]. Throughout this study, MPC is
applied to a detailed quasi-static PHEV plant [38].

B. MPC Level Nonlinear Control

The EMP in the MPC level is formulated as a constrained
nonlinear optimization problem and solved by DP at each
time instant [46]. Given the powertrain dynamics (15)-(25),
we require two independent control inputs to render a causal
system. In this paper we choose ωeng and Teng . Denoting x
as the state variable, u as the control variable, d as the system
disturbance, and y as the output, the proposed control-oriented
powertrain model can be represented as

ẋ = f(x, u, d)

y = g(x, u, d) (26)

with x = [SOC,O]T , u = [ωeng, Teng]
T , d = Vpredict,

y =
[
ṁfuel, Pbatt, TM/G2, ωM/G1, TM/G1

]T
. Consider a one

second time step, ∆t = 1 second. At time step k, the cost
function Jk is formulated as

Jk =

∫ (k+Hp)∆t

k∆t

[ṁfuel(u(t)) + wδO(t)]
2
dt (27)

where Hp is the prediction horizon length, which is herein
equal to the control horizon length for simplicity [20]. The
disturbance d = Vpredict is predicted by the short-term
velocity predictor in Section III Part C.

Additionally, the following physical constraints must be
enforced:

SOCmin ≤ SOC ≤ SOCmax,
Imin
batt ≤ Ibatt ≤ Imax

batt , P
min
batt ≤ Pbatt ≤ Pmax

batt ,
Tmin
eng ≤ Teng ≤ Tmax

eng , ω
min
eng ≤ ωeng ≤ ωmax

eng ,
Tmin
M/G1 ≤ TM/G1 ≤ Tmax

M/G1, ω
min
M/G1 ≤ ωM/G1 ≤ ωmax

M/G1,

Tmin
M/G2 ≤ TM/G2 ≤ Tmax

M/G2, ω
min
M/G2 ≤ ωM/G2 ≤ ωmax

M/G2.
(28)

Special consideration is given to the terminal battery SOC
constraint in the MPC horizon. Namely, the SOC trajectory
generated from the traffic flow data in the upper level provides
the terminal SOC constraint. This approach guides the SOC
trajectory based on future traffic conditions without being
restrictive in preventing deviations due to unknown distur-
bances. It is important to note that the SOC reference can
be indexed in two ways: time domain dependent and space
domain dependent. For time domain dependent SOC reference,

SOC((k +Hp)∆t) = SOC∗((k +Hp)∆t) (29)
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TABLE I
GENERAL PARAMETERS OF THE PHEV MODEL

Vehicle Configuration Power-split
Curb Weight 1471 kg

Engine
Type Gasoline Inline 4-Cylinder

Max Power 57 kW @ 4500 RPM
Max Torque 110 Nm @ 4500 RPM

Motor
Generator

Type Permanent Magnet AC
M/G1 Max Power 30 kW @ 3000-5500 RPM
M/G2 Max Power 35 kW @ 1040-5600 RPM

Battery Pack

Cell Chemistry C-LiFePO4

Energy Capacity 5 kWh for pack
Charge Capacity 2.3 Ah per Cell

Cell Number 660
Cell Arrangement 110S×6P

For space domain dependent SOC reference,

SOC(nk∆s) = SOC∗(nk∆s) (30)

where ∆s is the space step, nk indicates the space step number
that the vehicle drives through by the end of time horizon
k. SOC∗ is the optimal SOC trajectory generated from the
supervisory SOC planning level in Section III Part B. Both
indexing methods are investigated in the following section.

V. SIMULATION RESULTS AND DISCUSSION

The proposed power balance model and predictive energy
management framework are both evaluated in this section. All
the simulations were performed on a personal computer with
an Intel Corel i7-3630QM CPU @2.4GHz. The power-split
PHEV structure is adopted from [47], and general parameters
of the model are provided in Table I. The empirical fuel
consumption map of the engine and the efficiency maps of
the motor/generator are from ADVISOR [45]. Note that in
the simulation and validation subsections, we focus on trips
that exceed the all-electric-range, and therefore require engine
power at some point.

A. Power Balance Model Validation

The power balance model is validated by comparing the
generated SOC trajectory with the control-oriented model.
Based on the approximated η1 and η2 from Fig. 8 and Fig. 9,
the optimization problem (8) can be solved by DP. The initial
battery SOC is set as 0.7 and terminal SOC is set as 0.3. Six
standard driving cycles and two real-world cycles, highway-
Realh and urban-Realu (see Fig. 14 bottom), are combined
arbitrarily to construct three longer trips for testing. Notice
that the validation driving cycles are different from those used
to identify η1 and η2. Details of the trips are shown in the
upper part of Table II.

The computation time of DP highly depends on the grid res-
olution of the control or state variables during discretization.
For the control-oriented model, the authors carefully tuned
the grid numbers of the control variables (ωeng and Teng)
and the state variable (SOC) as 40, 30 and 30, respectively.

TABLE II
TRIP DETAILS & SOC TRAJECTORY COMPARISON

Trip No./Type Composed by Cycles Length (s/km)

1/Urban UDDS NEDC Realu 3528/32.8
2/Highway HWFET WVUINTER Realh 4112/65.0

3/Mixed WVUSUB US06 Realh Realu 4820/56.3

Trip No./Model Avg |e| Max |e| T (s) SOC

1/C.O. — — 197.2 (100%) 0.30
1/P.B. 0.0147 0.0249 31.8 (16.1%) 0.30
2/C.O. — — 231.9 (100%) 0.30
2/P.B. 0.0226 0.0467 37.5 (16.2%) 0.30
3/C.O. — — 261.1 (100%) 0.30
3/P.B. 0.0168 0.0438 41.2 (15.8%) 0.30

’C.O.’ and ’P.B.’ denote the control-oriented model and the power balance
model, respectively. SOC denotes the terminal SOC value.

This resolution is a compromise between the optimality and
the computational complexity. For fair comparison, the control
variable (Pbatt) and state variable (SOC) in the power balance
model are also set as 40 and 30, respectively.

The bottom part of Table II demonstrates the comparison
details of generating SOC trajectory from the two PHEV
models. Symbol T is the computation time. As can be seen,
for trips that exceed the all-electric-range, the control-oriented
model requires 190-260 seconds to compute the optimal SOC
trajectory. Considering that the traffic flow updating rate is 300
seconds, it may be difficult for the control-oriented model to
satisfy the real-time traffic data updating requirement on an
embedded system. However, the computation time required by
the power balance model is 80% less than the control-oriented
model. This indicates that the power balance model facilitates
optimal SOC trajectory generation, and is computationally
sufficient for rapid SOC trajectory calculation.

Denote the SOC error as e(t), thus,

e(t) = SOCp(t)− SOCc(t) (31)

where SOCp(t) and SOCc(t) are the SOC trajectories calcu-
lated from the power balance model and the control-oriented
model, respectively. It can be seen from Table II that both
models guarantee the requested terminal SOC constraint. The
average and maximal SOC errors between the power balance
model and control-oriented model remain within 0.03 and
0.05, which are 3% and 5% of the battery SOC full scale,
respectively. This suggests that the power balance model is
reasonably accurate for the optimal SOC trajectory calculation,
and therefore serves the SOC planning purpose at the top level
of Fig. 6. The resultant battery SOC trajectories of the 3/Mixed
driving trip testing are illustrated in Fig. 14. As can be seen,
the SOC trajectory of the power balance model follows the
control-oriented model well.

B. Energy Management Strategy Evaluation

The congestion period from 10:20 AM to 13:40 PM in the
obtained traffic flow data is chosen to evaluate the proposed
energy management strategy. Due to the experimental field’s
limited size, most of the individual trips are no more than ten
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Fig. 14. Comparison of SOC trajectory in the 3/Mixed case. From top to
bottom: SOC trajectories, the absolute SOC error |e| and the driving profile.
The average |e| is 0.0168 (1.68% of the battery SOC full scale).

miles long, which is shorter than the all-electric-range. In this
case, 24 arbitrarily selected individual driving trips are con-
catenated into six longer cycles for testing, as shown in Fig. 15,
and each testing cycle includes one or two traffic congestions.
The corresponding traffic conditions are assumed to update
sequentially. The SOC reference is computed simultaneously
by the controller. In practice, the system must access real-
time traffic information from the cloud/Internet, and the SOC
generation can therefore be performed in the cloud during this
process.

All of the real driving profiles are completely blind to all
the MPC simulations. The same RBF-NN velocity predictor
is used for short-term velocity prediction. For simplicity, the
control and prediction horizons are both set as 10 steps, as
a compromise between control performance and the com-
putation complexity. The average computation time of the
simulation process at each time instant (one second) is 0.6-0.7
seconds. Therefore, the proposed energy management strategy
is potentially implementable on an embedded system.

Based on different traffic data accessibility levels, five
situations are considered to evaluate the proposed supervised
predictive energy management strategy:

1) CDCS: When no traffic information is available, the
CDCS strategy is used for battery SOC planning.

2) Static@T: Static traffic information is available and the
vehicle obtains the traffic velocity information only once
at the beginning of the trip. The first generated SOC
reference is assumed to be relevant until the end of the
trip, and is indexed by time.

3) Static@S: Static traffic information is available and the
SOC reference is indexed by space.

4) Dynamic@T: Dynamic traffic information is available
and the vehicle obtains the traffic velocity information
every 300 seconds. The generated SOC reference is
indexed by time.
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Fig. 15. Six assembled driving cycles from 24 arbitrarily selected trips from
10:20 AM to 13:40 PM of the Mobile Century experiment data.

5) Dynamic@S: Dynamic traffic information is available,
and the SOC reference is indexed by space.

The resultant SOC trajectories of these five situations for
testing Trip 2 (from Fig. 15) are demonstrated in Fig. 16,
including deterministic DP as a benchmark. As can be seen,
the CDCS strategy consumes the battery energy within 900
sec, and then sustains SOC around 0.3 for the remainder of
the trip. In the Static@T scenario, the battery energy is not
completely consumed by the end of the trip. Thus, the terminal
battery SOC constraint is not satisfied. If the generated SOC
reference is indexed by space, such as in the Static@S case,
the terminal SOC constraint is satisfied. This is because the
driving cycle extracted from the traffic data has different time
length, but the same spatial length with the real driving cycle.
On the other hand, if the traffic status updates continuously, the
supervised predictive energy management can produce nearly
optimal performance. The SOC trajectory errors caused from
outdated traffic data can be corrected by updated data. The
terminal SOC requirement is satisfied in both the Dynamic@T
and Dynamic@S cases. The resultant battery SOC trajectory
for the Dynamic@S approach is nearly optimal with respect
to the DP benchmark, which can be clearly seen in Fig. 16.

The deviation between the final battery SOC and the de-
sired value has been compensated in the fuel consumption
calculations, denoted as Fuelc. Detailed simulation results
for Trip 2 are shown in Table III. As expected, the fuel
consumption of predictive energy management with dynamic
traffic information available is less than the CDCS strategy and
the static traffic information approaches. Namely, they achieve
95.1% (Dynamic@T) and 95.9% (Dynamic@S) fuel economy
optimality of the DP benchmark. It is also interesting to note
that a space-domain-indexed SOC reference consistently con-
sumes less fuel than the time-domain-indexed SOC reference,
in both the static and dynamic traffic information situations.

Simulation results for all six testing trips from Fig. 15 are
illustrated in Fig. 17, including the average value and standard
deviation of the fuel optimality and the terminal SOC. DP, with
full knowledge of the trip, achieves 100% fuel optimality and
absolute 0.3 terminal SOC for all tests. The CDCS strategy



10

TABLE III
SIMULATION RESULTS FOR TRIP 2

Type Terminal SOC Fuelc (g) Fuel Optimality

DDP 0.3000 628.5 100%
CDCS 0.2955 691.6 89.9%

Static@T 0.3911 712.2 86.7%
Static@S 0.2965 678.9 92.0%

Dynamic@T 0.2895 659.1 95.1%

Dynamic@S 0.2971 654.5 95.9%
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Fig. 16. Battery SOC trajectories of Trip 2. The Dynamic@T and Dy-
namic@S cases produce nearly optimal SOC trajectories.

maintains an average of 90% fuel optimality, and the terminal
SOC is always restrained around 0.3. Due to the poor accuracy
of the initial traffic flow velocity in estimating the actual
driving cycle, the Static@T approach performs worse than
the CDCS approach on average. In particular, the terminal
SOC has a relatively high variance around 0.3. By indexing
the SOC reference in space, Static@S guarantees the terminal
SOC constraint is respected with low variance. As a result,
the overall fuel economy is improved by 5% on average.

In the Dynamic@T situation, the deviation of the terminal
SOC is reduced by updating the traffic data every 300 seconds
compared with the Static@T approach. The terminal SOC
is restricted within an acceptable range between 0.3 and
0.35. More importantly, nearly 94% average fuel optimality
is achieved with dynamic traffic data enabled, which is a
considerable improvement considering the uncertainty of the
driving cycles. By indexing the SOC reference within the
spatial domain, the terminal SOC constraint is better respected
and the fuel consumption is further reduced in the Dynamic@S
case. This phenomenon is consistent with the results derived
from the static traffic situations.

The demonstrated results are conducted from a highway
congestion-involved driving scenario constructed by the Mo-
bile Century experiment database. Different results could be
observed with different driving trips or in different traffic
conditions used. However, the proposed predictive energy
management proves to be effective in achieving near optimal
fuel economy with traffic feedback data.
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Fig. 17. Average fuel optimality and terminal SOC results for all the testing
trips. Dynamic traffic information allows the proposed energy management
strategy to achieve nearly 95% fuel optimality while consistently ensuring
the terminal SOC value.

VI. CONCLUSIONS

This paper presents a predictive PHEV energy management
strategy that integrates real-time traffic flow velocity data. The
strategy is composed of a two-tiered scheme. A supervisory
SOC planning level rapidly generates an SOC trajectory from
traffic data for the terminal SOC constraints in the MPC
level. A power balance PHEV model is developed for this
upper-level. With this model, DP computes the optimal SOC
trajectory in real-time - at a rate commensurate with traffic
data update rates (300 sec). Simulation results show that the
predictive energy management strategy with dynamic traffic
data can achieve 94-96% fuel optimality of the deterministic
DP benchmark in a highway driving scenario, despite conges-
tion events. Future work involves validation of the proposed
energy management strategy through a hardware-in-the-loop
experiment, and considerations for battery health in the cost
function.
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