
Feature

Digital Object Identifier 10.1109/MCAS.2009.933854

Reinforcement
Learning and Adaptive
Dynamic Programming

for Feedback Control
Frank L. Lewis

and Draguna Vrabie

Abstract

Living organisms learn by
acting on their environ-
ment, observing the re-
sulting reward stimulus,
and adjusting their actions
accordingly to improve
the reward. This action-
based or Reinforcement
Learning can capture no-
tions of optimal behavior
occurring in natural sys-
tems. We describe math-
ematical formulations for
Reinforcement Learning
and a practical implemen-
tation method known as
Adaptive Dynamic Pro-
gramming. These give us
insight into the design of
controllers for man-made
engineered systems that
both learn and exhibit op-
timal behavior.

 32 IEEE CIRCUITS AND SYSTEMS MAGAZINE 1531-636X/09/$26.00©2009 IEEE THIRD QUARTER 2009

©
 B

R
A

N
D

 X
 P

IC
T

U
R

E
S

THIRD QUARTER 2009 IEEE CIRCUITS AND SYSTEMS MAGAZINE 33

Frank L. Lewis and Draguna Vrabie are with the Automation & Robotics Research Institute, The University of Texas at Arlington.

Reinforcement Learning and

Optimality in Nature

E
very living organism interacts with its environment

and uses those interactions to improve its own ac-

tions in order to survive and increase. Charles

 Darwin showed that species modify their actions based

on interactions with the environment over long time

scales, leading to natural selection and survival of the

fittest. Adam Smith showed that modification of the ac-

tions of corporate entities based on interactions on the

scale of a global economy is responsible for the relative

balance and wealth of nations. Ivan Pavlov used simple

reinforcement and punishment stimuli to modify the be-

havior patterns of dogs by inducing conditional reflexes.

We call modification of actions based on interac-

tions with the environment reinforcement learning

(RL) [Mendel 1970]. There are many types of learning

including supervised learning, unsupervised learning,

etc. Reinforcement learning refers to an actor or agent

that interacts with its environment and modifi es its

actions, or control policies, based on stimuli received

in response to its actions. This is based on evaluative

information from the environment and could be called

action-based learning. RL implies a cause and effect re-

lationship between actions and reward or punishment.

It implies goal directed behavior at least insofar as the

agent has an understanding of reward versus lack of

reward or punishment.

The RL algorithms are constructed on the idea that

successful control decisions should be remembered, by

means of a reinforcement signal, such that they become

more likely to be used a second time. Although the idea

originates from experimental animal learning, where it

has been observed that the dopamine neurotransmitter

acts as a reinforcement informational signal which fa-

vors learning at the level of the neuron (see e.g., [Shultz

et al. 1997, 2004], [Doya 2001]), RL is strongly connected

from a theoretical point of view with direct and indirect

adaptive optimal control methods.

One class of reinforcement learning methods is based

on the Actor-Critic structure [Barto, Sutton, Anderson

1983], where an actor component applies an action or

control policy to the environment, and a critic compo-

nent assesses the value of that action. Based on this as-

sessment of the value, various schemes may then be used

to modify or improve the action in the sense that the new

policy yields a value that is improved over the previous

value. The actor-critic structure implies two steps: policy

evaluation by the critic followed by policy improvement.

The policy evaluation step is performed by observing

from the environment the results of current actions.

The limits within which organisms can survive are

often quite narrow and the resources available to most

species are meager. Therefore, most organisms act in

an optimal fashion to conserve resources yet achieve

their goals. Optimal actions may be based on minimum

fuel, minimum energy, minimum risk, maximum reward,

and so on. Therefore, it is of interest to study reinforce-

ment learning systems having an actor-critic structure

wherein the critic assesses the value of current policies

based on some sort of optimality criteria [Werbos 1974,

1989, 1991, 1992], [Bertsekas 1996], [Sutton and Barto

1998], [Cao 2009]. In the optimal RL algorithms case

the learning process is moved to a higher level having

no longer as object of interest the details of a system’s

dynamics, but a performance index which quantifies

how close to optimality does the closed loop control

system operate. In such a scheme, reinforcement learn-

ing is a means of learning optimal behaviors by observ-

ing the response from the environment to nonoptimal

control policies.

Feedback Control Theory is the study of means of

developing control systems for human engineered sys-

tems to endow them with guaranteed performance and

safety. Included are control systems for aircraft, ships,

race cars, robot systems, industrial processes, building

temperature and climate regulation systems, and many

more. It is often of interest to mimic nature and design

control systems that are optimal in some sense of ef-

fectively achieving required performance without using

undue amounts of resources.

The purpose of this article is to show the usefulness

of reinforcement learning techniques, specifically a fam-

ily of techniques known as Approximate or Adaptive

Dynamic Programming (ADP) (also known as Neurody-

namic Programming), for the feedback control of human

engineered systems. Reinforcement learning techniques

have been developed by the Computational Intelligence

Community. Therefore, this requires bringing together

ideas from two communities-Control Systems Engineer-

ing and Computational Intelligence. Since reinforcement

learning involves modifying the control policy based on

responses from the environment, one has the initial feel-

ing that it should be closely related to adaptive control,

a family of successful control techniques held in high

regard in Control Systems Community.

The intention here is to present the main ideas and al-

gorithms of reinforcement learning Approximate Dynam-

ic Programming, not give a literature survey or historical

development. Very good surveys are given in [Si et al.

2004], the recent IEEE Transactions on SMC Part B spe-

cial issue [Lewis, Lendaris, Liu 2008], [Balakrishnan et al.

 34 IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2009

2008], and the recent article [Wang, Zhang, Liu 2009].

A biography is included here for further reference by

the reader.

Dynamical Systems and

Optimal Feedback Control

In the study and design of feedback control systems it

is required to provide design algorithms and analysis

techniques that yield guaranteed provable performance

and safety margins. Feedback controllers without per-

formance, stability, and robustness guarantees will not

be accepted by industry. A standard means for providing

such guarantees is to use the framework and tools pro-

vided by mathematics. Thus, to be precise, we should

like to capture the ideas about reinforcement learning

in some sort of mathematical formulation. One such for-

mulation is the framework of Markov decision processes

(MDP). MDP have been extensively used to study and

embody reinforcement learning systems. In MDP, the

state spaces and action spaces are generally discrete

(i.e. state and action take on only certain allowed dis-

crete values). However, human engineered systems de-

velop and move through time and generally have states

and actions that reside in continuous spaces. A broad

class of engineered systems can be effectively described

by ordinary differential equations, since these describe

the development of a system through time based on its

current status as well as any inputs received, such as

commands, disturbances, and so on.

Dynamical Systems

Physical analysis of dynamical systems using Lagrang-

ian mechanics, Hamiltonian mechanics, etc. produces

system descriptions in terms of nonlinear ordinary dif-

ferential equations. Particularly prevalent are nonlinear

ODEs in the state-space form x
#
5 f 1x, u 2 , with the state

x 1 t 2 [Rn and control input u 1 t 2 [Rm residing in contin-

uous spaces. Many systems in aerospace, the automo-

tive industry, process industry, robotics, and elsewhere

are conveniently put into this form. In addition to being

continuous-state space and continuous-input space sys-

tems, in contrast to MDP which have discrete states and

actions, these dynamics are also continuous-time (CT)

systems. For nonlinear systems, the PI algorithm was

first developed by Leake and Liu (1967). Three decades

later it was introduced in (Beard, Saridis, and Wen,

1997) as a feasible adaptive solution to the CT optimal

control problem.

The bulk of research in ADP has been conducted for

systems that operate in discrete-time (DT). Therefore, we

cover DT systems first, then continuous-time systems.

Here, we first consider nonlinear DT systems and out-

line DT optimal control, developing some computational

intelligence notions including policy iteration and value

iteration. Then, we illustrate using the linear quadratic

regulator (LQR) case to show that these notions are in

fact familiar in the feedback control theory setting. After

that, we proceed to develop online reinforcement learn-

ing schemes for DT dynamical systems. These latter

ideas have not been fully exploited in the control sys-

tems community.

Optimal Control for

Discrete-Time Systems

There are standard methods for sampling or discretizing

nonlinear continuous-time state space ODEs to obtain

sampled data forms that are convenient for computer-

based control [Lewis and Syrmos 1995]. The resulting

systems unfold in discrete time and are generally of the

state-space form xk11 5 F 1xk, uk 2 with k the discrete time

index. These systems satisfy the 1-step Markov property

since their state at time k 1 1only depends on the state

and inputs at the previous time k.

For ease of analysis one often considers a class of

discrete-time systems described by nonlinear dynamics

in the affine state space difference equation form

 xk11 5 f 1xk 2 1 g 1xk 2uk (1)

with state xk [Rn and control input uk [Rm. The analy-

sis of such forms is convenient and can be generalized

to the general sampled data form xk11 5 F 1xk, uk 2 .
A control policy is defined as a function from state

space to control space h 1 . 2 :Rn S Rm. That is, for every

state xk, the policy defines a control action

 uk 5 h 1xk 2 . (2)

Such mappings are also known as feedback controllers.

An example policy is a linear state-variable feedback

uk 5 h 1xk 2 5 2 Kxk. Another example policy is a transfer

function dynamical controller design. In the feedback

controls community, the feedback control policy can be

designed using many methods including optimal control

via solution of the Riccati equation, adaptive control,

H-infinity control, classical frequency domain control, etc.

In reinforcement learning, the control policy is learned

in real time based on stimuli received from the environ-

ment. Clearly, this learning sort of controller design is re-

lated to notions of adaptive control, as we shall see.

System or Environment? In reinforcement learning,

the actor is the agent that generates the control policy.

That is, the actor is mathematically described by the

policy (2), which has the state x 1 t 2 as input and the

control u 1 t 2as output. Everything outside the actor is

considered to be the environment. Thus, the system (1)

is considered as part of the environment, as are all

 disturbances and extraneous effects. In fact, in standard

THIRD QUARTER 2009 IEEE CIRCUITS AND SYSTEMS MAGAZINE 35

applications of reinforcement learning, the system dy-

namics is not even considered, and as part of the en-

vironment, no explicit model of the dynamics, such as

(1), is even used. Reinforcement learning has enjoyed

rather remarkable successes for complex systems with

unknown dynamics, including the backgammon player

of Tesauro, and the design of controllers that can back

up truck tractor/trailer rigs with multiple concatenated

trailers. However, not specifically considering the dy-

namics also makes it impossible to provide explicit

proofs of stability and performance such as are required

for acceptance by the Control Systems Community.

Goal Directed Optimal Performance

The notion of goal-directed optimal behavior is captured

by defining a performance measure or cost function

 Vh 1xk 2 5 a
`

i5k

gi2kr 1xi, ui 2 (3)

with 0 , g # 1 a discount factor and uk 5 h 1xk 2 a pre-

scribed feedback control policy. This is known as the

cost-to-go and is a sum of discounted future costs from

the current time k into the infinite horizon future. The

discount factor reflects the fact that we are less con-

cerned about costs acquired further into the future.

Function r 1xk, uk 2 is known as the utility, and is a mea-

sure of the one-step cost of control. This can be selected

based on minimum-fuel considerations, minimum ener-

gy, minimum risk, etc. For instance, a standard form is

the quadratic energy function r 1xk, uk 2 5 xk
TQxk 1 uk

TRuk

or the more general form

 r 1xk, uk 2 5 Q 1xk 2 1 uk
TRuk, (4)

which we use at times for illustration. We require

Q 1x 2 , R to be positive definite so that the cost function

is well defined.

We assume the system is stabilizable on some set

V [Rn, that is there exists a control policy uk 5 h 1xk 2
such that the closed-loop system xk115 f 1xk 2 1 g 1xk 2h 1xk 2
is asymptotically stable on V. A control policy uk 5 h 1xk 2
is said to be admissible if it is stabilizing and yields a

finite cost Vh 1xk 2 .
For any admissible policy uk 5 h 1xk 2 , we call Vh 1xk 2 its

cost or value. Policies with smaller values are deemed to

be better than others. It is important to note that, given

any admissible policy, its value may be determined by

evaluating the infinite sum (3). This may be done by ex-

plicit computation in some cases, or by simulation using

a digital computer, or by actual evaluation in real-time by

observing the trajectories of the closed-loop system.

The means by which the value or cost of a control pol-

icy is determined is one of the key differences between

feedback control theory and reinforcement learning.

The objective of optimal control theory is to select

the policy that minimizes the cost to obtain

 V * 1xk 2 5 min
h1 # 2 aa

`

i5k

gi2kr 1xi, h 1xi 2 2 b (5)

which is known as the optimal cost, or optimal value.

Then, the optimal control policy is given by

 h* 1xk 2 5 arg min
h1 # 2 aa

`

i5k

gi2kr 1xi, h 1xi 2 2 b (6)

A short-sighted or myopic planner would only be

concerned about minimizing the one-step cost or util-

ity r 1xk, uk 2 . However, the problem is to minimize not

simply the one-step cost, but the sum of all discounted

costs, or the cost-to-go. This problem is generally very

difficult or even impossible to solve exactly for general

nonlinear systems.

Note that in computational intelligence, (3) is often in-

terpreted as a reward, and the objective is to maximize it.

Various methods have been developed to simplify

the solution of this optimization problem. Some of these

are known within the Control Systems Community and

some within the Computational Intelligence Community.

We shall discuss:

Bellman’s optimality principle and dynamic pro- ■

gramming

Policy iteration and value iteration ■

Various forms of reinforcement learning based on ■

temporal differences and ADP.

Bellman’s Optimality Principle and

Dynamic Programming

By writing (3) as

 Vh 1xk 2 5 r 1xk, uk 2 1 g a
`

i5k11

gi2 1k112r 1xi, ui 2 , (7)

one sees that a difference equation equivalent to is

given by

 Vh 1xk 2 5 r 1xk, h 1xk 2 2 1 gVh 1xk11 2 , Vh 10 2 5 0. (8)

That is, instead of evaluating the infinite sum (3), one

can solve the difference equation to obtain the value of

using a current policy uk 5 h 1xk 2 .
This is a nonlinear Lyapunov equation known as

the Bellman equation. Evaluating the value of a current

 policy using the Bellman equation is the first key con-

cept in developing reinforcement learning techniques,

as we shall see. Then, we shall show how to solve the

Bellman equation on-line in real-time using observed

data from the system trajectories.

The DT Hamiltonian can be defi ned as

 H 1xk, h 1xK 2 , DVk 2 5 r 1xk, h 1xk 2 21gVh 1xk11 22Vh 1xk 2 , (9)

 36 IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2009

where DVk 5 gVh 1xk11 2 2 Vh 1xk 2 is the forward difference

operator. The Hamiltonian function captures the energy

content along the trajectories of a system as reflected in

the desired optimal performance. The Bellman equation

requires that the Hamiltonian be equal to zero for the

value associated with a prescribed policy.

The optimal value can be written using the Bellman

equation as

 V
* 1xk 2 5 min

h1 # 2
1r 1xk, h 1xk 2 2 1 gVh 1xk11 2 2 . (10)

This optimization problem is still difficult to solve.

Bellman’s principle [Bellman 1957] is a cornerstone

of optimal control, and states that “An optimal policy

has the property that no matter what the previous deci-

sions (i.e. controls) have been, the remaining decisions

must constitute an optimal policy with regard to the

state resulting from those previous decisions”. In terms

of equations, this means that

 V * 1xk 2 5 min
h1 # 2
1r 1xk, h 1xk 2 2 1 gV * 1xk11 2 2 . (11)

This is known as the Bellman optimality equation, or the

discrete-time Hamilton-Jacobi-Bellman (HJB) equation.

One then has the optimal policy as

 h* 1xk 2 5 arg min
h1.2

1r 1xk, h 1xk 2 2 1 gV * 1xk11 2 2 . (12)

Determining optimal controllers using these equations is

considerably easier than by using (10), since they contain

the optimal value inside the minimization argument.

Since one must know the optimal policy at time k 1 1

to (11) use to determine the optimal policy at time k,

 Bellman’s Principle yields a backwards-in-time procedure

for solving the optimal control problem. It is the basis for

Dynamic Programming algorithms in extensive use in con-

trol system theory, Operations Research, and elsewhere.

These are by nature off-line planning methods. An example

of such a procedure in feedback controls design is Riccati

equation design for the LQR problem, which involves off-

line solution of the Riccati equation given known system

dynamics (see below). DP methods generally require the

full knowledge of the system dynamical equations. That is

f 1x 2 , g 1x 2 must be known.

Policy Iteration, Value Iteration,

and Fixed Point Equations

In contrast to dynamic programming off-line designs, we

seek reinforcement learning schemes for on-line learning in

real time, ultimately without knowing the system dynamics

f 1x 2 , g 1x 2 . Therefore, we next show how to exploit the no-

tion that the Bellman equation and the Bellman optimality

equation (11) are fixed point equations to develop forward-

in-time methods for solving the optimal control problem.

We are now in a position to use these constructions as

a foundation for reinforcement learning optimal control.

Consider any given admissible policy uk 5 h 1xk 2 with val-

ue Vh 1xk 2 . Motivated, though not justified, by (12) deter-

mine a new policy from this value using the operation

 h r 1xk 2 5 arg min
h1 # 2

1r 1xk, h 1xk 2 2 1 gVh 1xk11 2 2 . (13)

This procedure is justified in Bertsekas [1996], where it

is shown that the new policy h r 1xk 2 is improved in that

it has value Vhr 1xk 2 less than or equal to the old value

Vh 1xk 2 . This is known as the one step improvement prop-

erty of rollout algorithms. That is, the step (13) has giv-

en an improved policy.

This suggests the following iterative method for de-

termining the optimal control, which is known as Policy

Iteration [Leake and Liu 1967], [Sutton and Barto 1998],

[Bertsekas 1996]. See Figure 3.

Policy Iteration (PI) Algorithm

Initialize. Select any admissible (i.e. stabilizing) con-

trol policy h0 1xk 2
Policy Evaluation Step. Determine the value of the

current policy using the Bellman Equation

 Vj11 1xk 2 5 r 1xk, hj 1xk 2 2 1 gVj11 1xk11 2 . (14)

Policy Improvement Step. Determine an improved

policy using

 hj11 1xk 2 5 arg min
h1 # 2

1r 1xk, h 1xk 2 2 1 gVj11 1xk11 2 2 . (15)

If the utility has the special form and the dynamics are

(1), then the policy improvement step looks like

 hj11 1xk 2 5 2
g

2
R21gT 1xk 2=Vj11 1xk11 2 , (16)

where =V 1x 2 5 'V 1x 2 /'x is the gradient of the value func-

tion, interpreted here as a column vector.

Note that the initial policy in PI must be admissible,

which requires that it be stabilizing. It has been shown

by [Leake and Liu 1967], [Howard 1960] and others that

this algorithm converges under certain conditions to

the optimal value and control policy, that is, to the solu-

tion of (11), (12).

The evaluation of the value of the current policy us-

ing the Bellman Equation (14) amounts to determining

the value of using the policy hj 1xk 2 starting in all cur-

rent states xk. This is called a full backup in [Sutton and

Barto 1998] and can involve significant computation.

In fact, it can be shown that the Bellman equation is a

fixed point equation. That is, given an admissible policy

uk 5 h 1xk 2 , has a unique fixed point Vh 1xk 2 , and the fol-

lowing contraction map

 Vi11 1xk 2 5 r 1xk, h 1xk 2 2 1 gVi 1xk11 2
can be iterated starting with any value V 0 1xk 2 , and there

results in the limit Vi 1xk 2 S Vh 1xk 2 . Therefore one can re-

place the policy iteration step (14) by

THIRD QUARTER 2009 IEEE CIRCUITS AND SYSTEMS MAGAZINE 37

 Vi11 1xk 2 5 r 1xk, hj 1xk 2 2 1 gVi 1xk11 2 , for i 5 1, 2, … , (17)

where the iteration in i is carried out with the same

policy hj 1 # 2 until convergence. Then, Vi 1x 2 S Vj11 1x 2 as

i S `. One generally selects at step j V 0 1xk11 2 5 Vj 1xk11 2 .
This can be called Iterative Policy Iteration [Sutton and

Barto 1998]. It is noted that each step in (17) is far sim-

pler to implement that a single step of (14), as we see

below when we consider the LQR case.

This suggests further the idea of iterating (17) for only

K steps, for a fixed finite integer K. That is, only K steps are

taken towards evaluating the value of the current policy.

This is known as Generalized Policy Iteration in [Sutton and

Barto 1998]. In GPI, at each policy update step, only a par-

tial backup is done of the values. An extreme case is to take

K 5 1, which gives the next algorithm, known as Value Itera-

tion. There, only a 1-step backup of values is performed.

Value Iteration (VI) Algorithm

Initialize. Select any control policy h0 1xk 2 , not neces-

sarily admissible or stabilizing.

Value Update Step. Update the value using

 Vj11 1xk 2 5 r 1xk, hj 1xk 2 2 1 gVj 1xk11 2 . (18)

Policy Improvement Step. Determine an improved

policy using

 hj11 1xk 2 5 arg min
h1 # 2

1r 1xk, h 1xk 2 2 1 gVj11 1xk11 2 2 . (19)

It is important to note that now, the old value is used on the

right-hand side of (14), in contrast to the PI step (14). It has

been shown that VI converges under certain situations.

Note that VI does not require an initial stabilizing policy.

In fact, on further thought, it is seen that Value Iteration

is based on the fact that the Bellman Optimality Equation

(11) is also a fixed point equation. The interleaved steps

of value update and policy improvement are the means of

iterating the contraction map associated to (11).

It is important to note that PI requires at each step

the solution of (14), which is a nonlinear Lyapunov equa-

tion. This solution is difficult for general nonlinear sys-

tems. On the other hand, VI relies on the solution of (18),

which is simply a recursion equation.

Generally, fixed point equations can be used, with

suitable formulation, as a basis for on-line reinforcement

learning algorithms that learn by observing data accrued

along system trajectories. We shall shortly develop re-

inforcement learning schemes based on these notions.

First, to pin down ideas, let us consider the LQR case.

The DT Linear Quadratic

Regulator (LQR) Case

The main purpose of this section is to show that the rein-

forcement learning notions of Policy Iteration and Value

Iteration are in fact in line with familiar ideas in feedback

control systems. A second purpose is to give explicit for-

mulae for the above constructions for an important class

of problems that illustrates further their meaning.

A large class of important discrete-time (DT) sys-

tems can be described in the linear time invariant state-

space form

 xk11 5 Axk 1 Buk (20)

with state xk [Rn and control input uk [Rm. The control

policies of interest are then state variable feedbacks of

the form

 uk 5 h 1xk 2 5 2 Kxk (21)

with the control policy a constant feedback gain matrix

K to be determined.

Given a prescribed policy, the cost function is the

sum of quadratic functions

Vh 1xk 2 5a
`

i5k

1xi
TQxi 1 ui

TRui 2
 5a

`

i5k

xi
T 1Q 1KTRK 2xi ;VK 1xk 2 , (22)

which has utility r 1xk, uk 2 5 xk
TQxk 1 uk

TRuk with weight-

ing matrices Q 5 QT $ 0, R 5 RT . 0. It is assumed that

(A, B) is stabilizable, i.e., there exists a feedback gain

matrix K such that the closed-loop system

 xk11 5 1A 2 BK 2xk ; Acxk (23)

is asymptotically stable. It is also assumed that 1A, "Q 2
is detectable, i.e. "Q xk S 0 implies that xk S 0.

Optimal Control Solution for the DT LQR

The objective of this design is to select the state feed-

back gain K, i.e. the control policy, to minimize the

cost-to-go Vh 1xk 2 5 VK 1xk 2 for all current states xk. This

is called the linear quadratic regulator (LQR) problem

[Lewis and Syrmos 1995].

It can be shown that the optimal value for the LQR is

quadratic in the current state so that

 V * 1xk 2 5 xk
TPxk (24)

for some matrix P, which is to be determined. Therefore,

the Bellman equation for the LQR is

 xk
TPxk 5 xk

TQxk 1 uk
TRuk 1 xk11

T Pxk11. (25)

In terms of the feedback gain this can be written as

 xk
TPxk 5 xk

T 1Q 1 KTRK 1 1A 2 BK 2TP 1A 2 BK 2 2xk. (26)

Since this must hold for all current states xk one has

 1A 2 BK 2T P 1A 2 BK 2 2 P 1 Q 1 KTRK 5 0. (27)

 38 IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2009

This matrix equation is linear in P and is known as a

Lyapunov equation when K is fixed. Solving this equation

given a prescribed stabilizing gain K yields P 5 PT . 0

such that VK 1xk 2 5 xk
TPxk is the cost of using the policy

K. That is,

 VK 1xk 2 5 a
`

i5k

xi
T 1Q 1 KTRK 2xi 5 xk

TPxk. (28)

The equations and are easily solved for the LQR. Write

the Bellman equation as

 xk
TPxk 5 xk

TQxk 1 uk
TRuk 1 1Axk 1 Buk 2TP 1Axk 1 Buk 2 , (29)

whence the minimization is easily performed by differ-

entiating with respect to uk to obtain

 Ruk 1 BTP 1Axk 1 Buk 2 5 0

or

 uk 521R 1 BTPB 221BTPAxk, (30)

so the optimal feedback gain is

 K 5 1R 1 BTPB 221BTPA. (31)

Substituting this into the Bellman equation (29) and

simplifying yields the DT HJB equation

 ATPA 2 P 1 Q 2 ATPB 1R 1 BTPB 221BTPA 5 0. (32)

This equation is quadratic in P and is known as the

Riccati equation.

To solve the DT LQR optimal control problem, one first

solves the Riccati equation for P, then the optimal value is

given by V * 1xk 2 5 xk
TPxk and the optimal policy by (31).

On-line learning vs. off-line planning solution

of the LQR. It is important to note the following key

point. In going from the formulation (25) of the Bell-

man equation to the formulation (27), which is the Ly-

apunov equation, one has performed two steps. First,

the system dynamics are substituted for xk11 to yield

(26), next the current state xk is cancelled to obtain

(27). These two steps make it impossible to apply

real-time online reinforcement learning methods to

find the optimal control, which we shall do in the next

section. Because of these two steps, optimal controls

design in the Control Systems Community is almost

universally an off-line procedure involving solutions

of Riccati equations, where full knowledge of the sys-

tem dynamics 1A, B 2 is required.

Policy Iteration and Value Iteration

for the DT LQR

We will now see that Policy Iteration and Value Iteration

are actually well known in the Control Systems Commu-

nity, though there they are called something else, name-

ly Hewer’s method for solving the DT Riccati equation

[Hewer 1971].

For the LQR, Bellman’s equation (8) is written as (25)

and hence is equivalent to the Lyapunov equation (32).

Therefore, in the Policy Iteration Algorithm, the policy

evaluation step for LQR is

 1A 2 BKj 2TPj11 1A 2 BKj 2 2 Pj11 1 Q 1 Kj
TRKj 5 0. (33)

and the policy update is

 Kj11 5 1R 1 BT Pj11B 221 BT Pj11A. (34)

However, iteration of these two equations is exactly

Hewer’s algorithm [Hewer 1971] to solve the Riccati

equation (32). Hewer proved that it converges under the

stabilizability and detectability assumptions.

In the Value Iteration Algorithm, the policy evalua-

tion step for LQR is

 Pj11 5 1A 2 BKj 2TPj 1A 2 BKj 2 1 Q 1 Kj
TRKj. (35)

and the policy update (29) is (34). However, iteration

of these two equations has been studied by Lancaster

and Rodman [1995], who showed that it converges to the

 Riccati equation solution under the stated assumptions.

Note that Policy Iteration involves full solution of a

Lyapunov equation (33) at each step and requires a sta-

bilizing gain Kj at each step. This is called a full backup

in reinforcement learning terms. On the other hand, Val-

ue Iteration involves only a Lyapunov recursion (35) at

each step, which is very easy to compute, and does not

require a stabilizing gain. This is called a partial backup

in reinforcement learning.

The recursion (35) can be performed even if Kj is not

stabilizing. If Kj is in fact stabilizing, then iterating the

Lyapunov recursion (35), with a fixed feedback gain Kj,

until convergence provides the solution to the Lyapunov

equation (33).

Reinforcement Learning suggests another algorithm

for solving the Riccati equation, namely Generalized

Policy Iteration. In GPI, one would perform the following

at each step.

Every living organism interacts with its environment and uses those interactions
to improve its own actions in order to survive and increase.

THIRD QUARTER 2009 IEEE CIRCUITS AND SYSTEMS MAGAZINE 39

Generalized Policy Algorithm for LQR

Initialize. Select any control policy K0, not necessar-

ily admissible or stabilizing.

Value Update Step. At step j, update the value using

Pj
i11 5 1A 2 BKj 2TPj

i 1A2BKj 21 Q 1 Kj
TRKj,

 i 50, 1, ... , K 2 1 (36)

for some finite K, setting as initial condition Pj
0 5 Pj.

Set Pj11 5 Pj
K.

Policy Improvement Step. Determine an improved

policy using

 Kj11 5 1R 1 BTPj11B 221BTPj11A. (37)

This algorithm takes K steps towards solving the

 Lyapunov equation at each iteration j. That is, the value

update step in GPI consists of K steps of the recursion

(35) using the same fixed gain. Setting K 5 1 yields Value

Iteration, i.e. (35), whereas setting K 5 ` (i.e. perform

(36) until convergence) yields Policy Iteration, which

solves the Lyapunov equation (33).

Reinforcement Learning, ADP, and

Adaptive Control

The optimal control solution using dynamic program-

ming is a backwards-in-time procedure. Therefore, it can

be used for off-line planning but not online learning. We

have seen that the Bellman equation (8) leads to several

iterative methods for learning the solution of the opti-

mal control equation without solving the HJB equation,

including Policy Iteration and Value Iteration. In this

section we shall see how to formulate these as on-line

real-time reinforcement learning methods for solving the

optimal control problem using data measured along sys-

tem trajectories [Sutton and Barto 1998]. These methods

are broadly called approximate dynamic programming

(ADP) [Werbos 1974, 1989, 1991, 1992] or neurodynamic

programming (NDP) [Bertsekas 1996]. There are two key

ingredients: temporal difference (TD) error and value

function approximation (VFA).

The Bellman equation is a fixed point equation which

can be viewed as a consistency equation that the value

must satisfy if it is consistent with the current control

policy. Generally, fixed point equations can be used,

with suitable formulation, as a basis for reinforcement

learning algorithms. Let us now develop on-line rein-

forcement learning schemes based on these notions.

ADP-Temporal Difference (TD) and

Value Function Approximation (VFA)

Approximate Dynamic Programming (ADP), or Neuro-

dynamic Programming (NDP), is a practical method for

determining the optimal control solution online forward

in time by using measured system data along the sys-

tem trajectories. It is based on providing methods for

solving the dynamic programming problem forward in

time in real-time and for approximating the value func-

tion. References are the work of Sutton and Barto [1998],

 Werbos [1974, 1989, 1991, 1992], and Bertsekas [1996].

Temporal Difference (TD) Error. To turn these con-

cepts into forward-in-time online solution methods,

based on the Bellman equation define a time-varying

residual equation error as

 ek 5 r 1xk, h 1xk 2 2 1 gVh 1xk11 2 2 Vh 1xk 2 . (38)

One notes that the right-hand side of this is the DT Ham-

iltonian function. Function ek is known as the tempo-

ral difference error. If the Bellman equation holds, the

TD error is zero. Therefore, for a fixed control policy

u 5 h 1x 2one may solve the equation ek 5 0 at each time

k for the value function Vh 1 # 2 that is the least-squares

solution to the TD equation

 0 5 r 1xk, h 1xk 2 2 1 gVh 1xk11 2 2 Vh 1xk 2 . (39)

This yields the best approximation to the value correspond-

ing to using the current policy, i.e. to the summation (3).

The TD error can be considered as a prediction error

between predicted performance and observed perfor-

mance in response to an action applied to the system.

See Figure 1.

Figure 1. Reinforcement learning applies an action command
and observes the resulting behavior or reward. The differ-
ence between the predicted performance and the observed
reward plus the current estimate of future behavior is used
to modify the action commands to make this difference
smaller. This is captured formally in the Bellman Equation.

Observed
Behavior/Reward

Current Estimate
of Future Behavior

Prediction Error

Action Predicted
Performance

The means by which the value or cost of a control policy is determined
is one of the key differences between feedback control theory and

reinforcement learning.

 40 IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2009

Solving the TD equation amounts to solving a non-

linear Lyapunov equation on line and without knowing

the system dynamics, but using only data measured along

the system trajectories. Unfortunately, the TD equation is

diffi cult to solve for general nonlinear systems.

Value Function Approximation (VFA). To provide a

practical means for solving the TD equation, one may

approximate the value function Vh 1 . 2 using a paramet-

ric approximator. This has been called Approximate

Dynamic Programming (ADP) by Werbos [1974, 1989,

1991, 1992] and neurodynamic programming (NDP) by

Bertsekas [1996], both of whom used neural networks

as the approximators.

To motivate this approach, let us consider VFA for

the LQR case. In LQR, one knows that the value of any

admissible control policy uk 5 2Kxk is quadratic in the

state, i.e. holds for some matrix P. Substituting into

yields the LQR TD error

 ek 5 xk
TQxk 1 uk

TRuk 1 xk11
T Pxk11 2 xk

TPxk. (40)

This equation is linear in the unknown parameter ma-

trix P.

To further simplify the TD equation, use the Kroneck-

er product to write

 VK 1xk 2 5 xk
TPxk 5 1vec 1P 2 2T 1xk # xk 2 ; pTxk (41)

with # the Kronecker product and vec(P) the vector

formed by stacking the columns of matrix P. Note that

xk 5 xk # xk is the quadratic polynomial vector con-

taining all possible products of the n components of xk.

Noting that P is symmetric and has only n 1n 1 1 2 /2 inde-

pendent elements, one removes the redundant terms in

xk # xk to define a quadratic basis set xk with n 1n 1 1 2 /2
independent elements. The unknown parameter vector is

p, the elements of matrix P.

Using these constructions, the TD error is written as

ek 5 xk
TQxk 1 uk

TRuk 1 pTxk11 2 pTxk

 5 r 1xk, uk 2 1 p Txk11 2 pT xk. (42)

In the LQR case, a complete basis set for the value func-

tion Vh 1xk 2 is provided by the quadratic functions in the

components of xk. In the nonlinear case one assumes

that the value is sufficiently smooth. Then, according to

the Weierstrass higher order approximation Theorem,

there exists a dense basis set 5fi 1x 2 6 such that

Vh 1x 2 5 a
`

i51

wiwi 1x 2 5 a
L

i51

wiwi 1x 2 1 a
`

i5L11

wiwi 1x 2
 ; WTf 1x 2 1 eL 1x 2 , (43)

where basis vector f 1x 2 5 3w1 1x 2 w2 1x 2 c wL 1x 2 4:
Rn S RL and eL 1x 2 converges uniformly to zero as the num-

ber of terms retained L S `. In the Weierstrass Theorem,

standard usage takes a polynomial basis set. In the neu-

ral network community, approximation results have been

shown for various other basis sets including sigmoid,

hyperbolic tangent, Gaussian radial basis functions, etc.

There, standard results show that the NN approximation

error eL 1x 2 is bounded by a constant on a compact set. L

is referred to as the number of hidden-layer neurons.

VFA makes several contributions to reinforcement

learning. In learning the value function by reinforcement

learning methods, it is necessary to store the optimal

value and the optimal control as a function of the state

vector x [Rn. In Markov Decision Process applications,

which are discrete-state systems, e.g., the state can take

on only a finite number of prescribed discrete values,

this leads to the so-called curse of dimensionality. In

CoD, as the number of states and the number of allowed

values increases, more and more information must be

store, generally in look up tables. However, using value

function approximation (VFA), where the critic and, if

desired, the actor are parameterized using function ap-

proximators, this CoD problem is mitigated.

ADP- On-Line Reinforcement

Learning Optimal Control

Assuming the approximation

 Vh 1x 2 5 WTf 1x 2 , (44)

one substitutes into the Bellman TD equation to obtain

 ek 5 r 1xk, h 1xk 2 2 1 gW Tf 1xk11 2 2 W Tf 1xk 2 . (45)

The equation ek 5 0 is a fixed point equation. It is a

consistency equation that is satisfied at each time k

for the value Vh 1 . 2 corresponding to the current policy

u 5 h 1x 2 . As such, iterative procedures for solving the

TD equation may be used, including Policy Iteration and

Value Iteration.

The usual assumptions made in deriving the Riccati Equation make
it impossible to use online learning techniques for the design of

optimal feedback control systems.

THIRD QUARTER 2009 IEEE CIRCUITS AND SYSTEMS MAGAZINE 41

On-Line Policy Iteration Algorithm

Initialize. Select any admissible (i.e., stabilizing) con-

trol policy h0 1xk 2 .
Policy Evaluation Step. Determine the least-squares

solution Wj11 to

 Wj11
T 1f 1xk 2 2 gf 1xk11 2 2 5 r 1xk, hj 1xk 2 2 . (46)

Policy Improvement Step. Determine an improved

policy using

 hj11 1xk 2 5 arg min
h1.2

1r 1xk, h 1xk 2 2 1 gWj11
T w 1xk11 2 2 . (47)

If the utility has the special form (4) and the dynamics

are (1), then the policy improvement step looks like

 hj11 1xk 2 5 2
g

2
R21gT 1xk 2=fT 1xk11 2Wj11, (48)

where =f 1x 2 5 'f 1x 2 /'x [RL3n is the Jacobian of the

activation function vector.

Note that is a scalar equation, whereas the unknown

parameter vector Wj11 [RL has L elements. At time

k11 one measures the previous state xk, the control

uk 5 hj 1xk 2 , the next state xk11, and computes the utility

r 1xk, hj 1xk 2 2 . This gives one scalar equation. This is re-

peated for subsequent times using the same policy hj 1 . 2
until one has at least L equations, at which point one

may determine the LS solution Wj 11. One may use batch

LS for this.

However, note that equations of the form (46) are

exactly those solved by recursive least-squares (RLS)

techniques. Therefore, one may run RLS online until

convergence. Write (46) as

 Wj11
T F 1k 2 ;Wj11

T 1f 1xk 22gf 1xk11 2 25r 1xk, hj 1xk 2 2 (49)

with F 1k 2 ; 1f 1xk 2 2 gf 1xk11 2 2 a regression vector.

Then, at step j of the PI algorithm, one fixes the control

policy at u 5 hj 1x 2 . Then, at each time k one measures the

data set 1xk, xk11, r 1xk, hj 1xk 2 2 2 , which consists of the cur-

rent state, the next state, and the resulting utility incurred.

One step of RLS is then performed. This is repeated for

subsequent times until convergence to the parameters

corresponding to the value Vj11 1x 2 5 Wj11
T f 1x 2 .

Note that for RLS to converge, the regression vector

F 1k 2 ; 1f 1xk 2 2 gf 1xk11 2 2 must be persistently exciting.

As an alternative to RLS, one could use a gradient de-

scent tuning method such as

 W j11
i11 5 W j11

i 2a F 1k 2 1 1W j11
i 2TF 1k22r 1xk, hj 1xk 2 2 (50)

with a . 0 a tuning parameter. The index i is increment-

ed at each increment of the time index k.

Once the value parameters have converged, the con-

trol policy is updated according to (47), (48). Then, the

procedure is repeated for step j 1 1. This entire proce-

dure is repeated until convergence to the optimal con-

trol solution, i.e., the approximate solution to (11), (12).

This provides an online reinforcement learning al-

gorithm for solving the optimal control problem using

Policy Iteration by measuring data along the system

trajectories. Likewise, an online reinforcement learning

algorithm can be given based on Value Iteration.

On-Line Value Iteration Algorithm

Initialize. Select any control policy h0 1xk 2 , not neces-

sarily admissible or stabilizing.

Value Update Step. Determine the least-squares solu-

tion Wj11 to

 Wj11
T f 1xk 2 5 r 1xk, hj 1xk 2 2 1 Wj

Tgf 1xk11 2 . (51)

Policy Improvement Step. Determine an improved

policy using

 hj11 1xk 2 52
g

2
R21gT 1xk 2=fT 1xk11 2Wj11. (52)

To solve in real-time one can use batch LS, RLS, or gra-

dient-based methods.

Note that the old weight parameters are on the

right-hand side of (51). Thus, the regression vector is

now f 1xk 2 , which must be persistently exciting for con-

vergence of RLS.

Reinforcement Learning and Adaptive Control

The form of these reinforcement learning algorithms is

captured in the figure. Note that they are of the Actor

Critic structure. Note that the value update in the crit-

ic is performed by solving (46) or (51) using standard

adaptive control techniques, namely RLS. Then the con-

trol is updated using (52).

Adaptive control can be performed either in a direct

fashion, wherein the controller parameters are directly

estimated, or in an indirect fashion, wherein the system

model parameters are first estimated and then the con-

troller is computed. One sees that reinforcement learning

is an indirect adaptive controller wherein the parameters

of the Value (44) are estimated. Then the control is com-

puted using (52). However, the optimal control is directly

computed in terms of the learned parameters using (48),

so this is actually a direct adaptive control scheme!

The importance of reinforcement learning is that

it provides an adaptive controller that converges to

the optimal control. This is new in the Control System

 Community, where adaptive controllers do not typically

converge to optimal control solutions. Indirect adaptive

controllers have been designed that first estimate sys-

tem parameters and then solve Riccati equations, but

these are clumsy. Reinforcement Learning provides Op-

timal Adaptive Controllers learned online.

Note that this is a two-time scale system wherein the

control action in an inner loop occurs at the sampling

time, but the performance is evaluated in an outer loop

 42 IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2009

over a longer horizon, corresponding to the convergence

time needed for RLS.

It is important to note that, in the LQR case, the

 Riccati equation (32) provides the optimal control solu-

tion. The Lyapunov equation (27) is equivalent to (45).

The dynamics (A,B) must be known for the solution of

the Lyapunov equation and the Riccati equation. As such

these equations provide offline planning solutions. On

the other hand, fixed point equation can be evaluated

online along the system trajectories using reinforcement

learning techniques by measuring at each time the data

set 1xk, xk11, r 1xk, hj 1xk 2 2 2 , which consists of the current

state, the next state, and the resulting utility incurred.

This corresponds to learning the optimal control online

by evaluating the performance of nonoptimal controllers.

Reinforcement learning actually solves the Riccati equa-

tion online without knowing the dynamics by observing

the data 1xk, xk11, r 1xk, hj 1xk 2 2 2 at each time along the sys-

tem trajectory.

Introduction of a Second ‘Actor’ Neural Network

The PI (resp. VI) reinforcement learning algorithm solves a

nonlinear Lyapunov equation (resp. Lyapunov recursion)

during the Value Update portion of each iteration step j by

observing only the data set 1xk, xk11, r 1xk, hj 1xk 2 2 2 at each

time along the system trajectory. In the LQR PI case, for

instance, this means that the Lyapunov (33) equation has

been replaced by

 pj11
T 1xk11 2 xk 25 r 1xk, hj 1k 2 25 xk

T 1Q 1 Kj
TRKj 2xk, (53)

which is solved for the parameters pj11 5 vec 1Pj11 2 using

RLS by measuring the data set 1xk, xk11, r 1xk, hj 1xk 2 2 2 at

each time. For this step the dynamics 1A, B 2 can be un-

known as they are not needed.

Thus, reinforcement learning solves an underlying non-

linear Lyapunov equation (the Bellman equation) at each

step on-line and without knowing the dynamics, by using

only data observed along the system trajectories.

However, note that in the LQR case the policy update is

given by

 Kj11 5 1R 1 BTPj11B 221BTPj11A, (54)

which requires full knowledge of the dynamics 1A, B 2 .
Note further that the embodiment (47) cannot easily be

implemented in the nonlinear case because it is implicit

in the control, since xk11 depends on h 1 . 2 and is the ar-

gument of a nonlinear activation function.

These problems are solved by introducing a second

neural network for the control policy, known as the ac-

tor NN [Werbos 1974, 1989, 1991, 1992]. Therefore, intro-

duce an actor parametric approximator structure

 uk 5 h 1xk 2 5 UTs 1xk 2 (55)

with s 1x 2 :Rn S RM a vector of M activation functions and

U [RM3m a matrix of weights or unknown parameters.

After convergence of the critic NN parameters to

Wj11 in PI or VI, it is required to perform the policy

update (47), (52). To achieve this one may use a gra-

dient descent method for tuning the actor weights U

such as

 Uj11
i11 5 Uj11

i 2 bs 1xk 2 12R 1Uj11
i 2Ts 1xk 2

 1 gg 1xk 2T=fT 1xk11 2Wj11 2T (56)

with b . 0 a tuning parameter. The tuning index i is in-

cremented with the time index k.

Several items are worthy of note at this point. First,

the tuning of the actor NN requires observations at each

time k of the data set 1xk, xk11 2 , i.e., the current state

and the next state. However, as per the formulation (55),

the actor NN yields the control uk at time k in terms of

the state xk at time k. Thus, it is a legitimate feedback

 controller. Second, in the LQR case, the actor NN (55)

embodies the gain computation (54). This is highly in-

triguing, for the latter contains the state internal dy-

namics A, but the former does not. This means that the

A matrix is NOT needed to compute the feedback con-

trol. The reason is that the actor NN has learned infor-

mation about A in its weights, since 1xk, xk11 2 are used

in its tuning.

Finally, note that only the input function g 1 . 2 (in the LQR

case, the B matrix) is needed in to tune the actor NN. Thus,

introducing a second actor NN has completely avoided the

need for knowledge of the state internal dynamics f 1 . 2 (or

A in the LQR case).

The implementation of reinforcement learning us-

ing two NNs, one as a critic and one as an actor, yields

the structure shown in Figure 2. In this control system,

the critic and the actor are tuned online using the ob-

served data 1xk, xk11, r 1xk, hj 1xk 2 2 2 along the system tra-

jectory. The critic and actor are tuned sequentially in

both PI and VI. That is, the weights of one NN are held

constant while the weights of the other are tuned until

convergence. This procedure is repeated until both NN

have converged. Then, the controller has learned the

optimal controller online. Thus, this is an online adap-

tive optimal control system wherein the value function

parameters are tuned online and the convergence is

to the optimal value and control. The convergence of

nonlinear Value Iteration using two NN was proven in

[Al-Tamimi 2008].

Synchronous methods for tuning the actor and

critic are given in [He and Jagannathan 2007]. There,

the two NN are tuned simultaneously, and stability of

the closed-loop system is guaranteed using Lyapunov

 energy-based techniques.

THIRD QUARTER 2009 IEEE CIRCUITS AND SYSTEMS MAGAZINE 43

Q Learning and Dual Learning

In learning the value function by reinforcement learn-

ing methods, the optimal value and the optimal control

are stored as a function of the state vector x [Rn. We

just saw that, using value function approximation (VFA),

where the critic and, if desired, the actor are param-

eterized using function approximators, this is done in

a straightforward manner. The NN weights are tuned

online to learn the optimal value and optimal control

policy for any value of the state xk.

Werbos [1974, 1989, 1991, 1992] has introduced four ba-

sic methods of approximate dynamic programming (ADP).

He has called reinforcement learning based on learning

the scalar value function Vh 1xk 2 , Heuristic Dynamic Pro-

gramming (HDP). Action dependent HDP (AD HDP), in-

troduced as Q learning for discrete-state MDP by Watkins

[1989], learns the so-called Q function (also a scalar) and

allows one to perform reinforcement learning without any

knowledge of the system dynamics. Dual heuristic pro-

gramming (DHP) uses online learning of the costate func-

tion lk 5 'Vh 1xk 2 /'xk, which is an n-vector gradient and so

carries more information than the value. AD DHP is based

on learning the gradients of the Q function.

Q Learning

Unfortunately, in value function learning or HDP, one re-

quires knowledge of the system dynamics (see (48) and

(54)). At a minimum, one needs the input coupling func-

tion g 1 . 2 or the B matrix. This is because in performing

the minimization (without control constraints)

 hj11 1xk 2 5 arg min
h1 # 2

1r 1xk, h 1xk 2 2 1 gWj11
T f 1xk11 2 2 (57)

one must differentiate with respect to the control to ob-

tain

0 5
'
'uk

1Q 1xk 2 1 uk
TRuk 2 1

'
'uk

gWj11
T f 1xk11 2

 5 2Ruk 1 a '
'uk

f 1xk11 2 b
T

gWj11

 5 2Ruk 1 a'xk11

'uk

bT

=fT 1xk11 2gWj11. (58)

However in evaluating

'xk11

'uk

5 g 1xk 2 , (59)

one requires the system input matrix g 1 . 2 . If a second ac-

tor NN is used, then one still needs g 1 . 2 to tune the actor

NN weights as per (56).

To avoid knowing any of the system dynamics, one

must provide an alternative path to take partial deriva-

tives with respect to the control input that does not

go through the system. Werbos has used the concept

of backpropagation to accomplish this using action

dependent HDP (AD HDP). Watkins [1989] introduced

similar notions for discrete-space MDP, which he called

Q learning.

Consider the Bellman equation (8), which allows one

to compute the value of using any prescribed admissi-

ble policy h 1 . 2 . The optimal control is determined using

(10)or (11). Therefore, let us define the Q (quality) func-

tion associated with policy u 5 h 1x 2 as

 Qh 1xk, uk 2 5 r 1xk, uk 2 1 gVh 1xk11 2 . (60)

Note that the Q function is a function of both the state xk

and the control uk at time k. It has been called the action

value function. Define the optimal Q function as

 Q* 1xk, uk 2 5 r 1xk, uk 2 1 gV * 1xk11 2 . (61)

In terms of Q*, one writes the Bellman Optimality equa-

tion in the very simple form

 V * 1xk 2 5 min
u

1Q* 1xk, u 2 2 (62)

and the optimal control as

 h* 1xk 2 5 arg min
u

1Q* 1xk, u 2 2 . (63)

In the absence of control constraints, one obtains the

minimum value by solving

'
'u

Q* 1xk, u 2 5 0. (64)

In contrast to (58) this does NOT require any deriva-

tives involving the system dynamics. That is, assuming

one knows the Q function for every 1xk, uk 2 , one does

not need to find 'xk11/'uk.

In value function learning (HDP) one must learn and

store the optimal value for all possible states xk. By

contrast, in Q learning, one must store the optimal Q

function for all values of 1xk, uk 2 , that is, for all possible

control actions performed in each possible state. This

Figure 2. Reinforcement Learning with an actor/critic
structure. Using policy evaluation criteria based on opti-
mality mimics nature and also allows for a mathematical
formulation that admits rigorous analysis.

System/
Environment

CRITIC—Evaluates
the Current

Control Policy

Control
Action

Reward/
Response
from
Environment

ACTOR—
Implements the
Control Policy

Policy
Update/
Improvement

System
Output

 44 IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2009

is far more information. We shall soon see how to use

Q function approximation to accomplish this.

Fixed Point Equation for

Q Function

We would like to employ online reinforcement tech-

niques to learn the Q function. To do this, we must de-

termine: 1. a fixed point equation for Q to use TD, and 2.

a suitable parametric approximator structure for Q to

use VFA (actually Q function approximation-QFA).

To determine a fixed point equation for Q, note that

 Qh 1xk, h 1xk 2 2 5 Vh 1xk 2 . (65)

Therefore a ‘Bellman equation’ for Q is

 Qh 1xk, uk 2 5 r 1xk, uk 2 1 gQh 1xk11, h 1xk11 2 2 (66)

or

 Qh 1xk, h 1xk 2 2 5 r 1xk, h 1xk 2 2 1 gQh 1xk11, h 1xk11 2 2 . (67)

The Optimal Q value satisfies or

 Q* 1xk, uk 2 5 r 1xk, uk 2 1 gQ* 1xk11, h
* 1xk11 2 2 . (68)

Equation (67)is a fixed point equation or ‘Bellman equa-

tion’ for Q. Compare it to (8). Now, one can use any on-

line reinforcement learning method from above as the

basis for ADP, including PI and VI.

Q Function for LQR Case

To motivate the choice of suitable approximator struc-

tures for Q function approximation (QFA), let us com-

pute the Q function for the LQR case.

According to (60) one has for the LQR

 QK 1xk, uk 2 5 xk
TQxk 1 uk

TRuk 1 xk11
T Pxk11, (69)

where P is the solution to the Lyapunov equation for the

prescribed policy K . Therefore,

QK 1xk, uk 2 5 xk
TQxk 1 uk

TRuk 1 1Axk 1 Buk 2TP 1Axk 1 Buk 2
 (70)

or

 QK 1xk,uk 2 5 cxk

uk

d T cQ 1 ATPA BTPA

ATPB R 1 BTPB
d cxk

uk

d ; zT
kHzk.

 (71)

This is the Q function for LQR. It is quadratic in

1xk, uk 2 .
Using the Kronecker product one writes

 QK 1xk, uk 2 5 H T zk

with H 5 vec 1H 2 and zk 5 zk # zk 5 cxk

uk

d # cxk

uk

d the qua-

dratic basis set made up from the components of the

state and the control input. Then, the fixed point equa-

tion (67) is

 HTzk 5 xk
TQxk 1 uk

TRuk 1 HTzk11

with uk 52Kxk. Compare to (42).

Q Function for Reinforcement Learning Using

Policy or Value Iteration

Motivated by the LQR example, for nonlinear systems one

assumes a parametric approximator or NN of the form

 Qh 1x, u 2 5 WTf 1x, u 2 5 WTf 1z 2 (72)

with w 1x, u 2 a basis set of activation functions. This

yields the TD error based on (67) of

 ek 5 r 1xk, h 1xk 2 2 1 gW Tf 1zk11 2 2 W Tf 1zk 2 . (73)

Now reinforcement learning methods, including PI or

VI, may be used to learn H 5 vec 1H 2 online, exactly as

above. Policy Iteration is illustrated below. RLS or gra-

dient-descent can be used to identify the Q function as-

sociated to a given policy K as discussed in connection

with (46) and (51).

For these methods, the policy update step is based

upon

'
'u

Qh 1xk, u 2 5 0. (74)

For the LQR case, define

 QK 1xk,uk 2 5 zT
kHzk 5 cxk

uk

d T cHxx Hxu

Hux Huu

d cxk

uk

d . (75)

Then, (74) yields

 0 5 Huxxk 1 Huuuk

or

 uk 52 1Huu 221Huxxk. (76)

Since the quadratic kernel matrix H has been found us-

ing online reinforcement learning, the system dynamics

is not needed for this step. Note that performing (74) on

(71) yields exactly (54).

For the general nonlinear case with the critic NN (72)

one obtains

'
'u

Qh 1xk, u 2 5
'
'u

W Tf 1xk, u 2 5 0. (77)

Since this NN depends explicitly on the control action

u (action dependent HDP), the derivatives can be com-

puted without reference to further details such as the

system dynamics. To solve for u to obtain an explicit

THIRD QUARTER 2009 IEEE CIRCUITS AND SYSTEMS MAGAZINE 45

policy uk 5 h 1xk 2 one requires application of the implicit

function theorem to this NN structure.

Both PI and VI can be used for Q Learning. For illus-

tration, we give the

Q Learning Policy Iteration Algorithm

Initialize. Select any admissible (i.e., stabilizing) con-

trol policy h0 1xk 2 .
Policy Evaluation Step. Determine the least-squares

solution Wj11 to

 W j11
T 1f 1zk 2 2 gf 1zk11 2 2 5 r 1xk, hj 1xk 2 2 . (78)

Policy Improvement Step. Determine an improved

policy using

 hj11 1xk 2 5 arg min
h1.2

1W j11
T f 1xk, u 2 2 . (79)

The minimization in (79) is given by (77) and can be

more explicitly computed given the basis activation

functions selected for the NN. For instance, in the

LQR case one has (76).

In the policy improvement step one notes a prob-

lem. Examine (71) and note that for Q learning one sets

uk 52Kxk with K the current policy. This makes uk de-

pendent on xk and means that the persistence of excita-

tion on F 1k 2 5 1f 1zk 2 2 gf 1zk11 2 2 required to solve (78)

using LS techniques does not hold. Therefore, one must

add a PE probing noise so that uk 5 2Kxk 1 nk [Bradtke

1994]. In [Al-Tamimi 2007] it is shown that this does not

result in any bias in the Q function estimates.

The resulting structure for reinforcement Q learning is

the same as the actor-critic system shown in Figure 2.

It can be shown [Landelius 1997] that for the LQR

case, (78) is exactly equivalent to (33), and (79) is the

same as (34). Therefore, Q learning effectively solves

the Riccati equation online without knowing any system

dynamics 1A, B 2 .
Several ideas of Werbos [1991, 1992] are intriguing

about Q. First, an alternative path has been found to

backpropagate the partial derivative '/'uk without going

through the system dynamics (compare (58) and (77)).

Second, the Q function critic NN (72) now has not only

the state xk but also the control action uk as its inputs.

This is the reason '/'uk can be evaluated without going

through the system. We say the critic NN depends now

on the action; Werbos therefore calls this action depen-

dent HDP (AD HDP).

Note that in Q learning, one must store the optimal

Q function for all values of 1xk, uk 2 , in contrast to value

learning, where one only stores the optimal value for

all values of the state xk. In MDP this presents an enor-

mous problem of curse of dimensionality. However,

VFA (actually QFA) allows one to handle his in a practi-

cal manner.

Dual or Gradient Learning

HDP reinforcement Learning methods based on the

value can be determined using the Bellman or fixed

point equation

 Vh 1xk 2 5 r 1xk, h 1xk 2 2 1 gVh 1xk11 2 . (80)

AD HDP reinforcement Learning methods based on the

Q function can be determined using the Bellman or fixed

point equation

 Qh 1xk, h 1xk 2 2 5 r 1xk, h 1xk 2 2 1 gQh 1xk11, h 1xk11 2 2 . (81)

Both the value and the Q function are scalars so that learn-

ing is being evaluated on the basis of a rather meager re-

sponse stimulus from the environment and convergence

can be slow for systems with large number n of states.

Werbos [1989, 1991, 1992] has proposed using rein-

forcement learning techniques on the costate

 lk 5 'Vh 1xk 2 /'xk, (82)

which is an n-vector gradient and so carries more in-

formation than the value. This he called dual heuristic

programming (DHP). To perform this, it is necessary to

find a fixed point equation for the costate. This is easily

done by differentiating to obtain

'
'xk

Vh 1xk 2 5
'
'xk

r 1xk, h 1xk 2 2 1
'
'xk

gVh 1xk11 2
or

lk5
'r 1xk, uk 2
'xk

1c 'uk

'xk

d T'r 1xk, uk 2
'uk

 1g c 'xk11

'xk

1
'xk11

'uk

'uk

'xk

dTlk11

for a prescribed policy uk 5 h 1xk 2 . Now a NN structure

can be used to approximate lk and reinforcement learn-

ing can proceed.

Unfortunately, any reinforcement learning scheme

based on this fixed point equation requires knowledge of

the full plant dynamics since 'xk11/'xk5 f 1xk 2 , 'xk11/'uk5

g 1xk 2 . Moreover, this requires online RLS implementation

for an n -vector, which is computationally intensive.

Similarly, one can find reinforcement learning tech-

niques based on the gradients of the Q function lx
k 5

'Qh 1xk, uk 2 /'xk, lk
u 5 'Qh 1xk, uk 2 /'uk. This is known as AD

DHP, and has the same deficiencies just noted for DHP.

Reinforcement Learning and ADP for

Continuous-Time Systems

Reinforcement Learning is considerably more difficult for

continuous-time systems than for discrete-time systems,

and its development has lagged. We shall now see why.

 46 IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2009

Consider the continuous-time nonlinear dynamical

system

 x
#

5 f 1x 2 1 g 1x 2u (83)

with state x 1 t 2 [Rn, control input u 1 t 2 [Rm, and the usu-

al mild assumptions required for existence of unique so-

lutions and an equilibrium point to x 5 0, e.g f 10 2 5 0 and

f 1x 2 1 g 1x 2u Lipschitz on a set V # Rn that contains the

origin. We assume the system is stabilizable on V, that is

there exists a continuous control function u 1 t 2 such that

the closed-loop system is asymptotically stable on V.

The notion of goal-directed optimal behavior is

captured by defining a performance measure or cost

function associated with the feedback control policy

u 5 m 1x 2 as

 Vm 1x 1 t 2 2 5 3

`

t

r 1x 1t 2 , u 1t 2 2dt (84)

with utility r 1x, u 2 5 Q 1x 2 1 uTRu, with Q 1x 2 positive def-

inite, i.e., 4x 2 0, Q 1x 2 . 0 and x 5 0 1 Q 1x 2 5 0, and

R [Rm3m a positive definite matrix.

A policy is called admissible if it is continuous, sta-

bilizes the system, and has a fi nite associated cost. If

the cost is smooth, then an infi nitesimal equivalent to

(84) can be found by differentiation to be the nonlinear

Lyapunov equation

 0 5 r 1x, m 1x 2 2 1 1=Vm 2T 1 f 1x 2 1 g 1x 2m 1x 2 2 , Vm 10 2 5 0,

 (85)

where =Vm (a column vector) denotes the gradient of the

cost function Vm with respect to x.

This is the CT Bellman equation. It is defined based

on the CT Hamiltonian function

 H 1x, m 1x 2 , =Vm 2 5 r 1x, m 1x 2 2 1 1=Vm 2T 1 f 1x 2 1 g 1x 2m 1x 2 2 .
 (86)

We now see the problem with CT systems immediately.

Compare the CT Bellman Hamiltonian (86) to the DT

Hamiltonian (9). The former contains the full system dy-

namics f 1x 2 1 g 1x 2u, while the DT Hamiltonian does not.

This means that there is no hope of using the CT Bell-

man equation (85) as a basis for reinforcement learning

unless the full dynamics are known.

Several studies have been made about reinforcement

learning and ADP for CT systems, including [Baird 1994,

Doya 2000, Hanselmann 2007, Murray 2001, Mehta and

Meyn 2009]. Baird uses Euler’s method to discretize the

CT Bellman equation. Noting that

 05r 1x, m 1x 221 1=Vm 2T 1 f 1x 21g 1x 2m 1x 2 25r 1x, m 1x 221V
#
m

 (87)

one uses Euler’s method to discretize this to obtain

05r 1xk, uk21V m 1xk1122V m 1xk2
T

 ;
rS 1xk, uk 2

T
1

V m 1xk1122V m 1xk2
T

 (88)

with sample period T so that t 5 kT. The discrete sam-

pled utility is rS 1xk, uk 2 5 r 1xk, uk 2T, where it is important

to multiply the CT utility by the sample period.

Now note that the discretized CT Bellman equation (88)

has the same form as the DT Bellman equation (8). There-

fore, all the reinforcement learning methods just described

can be applied. Baird defined Advantage Learning based

on this as a method of improving the conditioning of rein-

forcement learning for sampled CT systems. He noted that if

the utility is not properly discretized, then the DT solutions

do not converge to the CT solutions as T becomes small.

However, this is an approximation only. An alternative

exact method for CT reinforcement learning was given in

[Vrabie 2009]. One may write the cost in the interval re-

inforcement form

 Vm 1x 1 t 2 2 5 3

t1T

t

r 1x 1t 2 , u 1t 2 2dt 1 Vm 1x 1 t 1 T 2 2 . (89)

For any T . 0. This is exactly in the form of the DT Bell-

man equation (8). According to Bellman’s principle, the

optimal value is given in terms of this construction as

[Lewis and Syrmos 1995]

V * 1x 1 t 2 2 5 min
u1t:t1T2a 3

t1T

t

r 1x 1t 2 , u 1t 2 2dt 1 V * 1x 1 t 1 T 2 2 b,

where u 1 t:t 1 T 2 5 5u 1t 2 :t # t , t 1 T6. The optimal con-

trol is

 m* 1x 1 t 2 2 5 arg min
u1t:t1T2 a 3

t1T

t

r 1x 1t 2 , u 1t 2 2dt 1 V * 1x 1 t 1 T 2 2 b.

It is shown in [Vrabie 2009] that the nonlinear Lyapunov

equation (85) is exactly equivalent to the interval rein-

forcement form (89). That is, the positive definite solu-

tion of both is the value (84) of the policy u 5 m 1x 2 .
The interval reinforcement form is a Bellman equa-

tion for CT systems, and serves as a fixed point equa-

tion. Therefore, one can define the temporal difference

error for CT systems as

 e 1 t:t 1 T 2 5 3

t1T

t

r 1x 1t 2 , u 1t 2 2dt

 1 V m 1x 1 t 1 T 2 2 2 V m 1x 1 t 2 2 . (90)

This does not involve the system dynamics.

THIRD QUARTER 2009 IEEE CIRCUITS AND SYSTEMS MAGAZINE 47

Now, it is direct to formulate policy iteration and val-

ue iteration for CT systems.

CT Policy Iteration (PI) Algorithm

Initialize. Select any admissible (i.e., stabilizing) con-

trol policy m102 1x 2 .
Policy Evaluation Step. Solve for Vm

1i2 1x 1 t 2 2 using

Vm
1i2 1x 1 t 2 2 5 3

t1T

t

r 1x 1s 2 , m1i2 1x 1s 2 2 2ds 1 Vm
1i2 1x 1 t 1 T 2 2 with

 Vm
1i2 10 2 5 0. (91)

Policy Improvement Step. Determine an improved

policy using

 m1i112 5 arg min
u

3H 1x, u, =V x
m
1i2 2 4, (92)

which explicitly is

 m1i112 1x 2 5 2
1

2
 R21gT 1x 2=Vx

m
1i2
. (93)

CT Value Iteration (VI) Algorithm

Initialize. Select any control policy m102 1x 2 , not neces-

sarily stabilizing.

Policy Evaluation Step. solve for Vm
1i2 1x 1 t 2 2 using

Vm
1i2 1x 1 t 2 2 5 3

t1T

t

r 1x 1s 2 , m1i2 1x 1s 2 2 2ds 1 Vm
1i212 1x 1 t 1 T 2 2 with

 Vm
1i2 10 2 5 0. (94)

Policy Improvement Step. Determine an improved

policy using

 m1i112 5 arg min
u

3H 1x, u, =V x
m
1i2 2 4, (95)

which explicitly is

 m1i112 1x 2 52
1

2
 R21gT 1x 2=Vx

m
1i2
. (96)

Note that neither algorithm requires knowledge about

the internal system dynamics function f 1 . 2 . That is, they

work for partially unknown systems.

Both of these algorithms may be implemented on-

line using the above reinforcement learning techniques.

The time is incremented at each iteration by the pe-

riod T. The measured data at each time increment is

1x 1 t 2 , x 1 t 1 T 2 , r 1 t:t 1 T 2 2 where

r 1 t:t 1 T 2 5 3

t1T

t

r 1x 1t 2 , u 1t 2 2dt

is the reinforcement measured on each time interval.

The reinforcement learning time interval T need not

be the same at each iteration. T can be changed de-

pending on how long it takes to get meaningful informa-

tion from the observations.

In the LQR case, Policy Iteration is exactly the same as

Kleinman’s algorithm [Kleinman 1968] for solving the CT

Riccati equation. However, these RL methods allow one

to implement the algorithm using only information about

g 1 . 2 (e.g. the B matrix). Information about f 1 . 2 (A matrix) is

not needed. That is, CT PI solves the CT Riccati equation

online without knowing the system internal dynamics by

using data measured along the system trajectories.

Figure 3. Reinforcement learning using policy iteration. At each time one observes the current state, the next state, and
the cost incurred. This is used to update the value estimate. Based on the new value, the action is updated.

System/
Environment

CRITIC—Evaluates
the Current

Control Policy

Control
Action

Value Update Using Bellman Equation
Vj + 1 (xk) = r (xk, hj (xk)) + γVj + 1(xk + 1)
Use RLS Until Convergence

ACTOR—
Implements the
Control Policy

System
Output

(xk, xk + 1, r (xk, hj (xk)))
Reward/Response
from Environment

Control Policy Update

hj + 1 (xk) = arg min (r (xk, uk) + γVj + 1(xk + 1))
uk

hj (xk)

 48 IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2009

Reinforcement Learning Mechanisms in the Brain

It is interesting to note the similarities between these ADP

Reinforcement learning controller structures and learn-

ing mechanisms in the mammal brain [Vrabie 2009]. The

critic structure learns, in an episodic manner and based

on samples of the reward signal from the environment,

the parameters of a function which describes the actor

performance. Once a performance evaluation episode is

completed, the critic passes this information to the actor

structure which will use it to adapt for improved perfor-

mance. At all times the actor must perform continuous-

time control for the system (the environment in which

optimal behavior is sought). This description of the way

in which the actor/critic structure works while search-

ing for optimal control policies points out the existence

of two time scales for the mechanisms involved:

a fast time scale which characterizes the feedback ■

control process at which the actor operates, and

a slower time scale which characterizes the learn- ■

ing processes at the level of the critic.

Thus the actor and critic structures perform tasks at dif-

ferent operation frequencies in relation with the nature

of the task to be performed (i.e., learning or control).

Evidence regarding the oscillatory behavior natural-

ly characterizing biological neural systems is presented

in a comprehensive manner in [Levine, Brown, Shirey

2000]. Different oscillation frequencies are connected

with the way in which different areas of the brain per-

form their functions of processing the information re-

ceived from the sensors. Low level control structures

must quickly react to new information received from the

environment while higher level structures slowly evalu-

ate the results associated with the present behavior

policy. This is reflected in the fact that motor control

occurs at approximately 200 Hz, while theta rhythms in

the limbic system, where reinforcement learning is be-

lieved to operate, occur at 4–10 Hz.

In ADP, it was shown that having only a little

 information about the system states measured from the

sensors, and extracted from the system only at specific

time values (i.e., 1x 1 t 2 , x 1 t 1 T 2 , r 1 t:t 1 T 2 2), the Critic

is able to evaluate the infinite horizon continuous-time

performance of the system associated with a given con-

trol policy described in terms of the Actor parameters.

The critic learns the cost function associated with a cer-

tain control behavior based on a computed temporal dif-

ference (TD) error signal (90).

It is interesting to mention here that in a number of

reports, e.g., [Schultz 2004], [Schultz et al. 1997], [Doya

et al. 2001], it is argued that the temporal difference er-

ror between the received and the expected rewards is

physically encoded in the dopamine signal produced

by basal ganglia structures in the mammal brain. At the

same time, it is known that the dopamine signal encoding

the temporal error difference favors the learning process

by increasing the synaptic plasticity of certain groups of

neurons. We also note an interesting point presented in

[Perlovsky 2009] associating certain emotions with the

need for cognition, i.e., emotions play the role of reinforce-

ment signals which drive the need for cognition. This kind

of reinforcement learning is located at a higher level than

the dopamine driven learning, thus suggesting that there

exists a hierarchy of reinforcement-based learning mecha-

nisms in the mammal brain.

Acknowledgments

We acknowledge the support of NSF Grant ECCS-0801330

and ARO grant W91NF-05-1-0314.

Frank L. Lewis, Fellow IEEE, Fellow IFAC,

Fellow U.K. Institute of Measurement &

Control, PE Texas, U.K. Chartered Engi-

neer, is Distinguished Scholar Professor

and Moncrief-O’Donnell Chair at Univer-

sity of Texas at Arlington’s Automation &

Robotics Research Institute. He obtained

the Bachelor’s Degree in Physics/EE and the MSEE at Rice

University, the MS in Aeronautical Engineering from Univ.

W. Florida, and the Ph.D. at Ga. Tech. He works in feedback

control, intelligent systems, and sensor networks. He is au-

thor of 6 U.S. patents, 209 journal papers, 328 conference

papers, 12 books, 41 chapters, and 11 journal special issues.

He received the Fulbright Research Award, NSF Research

Initiation Grant, ASEE Terman Award, and Int. Neural Net-

work Soc. Gabor Award 2008. Received Outstanding Ser-

vice Award from Dallas IEEE Section, selected as Engineer

of the year by Ft. Worth IEEE Section. Listed in Ft. Worth

Business Press Top 200 Leaders in Manufacturing. He was

appointed to the NAE Committee on Space Station in 1995.

He is an elected Guest Consulting Professor at both South

China University of Technology and Shanghai Jiao Tong

University. Founding Member of the Board of Governors

of the Mediterranean Control Association. Helped win

the IEEE Control Systems Society Best Chapter Award (as

Q learning allows one to solve the Riccati equation online in real time
without knowing the system description, simply by observing data

measured along the system trajectories.

THIRD QUARTER 2009 IEEE CIRCUITS AND SYSTEMS MAGAZINE 49

Founding Chairman of DFW Chapter), the National Sigma

Xi Award for Outstanding Chapter (as President of UTA

 Chapter), and the US SBA Tibbets Award in 1996 (as Direc-

tor of ARRI’s SBIR Program).

Draguna Vrabie received her B.Sc. in 2003

and M.Sc. in 2004 from the Automatic Con-

trol and Computer Engineering Dept., “Gh.

Asachi” Technical University of Iasi. Since

May 2005, she is pursuing her PhD degree

and is working as a research assistant at

the Automation and Robotics Research

 Institute of the University of Texas at Arlington. Her re-

search interests include Approximate Dynamic Program-

ming, optimal control, adaptive control, Model Predictive

Control, and general theory of nonlinear systems.

References
[1] M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for non-

linear systems with saturating actuators using a neural network HJB ap-

proach,” Automatica, vol. 41, no. 5, pp. 779–791, 2005.

[2] M. Abu-Khalaf, F. L. Lewis, and J. Huang, “Policy iterations on the

 Hamilton-Jacobi-Isaacs equation for H-infi nity state feedback control with

input saturation,” IEEE Trans. Automat. Contr., vol. 51, no. 12, pp. 1989–1995,

Dec. 2006.

[3] Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Model-free Q-learning de-

signs for linear discrete-time zero-sum games with application to H-infi nity

control,” Automatica, vol. 43, pp. 473–481, 2007.

[4] Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time nonlinear HJB

solution using approximate dynamic programming: Convergence proof,”

IEEE Trans. Syst., Man, Cybern. B (Special Issue on ADP/RL), vol. 38, no. 4,

pp. 943–949, Aug. 2008.

[5] Anderson, R. M. Kretchner, P. M. Young, and D. C. Hittle, “Robust rein-

forcement learning control with static and dynamic stability,” Int. J. Robust

Nonlinear Contr., vol. 11, 2001.

[6] L. Baird, “Reinforcement learning in continuous time: Advantage updat-

ing,” in Proc. Int. Conf. Neural Networks, Orlando, FL, June 1994.

[7] S. N. Balakrishnan and V. Biega, “Adaptive critic based neural networks

for aircraft optimal control,” AIAA J. Guid. Contr. Dyn., vol. 19, no. 4, pp.

731–739, 1996.

[8] S. N. Balakrishnan, J. Ding, and F. L. Lewis, “Issues on stability of ADP

feedback controllers for dynamical systems,” IEEE Trans. Syst., Man, Cy-

bern. B (Special Issue on ADP/RL), vol. 38, no. 4, pp. 913–917, Aug. 2008.

Invited survey paper.

[9] A. G. Barto, R. S. Sutton, and C. Anderson, “Neuron-like adaptive ele-

ments that can solve diffi cult learning control problems,” IEEE Trans. Syst.,

Man, Cybern., vol. SMC-13, pp. 834–846, 1983.

[10] A. G. Barto, “Connectionist learning for control,” in Neural Networks for

Control. Cambridge, MA: MIT Press, 1991.

[11] G. Barto, “Reinforcement learning and adaptive critic methods,” in

Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches,

D. A. White and D. A. Sofge, Eds. New York: Van Nostrand Reinhold, 1992,

ch. 12.

[12] A. G. Barto and T. G. Dietterich, “Reinforcement learning and its rela-

tionship to supervised learning,” in Handbook of Learning and Approximate

Dynamic Programming, J. Si, A. Barto, W. Powell, and D. Wunsch, Eds. New

York: Wiley-IEEE Press, 2004.

[13] R. Beard, G. Saridis, and J. Wen, “Approximate solutions to the time-

invariant Hamilton-Jacobi-Bellman equation,” Automatica, vol. 33, no. 12,

pp. 2159–2177, Dec. 1997.

[14] R. E. Bellman, Dynamic Programming. Princeton, NJ: Princeton Univ.

Press, 1957.

[15] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming. MA:

Athena Scientific, 1996.

[16] S. Bradtke, B. Ydstie, and A. Barto, “Adaptive linear quadratic control

using policy iteration,” Univ. Massachusetts, Amherst, MA, Tech. Rep.

CMPSCI-94-49, June 1994.

[17] X. Cao, Stochastic Learning and Optimization. Berlin: Springer-Verlag,

2009.

[18] P. Dayan, “The convergence of TD(l) for general l,” Mach. Learn., vol. 8

no. 3/4, pp. 341–362, May 1992.

[19] K. Doya, “Reinforcement learning in continuous time and space,” Neu-

ral Comput., vol. 12, pp. 219–245, 2000.

[20] K. Doya, H. Kimura, and M. Kawato, “Neural mechanisms for learning

and control,” IEEE Control Syst. Mag., pp. 42–54, Aug. 2001.

[21] R. Enns and J. Si, “Apache helicopter stabilization using neural dynam-

ic programming,” AIAA J. Guid. Control Dyn., vol. 25, no. 1, pp. 19–25, 2002.

[22] T. Erez and W. D. Smart, “Coupling perception and action using mini-

max optimal control,” in Proc. ADPRL, 2009.

[23] P. Farias, “The linear programming approach to approximate dynamic

programming,” in Handbook of Learning and Approximate Dynamic Pro-

gramming, J. Si, A. Barto, W. Powell, and D. Wunsch, Eds. New York: Wiley-

IEEE Press, Aug. 2004, ch. 6.

[24] L. Feldkamp and D. Prokhorov, “Recurrent neural networks for state

estimation,” in Proc. 12th Yale Workshop Adaptive and Learning Systems,

New Haven, CT, 2003, pp. 17–22.

[25] S. Ferrari and R. Stengel, “An adaptive critic global controller,” in Proc.

American Control Conf., Anchorage, AK, 2002, pp. 2665–2670.

[26] S. Hagen and B. Kröse, “Linear quadratic regulation using reinforce-

ment learning,” in Proc. 8th Belgian–Dutch Conf. Machine Learning, F. Verde-

nius and W. van den Broek, Eds. Oct. 1998, pp. 39–46.

[27] T. Hanselmann, L. Noakes, and A. Zaknich, “Continuous-time adaptive

critics,” IEEE Trans. Neural Networks, vol. 18, no. 3, pp. 631–647, 2007.

[28] P. He and S. Jagannathan, “Reinforcement learning neural-network-

based controller for nonlinear discrete-time systems with input constraints,”

IEEE Trans. Syst., Man, Cybern. B, vol. 37, no. 2, pp. 425–436, Apr. 2007.

[29] G. A. Hewer, “An iterative technique for the computation of steady

state gains for the discrete optimal regulator,” IEEE Trans. Automat. Contr.,

pp. 382–384, 1971.

[30] K. Hornik, M. Stinchcombe, and H. White, “Universal approximation

of an unknown mapping and its derivatives using multilayer feedforward

networks,” Neural Netw., vol. 3, pp. 551–560, 1990.

[31] R. Howard, Dynamic Programming and Markov Processes. Cambridge,

MA: MIT Press, 1960.

[32] H. Javaherian, D. Liu, and O. Kovalenko, “Automotive engine torque

and air–fuel ratio control using dual heuristic dynamic programming,” in

Proc. IJCNN, 2006, pp. 518–525.

[33] M. Kawato, “Computational schemes and neural network models for

formation and control of multijoint arm trajectory,” in Neural Networks for

Control, W. T. Miller, R. S. Sutton, and P. J. Werbos, Eds. Cambridge, MA: MIT

Press, 1991, pp. 197–228.

[34] L. Kleinman, “On an iterative technique for Riccati equation computa-

tions,” IEEE Trans. Automat. Contr., vol. AC-13, no. 1, pp. 114–115, Feb. 1968.

[35] P. Lancaster and L. Rodman, Algebraic Riccati Equations. London, U.K.:

Oxford Univ. Press, 1995.

[36] T. Landelius, “Reinforcement learning and distributed local model syn-

thesis,” Ph.D. dissertation, Linköping Univ., 1997.

[37] R. J. Leake and R. W. Liu, “Construction of suboptimal control sequenc-

es,” J. SIAM Contr., vol. 5, no. 1, pp. 54–63, 1967.

[38] D. S. Levine, V. R. Brown, and V. T. Shirey, Eds., Oscillations in Neural

Systems. Mahwah, NJ, 2000.

[39] F. L. Lewis, K. Liu, and A. Yesildirek, “Neural net robot controller with

guaranteed tracking performance,” IEEE Trans. Neural Networks, vol. 6, no.

3, pp. 703–715, 1995.

[40] F. L. Lewis and V. Syrmos, Optimal Control, 2nd ed. New York: Wiley,

1995.

[41] F. L. Lewis, G. Lendaris, and D. Liu, “Special issue on approximate

dynamic programming and reinforcement learning for feedback control,”

IEEE Trans. Syst., Man, Cybern. B, vol. 38, no. 4, Aug. 2008.

[42] Y. Li, N. Sundararajan, and P. Saratchandran, “Neuro-controller design

for nonlinear fi ghter aircraft maneuver using fully tuned neural networks,”

Automatica, vol. 37, no. 8, pp. 1293–1301, Aug. 2001.

 50 IEEE CIRCUITS AND SYSTEMS MAGAZINE THIRD QUARTER 2009

[43] Liu and H. D. Patiño, “A self-learning ship steering controller based on

adaptive critic designs,” in Proc. IFAC Triennial World Congr., Beijing, China,

July 1999, vol. J, pp. 367–372.

[44] D. Liu, X. Xiong, and Y. Zhang, “Action-dependent adaptive critic de-

signs,” in Proc. INNS-IEEE Int. Joint Conf. Neural Networks, Washington, DC,

July 2001, pp. 990–995.

[45] X. Liu and S. N. Balakrishnan, “Adaptive critic based neuro-observer,”

in Proc. American Control Conf., Arlington, VA, 2001, pp. 1616–1621.

[46] X. Liu and S. N. Balakrishnan, “Convergence analysis of adaptive critic

based optimal control,” in Proc. American Control Conf., Chicago, IL, 2000,

pp. 1929–1933.

[47] P. Mehta and S. Meyn, “Q-learning and Pontryagin’s minimum prin-

ciple,” Preprints, 2009.

[48] J. M. Mendel and R. W. MacLaren, “Reinforcement learning control and

pattern recognition systems,” in Adaptive, Learning, and Pattern Recogni-

tion Systems: Theory and Applications, J. M. Mendel and K. S. Fu, Eds. New

York: Academic Press, 1970, pp. 287–318.

[49] W. T. Miller, R. S. Sutton, and P. J. Werbos, Eds., Neural Networks for

Control. Cambridge, MA: MIT Press, 1991.

[50] H. Miyamoto, M. Kawato, T. Setoyama, and R. Suzuki, “Feedback-error-

learning neural network for trajectory control of a robotic manipulator,”

Neural Netw., vol. 1, pp. 251–265, 1988.

[51] J. Murray, C. Cox, G. Lendaris, and R. Saeks, “Adaptive dynamic pro-

gramming,” IEEE Trans. Syst., Man, Cybern., vol. 32, no. 2, 2002.

[52] J. Murray, C. Cox, R. Saeks, and G. Lendaris, “Globally convergent ap-

proximate dynamic programming applied to an autolander,” in Proc. ACC,

Arlington, VA, 2001, pp. 2901–2906.

[53] R. Padhi, S. N. Balakrishnan, and T. Randolph, “Adaptive-critic based

optimal neuro control synthesis for distributed parameter systems,” Auto-

matica, vol. 37, no. 8, pp. 1223–1234, Aug. 2001.

[54] R. Padhi, N. Unnikrishnan, X. Wang, and S. N. Balakrishnan, “A single

network adaptive critic (SNAC) architecture for optimal control synthesis

for a class of nonlinear systems,” Neural Netw., vol. 19, no. 10, pp. 1648–1660,

Dec. 2006.

[55] L. Perlovsky, “Language and cognition,” Neural Netw., 2009.

[56] W. B. Powell, Approximate Dynamic Programming: Solving the Curses of

Dimensionality. New York: Wiley, 2009.

[57] W. Powell and B. Van Roy, “ADP for high-dimensional resource allo-

cation problems,” in Handbook of Learning and Approximate Dynamic Pro-

gramming, J. Si, A. Barto, W. Powell, and D. Wunsch, Eds. New York: Wiley-

IEEE Press, Aug. 2004, ch. 10.

[58] D. Prokhorov and D. Wunsch, “Adaptive critic designs,” IEEE Trans.

Neural Networks, vol. 8, no. 5, Sept. 1997.

[59] D. V. Prokhorov and L. A. Feldkamp, “Analyzing for Lyapunov stability

with adaptive critics,” in Proc. Int. Conf. Systems, Man, Cybernetics, Dear-

born, 1998, pp. 1658–1661.

[60] W. Schultz, “Neural coding of basic reward terms of animal learning

theory, game theory, microeconomics and behavioral ecology,” Curr. Opin.

Neurobiol., vol. 14, pp. 139–147, 2004.

[61] W. Schultz, P. Dayan, and P. R. Montague, “A neural substrate of predic-

tion and reward,” Science, vol. 275, pp. 1593–1599, 1997.

[62] J. Seiffertt, S. Sanyal, and D. C. Wunsch, “Hamilton-Jacobi-Bellman

equations and approximate dynamic programming on time scales,” IEEE

Trans. Syst., Man, Cybern. B, vol. 38, no. 4, pp. 918–923, 2008.

[63] C.-Y. Seong and B. Widrow, “Neural dynamic optimization for control

systems—Part I: Background,” IEEE Trans. Syst., Man, Cybern. B, vol. 31, pp.

482–489, Aug. 2001.

[64] C.-Y. Seong and B. Widrow, “Neural dynamic optimization for control

systems—Part II: Theory,” IEEE Trans. Syst., Man, Cybern. B, vol. 31, pp.

490–501, Aug. 2001.

[65] C.-Y. Seong and B. Widrow, “Neural dynamic optimization for control

systems—Part III: Applications,” IEEE Trans. Syst., Man, Cybern. B, vol. 31,

pp. 502–513, Aug. 2001.

[66] J. Si and Y.-T. Wang, “On-line control by association and reinforce-

ment,” IEEE Trans. Neural Networks, vol. 12, no. 2, pp. 264–276, Mar. 2001.

[67] J. Si, A. Barto, W. Powell, and D. Wunsch, Handbook of Learning and Ap-

proximate Dynamic Programming. New York: Wiley-IEEE Press, 2004.

[68] R. S. Sutton and A. G. Barto, “A temporal-difference model of classical

conditioning,” in Proc. 9th Annu. Conf. Cognitive Science Society, 1987, pp.

355–378.

[69] R. S. Sutton and A. G. Barto, Reinforcement Learning—An Introduction.

Cambridge, MA: MIT Press, 1998.

[70] R. Sutton, “Learning to predict by the method of temporal differences,”

Mach. Learn., vol. 3, pp. 9–44, 1988.

[71] Y. Tassa, T. Erez, and W. Smart, “Receding horizon differential dynamic

programming,” in Proc. Neural Information Processing Systems Conf., 2007,

pp. 1465–1472.

[72] J. Tesauro, “Practical issues in temporal difference learning,” Mach.

Learn., vol. 8, pp. 257–277.

[73] E. Todorov and M. I. Jordan, “Optimal feedback control as a theory of

motor coordination,” Nat. Neurosci., vol. 5, no. 11, pp. 1226–1235, 2002.

[74] E. Todorov and Y. Tassa, “Iterative local dynamic programming,” in

Proc. IEEE Symp. Adaptive Dynamic Programming and Reinforcement Learn-

ing, 2009.

[75] J. N. Tsitsiklis, “Effi cient algorithms for globally optimal trajectories,”

IEEE Trans. Automat. Contr., vol. 40, no. 9, pp. 1528–1538, Sept. 1995.

[76] B. Van Roy, D. P. Bertsekas, Y. Lee, and J. N. Tsitsiklis, “A neuro-dynam-

ic programming approach to retailer inventory management,” in Proc. IEEE

Conf. Decision Control, San Diego, CA, 1997, pp. 4052–4057.

[77] K. Venayagamoorthy, R. G. Harley, and D. G. Wunsch, “Comparison of

heuristic dynamic programming and dual heuristic programming adaptive

critics for neurocontrol of a turbogenerator,” IEEE Trans. Neural Networks,

vol. 13, pp. 764–773, May 2002.

[78] K. Venayagamoorthy, R. G. Harley, and D. C. Wunsch, “Dual heuristic

programming excitation neurocontrol for generators in a multimachine

power system,” IEEE Trans. Ind. Applicat., vol. 39, no. 2, pp. 382–384, Mar./

Apr. 2003.

[79] D. Vrabie, O. Pastravanu, M. Abu-Khalaf, and F. L. Lewis, “Adaptive op-

timal control for continuous-time linear systems based on policy iteration,”

Automatica, vol. 45, pp. 477–484, 2009.

[80] D. Vrabie and F. L. Lewis, “Neural network approach to continuous-

time direct adaptive optimal control for partially-unknown nonlinear sys-

tems,” Neural Netw., to be published.

[81] F. Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming: An

introduction,” IEEE Comput. Intell. Mag., pp. 39–47, May 2009.

[82] C. Watkins, “Learning from delayed rewards,” Ph.D. thesis, Cambridge

Univ., Cambridge, England, 1989.

[83] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, pp.

279–292, 1992.

[84] P. J. Werbos, “Beyond regression: New tools for prediction and analy-

sis in the behavior sciences,” Ph.D. thesis, Committee Appl. Math. Harvard

Univ., 1974.

[85] P. J. Werbos, “Neural networks for control and system identifi cation,”

in Proc. IEEE Conf. Decision and Control, Tampa, FL, 1989.

[86] P. J. Werbos, “A menu of designs for reinforcement learning over time,”

in Neural Networks for Control, W. T. Miller, R. S. Sutton, and P. J. Werbos,

Eds. Cambridge, MA: MIT Press, 1991, pp. 67–95.

[87] P. J. Werbos, “Approximate dynamic programming for real-time con-

trol and neural modeling,” in Handbook of Intelligent Control, D. A. White

and D. A. Sofge, Eds. New York: Van Nostrand Reinhold, 1992.

[88] D. A. White and D. A. Sofge, Eds., Handbook of Intelligent Control. New

York: Van Nostrand Reinhold, 1992.

[89] B. Widrow, N. Gupta, and S. Maitra, “Punish/reward: Learning with a

critic in adaptive threshold systems,” IEEE Trans. Syst., Man, Cybern., vol.

SMC-3, no. 5, pp. 455–465, 1973.

[90] V. Yadav, R. Padhi, and S. N. Balakrishnan, “Robust/optimal tempera-

ture profi le control of a high-speed aerospace vehicle using neural net-

works,” IEEE Trans. Neural Networks, vol. 18, no. 4, pp. 1115–1128, July 2007.

[91] Q. Yang and S. Jagannathan, “Adaptive critic neural network force con-

troller for atomic force microscope-based nanomanipulation,” in Proc. IEEE

Int. Symp. Intelligent Control, 2006, pp. 464–469.

[92] C. Zheng and S. Jagannathan, “Generalized Hamilton–Jacobi–Bellman

formulation-based neural network control of affi ne nonlinear discrete-time

systems,” IEEE Trans. Neural Networks, vol. 19, no. 1, pp. 90–106, Jan. 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

