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Abstract

Living organisms learn by 
acting on their environ-
ment, observing the re-
sulting reward stimulus, 
and adjusting their actions 
accordingly to improve 
the reward. This action-
based or Reinforcement 
Learning can capture no-
tions of optimal behavior 
occurring in natural sys-
tems. We describe math-
ematical formulations for 
Reinforcement Learning 
and a practical implemen-
tation method known as 
Adaptive Dynamic Pro-
gramming. These give us 
insight into the design of 
controllers for man-made 
engineered systems that 
both learn and exhibit op-
timal behavior. 
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Reinforcement Learning and 

Optimality in Nature

E
very living organism interacts with its environment 

and uses those interactions to improve its own ac-

tions in order to survive and increase. Charles 

 Darwin showed that species modify their actions based 

on interactions with the environment over long time 

scales, leading to natural selection and survival of the 

fittest. Adam Smith showed that modification of the ac-

tions of corporate entities based on interactions on the 

scale of a global economy is responsible for the relative 

balance and wealth of nations. Ivan Pavlov used simple 

reinforcement and punishment stimuli to modify the be-

havior patterns of dogs by inducing conditional reflexes. 

We call modification of actions based on interac-

tions with the environment reinforcement learning 

(RL) [Mendel 1970]. There are many types of learning 

including supervised learning, unsupervised learning, 

etc. Reinforcement learning refers to an actor or agent 

that interacts with its environment and modifi es its 

actions, or control policies, based on stimuli received 

in response to its actions. This is based on evaluative 

information from the environment and could be called 

action-based learning. RL implies a cause and effect re-

lationship between actions and reward or punishment. 

It implies goal directed behavior at least insofar as the 

agent has an understanding of reward versus lack of 

reward or punishment. 

The RL algorithms are constructed on the idea that 

successful control decisions should be remembered, by 

means of a reinforcement signal, such that they become 

more likely to be used a second time. Although the idea 

originates from experimental animal learning, where it 

has been observed that the dopamine neurotransmitter 

acts as a reinforcement informational signal which fa-

vors learning at the level of the neuron (see e.g., [Shultz 

et al. 1997, 2004], [Doya 2001]), RL is strongly connected 

from a theoretical point of view with direct and indirect 

adaptive optimal control methods.

One class of reinforcement learning methods is based 

on the Actor-Critic structure [Barto, Sutton, Anderson 

1983], where an actor component applies an action or 

control policy to the environment, and a critic compo-

nent assesses the value of that action. Based on this as-

sessment of the value, various schemes may then be used 

to modify or improve the action in the sense that the new 

policy yields a value that is improved over the previous 

value. The actor-critic structure implies two steps: policy 

evaluation by the critic followed by policy improvement. 

The policy evaluation step is performed by observing 

from the environment the results of current actions. 

The limits within which organisms can survive are 

often quite narrow and the resources available to most 

species are meager. Therefore, most organisms act in 

an optimal fashion to conserve resources yet achieve 

their goals. Optimal actions may be based on minimum 

fuel, minimum energy, minimum risk, maximum reward, 

and so on. Therefore, it is of interest to study reinforce-

ment learning systems having an actor-critic structure 

wherein the critic assesses the value of current policies 

based on some sort of optimality criteria [Werbos 1974, 

1989, 1991, 1992], [Bertsekas 1996], [Sutton and Barto 

1998], [Cao 2009]. In the optimal RL algorithms case 

the learning process is moved to a higher level having 

no longer as object of interest the details of a system’s 

dynamics, but a performance index which quantifies 

how close to optimality does the closed loop control 

system operate. In such a scheme, reinforcement learn-

ing is a means of learning optimal behaviors by observ-

ing the response from the environment to nonoptimal 

control policies.

Feedback Control Theory is the study of means of 

developing control systems for human engineered sys-

tems to endow them with guaranteed performance and 

safety. Included are control systems for aircraft, ships, 

race cars, robot systems, industrial processes, building 

temperature and climate regulation systems, and many 

more. It is often of interest to mimic nature and design 

control systems that are optimal in some sense of ef-

fectively achieving required performance without using 

undue amounts of resources.

The purpose of this article is to show the usefulness 

of reinforcement learning techniques, specifically a fam-

ily of techniques known as Approximate or Adaptive 

Dynamic Programming (ADP) (also known as Neurody-

namic Programming), for the feedback control of human 

engineered systems. Reinforcement learning techniques 

have been developed by the Computational Intelligence 

Community. Therefore, this requires bringing together 

ideas from two communities-Control Systems Engineer-

ing and Computational Intelligence. Since reinforcement 

learning involves modifying the control policy based on 

responses from the environment, one has the initial feel-

ing that it should be closely related to adaptive control, 

a family of successful control techniques held in high 

regard in Control Systems Community.

The intention here is to present the main ideas and al-

gorithms of reinforcement learning Approximate Dynam-

ic Programming, not give a literature survey or historical 

development. Very good surveys are given in [Si et al. 

2004], the recent IEEE Transactions on SMC Part B spe-

cial issue [Lewis, Lendaris, Liu 2008], [Balakrishnan et al. 



 34  IEEE CIRCUITS AND SYSTEMS MAGAZINE   THIRD QUARTER 2009 

2008], and the recent article [Wang, Zhang, Liu 2009]. 

A biography is included here for further reference by 

the reader.

Dynamical Systems and 

Optimal Feedback Control

In the study and design of feedback control systems it 

is required to provide design algorithms and analysis 

techniques that yield guaranteed provable performance 

and safety margins. Feedback controllers without per-

formance, stability, and robustness guarantees will not 

be accepted by industry. A standard means for providing 

such guarantees is to use the framework and tools pro-

vided by mathematics. Thus, to be precise, we should 

like to capture the ideas about reinforcement learning 

in some sort of mathematical formulation. One such for-

mulation is the framework of Markov decision processes 

(MDP). MDP have been extensively used to study and 

embody reinforcement learning systems. In MDP, the 

state spaces and action spaces are generally discrete 

(i.e. state and action take on only certain allowed dis-

crete values). However, human engineered systems de-

velop and move through time and generally have states 

and actions that reside in continuous spaces. A broad 

class of engineered systems can be effectively described 

by ordinary differential equations, since these describe 

the development of a system through time based on its 

current status as well as any inputs received, such as 

commands, disturbances, and so on.

Dynamical Systems

Physical analysis of dynamical systems using Lagrang-

ian mechanics, Hamiltonian mechanics, etc. produces 

system descriptions in terms of nonlinear ordinary dif-

ferential equations. Particularly prevalent are nonlinear 

ODEs in the state-space form x
#
5 f 1x, u 2 , with the state 

x 1 t 2 [ Rn and control input u 1 t 2 [ Rm residing in contin-

uous spaces. Many systems in aerospace, the automo-

tive industry, process industry, robotics, and elsewhere 

are conveniently put into this form. In addition to being 

continuous-state space and continuous-input space sys-

tems, in contrast to MDP which have discrete states and 

actions, these dynamics are also continuous-time (CT) 

systems. For nonlinear systems, the PI algorithm was 

first developed by Leake and Liu (1967). Three decades 

later it was introduced in (Beard, Saridis, and Wen, 

1997) as a feasible adaptive solution to the CT optimal 

control problem. 

The bulk of research in ADP has been conducted for 

systems that operate in discrete-time (DT). Therefore, we 

cover DT systems first, then continuous-time systems. 

Here, we first consider nonlinear DT systems and out-

line DT optimal control, developing some  computational 

intelligence notions including policy iteration and value 

iteration. Then, we illustrate using the linear quadratic 

regulator (LQR) case to show that these notions are in 

fact familiar in the feedback control theory setting. After 

that, we proceed to develop online reinforcement learn-

ing schemes for DT dynamical systems. These latter 

ideas have not been fully exploited in the control sys-

tems community.

Optimal Control for 

Discrete-Time Systems

There are standard methods for sampling or discretizing 

nonlinear continuous-time state space ODEs to obtain 

sampled data forms that are convenient for computer-

based control [Lewis and Syrmos 1995]. The resulting 

systems unfold in discrete time and are generally of the 

state-space form xk11 5 F 1xk, uk 2  with k the discrete time 

index. These systems satisfy the 1-step Markov property 

since their state at time k 1 1only depends on the state 

and inputs at the previous time k.

For ease of analysis one often considers a class of 

discrete-time systems described by nonlinear dynamics 

in the affine state space difference equation form

 xk11 5 f 1xk 2 1 g 1xk 2uk (1)

with state xk [ Rn and control input uk [ Rm. The analy-

sis of such forms is convenient and can be generalized 

to the general sampled data form xk11 5 F 1xk, uk 2 . 
A control policy is defined as a function from state 

space to control space h 1 . 2 :Rn S Rm. That is, for every 

state xk, the policy defines a control action

 uk 5 h 1xk 2 .  (2)

Such mappings are also known as feedback controllers. 

An example policy is a linear state-variable feedback 

uk 5 h 1xk 2 5 2 Kxk. Another example policy is a transfer 

function dynamical controller design. In the feedback 

controls community, the feedback control policy can be 

designed using many methods including optimal control 

via solution of the Riccati equation, adaptive control, 

H-infinity control, classical frequency domain control, etc. 

In reinforcement learning, the control policy is learned 

in real time based on stimuli received from the environ-

ment. Clearly, this learning sort of controller design is re-

lated to notions of adaptive control, as we shall see.

System or Environment? In reinforcement learning, 

the actor is the agent that generates the control policy. 

That is, the actor is mathematically described by the 

policy (2), which has the state  x 1 t 2  as input and the 

control u 1 t 2as output. Everything outside the actor is 

considered to be the environment. Thus, the  system (1) 

is considered as part of the environment, as are all 

 disturbances and extraneous effects. In fact, in  standard 
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applications of reinforcement learning, the system dy-

namics is not even considered, and as part of the en-

vironment, no explicit model of the dynamics, such as 

(1), is even used. Reinforcement learning has enjoyed 

rather remarkable successes for complex systems with 

unknown dynamics, including the backgammon player 

of Tesauro, and the design of controllers that can back 

up truck tractor/trailer rigs with multiple concatenated 

trailers. However, not specifically considering the dy-

namics also makes it impossible to provide explicit 

proofs of stability and performance such as are required 

for acceptance by the Control Systems Community.

Goal Directed Optimal Performance

The notion of goal-directed optimal behavior is captured 

by defining a performance measure or cost function 

 Vh 1xk 2 5 a
`

i5k

gi2kr 1xi, ui 2  (3)

with 0 , g # 1 a discount factor and uk 5 h 1xk 2  a pre-

scribed feedback control policy. This is known as the 

cost-to-go and is a sum of discounted future costs from 

the current time k into the infinite horizon future. The 

discount factor reflects the fact that we are less con-

cerned about costs acquired further into the future. 

Function r 1xk, uk 2  is known as the utility, and is a mea-

sure of the one-step cost of control. This can be selected 

based on minimum-fuel considerations, minimum ener-

gy, minimum risk, etc. For instance, a standard form is 

the quadratic energy function r 1xk, uk 2 5 xk
TQxk 1 uk

TRuk

or the more general form

 r 1xk, uk 2 5 Q 1xk 2 1 uk
TRuk,  (4)

which we use at times for illustration. We require 

Q 1x 2 , R to be positive definite so that the cost function 

is well defined.

We assume the system is stabilizable on some set 

V [ Rn, that is there exists a control policy uk 5 h 1xk 2  
such that the closed-loop system xk115 f 1xk 2 1 g 1xk 2h 1xk 2
is asymptotically stable on V. A control policy uk 5 h 1xk 2  
is said to be admissible if it is stabilizing and yields a 

finite cost Vh 1xk 2 . 
For any admissible policy uk 5 h 1xk 2 , we call Vh 1xk 2  its 

cost or value. Policies with smaller values are deemed to 

be better than others. It is important to note that, given 

any admissible policy, its value may be determined by 

evaluating the infinite sum (3). This may be done by ex-

plicit computation in some cases, or by simulation using 

a digital computer, or by actual evaluation in real-time by 

observing the trajectories of the closed-loop system. 

The means by which the value or cost of a control pol-

icy is determined is one of the key differences between 

feedback control theory and reinforcement learning.

The objective of optimal control theory is to select 

the policy that minimizes the cost to obtain 

 V * 1xk 2 5 min
h1 # 2 aa

`

i5k

gi2kr 1xi, h 1xi 2 2 b  (5)

which is known as the optimal cost, or optimal value. 

Then, the optimal control policy is given by

 h* 1xk 2 5 arg min
h1 # 2 aa

`

i5k

gi2kr 1xi, h 1xi 2 2 b  (6)

A short-sighted or myopic planner would only be 

concerned about minimizing the one-step cost or util-

ity r 1xk, uk 2 . However, the problem is to minimize not 

simply the one-step cost, but the sum of all discounted 

costs, or the cost-to-go. This problem is generally very 

difficult or even impossible to solve exactly for general 

nonlinear systems.

Note that in computational intelligence, (3) is often in-

terpreted as a reward, and the objective is to maximize it.

Various methods have been developed to simplify 

the solution of this optimization problem. Some of these 

are known within the Control Systems Community and 

some within the Computational Intelligence Community. 

We shall discuss:

Bellman’s optimality principle and dynamic pro- ■

gramming

Policy iteration and value iteration ■

Various forms of reinforcement learning based on  ■

temporal differences and ADP.

Bellman’s Optimality Principle and 

Dynamic Programming

By writing (3) as

 Vh 1xk 2 5 r 1xk, uk 2 1 g a
`

i5k11

gi2 1k112r 1xi, ui 2 , (7)

one sees that a difference equation equivalent to is 

given by

 Vh 1xk 2 5 r 1xk, h 1xk 2 2 1 gVh 1xk11 2 ,  Vh 10 2 5 0. (8)

That is, instead of evaluating the infinite sum (3), one 

can solve the difference equation to obtain the value of 

using a current policy uk 5 h 1xk 2 . 
This is a nonlinear Lyapunov equation known as 

the Bellman equation. Evaluating the value of a current 

 policy using the Bellman equation is the first key con-

cept in developing reinforcement learning techniques, 

as we shall see. Then, we shall show how to solve the 

Bellman equation on-line in real-time using observed 

data from the system trajectories.

The DT Hamiltonian can be defi ned as

 H 1xk, h 1xK 2 , DVk 2 5 r 1xk, h 1xk 2 21gVh 1xk11 22Vh 1xk 2 , (9)
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where DVk 5 gVh 1xk11 2 2 Vh 1xk 2  is the forward difference 

operator. The Hamiltonian function captures the energy 

content along the trajectories of a system as reflected in 

the desired optimal performance. The Bellman equation 

requires that the Hamiltonian be equal to zero for the 

value associated with a prescribed policy.

The optimal value can be written using the Bellman 

equation as

 V  
* 1xk 2 5 min

h1 # 2
1r 1xk, h 1xk 2 2 1 gVh 1xk11 2 2 . (10)

This optimization problem is still difficult to solve. 

Bellman’s principle [Bellman 1957] is a cornerstone 

of optimal control, and states that “An optimal policy 

has the property that no matter what the previous deci-

sions (i.e. controls) have been, the remaining decisions 

must constitute an optimal policy with regard to the 

state resulting from those previous decisions”. In terms 

of equations, this means that

 V * 1xk 2 5 min
h1 # 2
1r 1xk, h 1xk 2 2 1 gV * 1xk11 2 2 . (11)

This is known as the Bellman optimality equation, or the 

discrete-time Hamilton-Jacobi-Bellman (HJB) equation. 

One then has the optimal policy as

 h* 1xk 2 5 arg min
h1.2

1r 1xk, h 1xk 2 2 1 gV * 1xk11 2 2 . (12)

Determining optimal controllers using these equations is 

considerably easier than by using (10), since they contain 

the optimal value inside the minimization argument.

Since one must know the optimal policy at time k 1 1 

to (11) use to determine the optimal policy at time k, 

 Bellman’s Principle yields a backwards-in-time procedure 

for solving the optimal control problem. It is the basis for 

Dynamic Programming algorithms in extensive use in con-

trol system theory, Operations Research, and elsewhere. 

These are by nature off-line planning methods. An example 

of such a procedure in feedback controls design is Riccati 

equation design for the LQR problem, which involves off-

line solution of the Riccati equation given known system 

dynamics (see below). DP methods generally require the 

full knowledge of the system dynamical equations. That is 

f 1x 2 , g 1x 2  must be known.

Policy Iteration, Value Iteration, 

and Fixed Point Equations

In contrast to dynamic programming off-line designs, we 

seek reinforcement learning schemes for on-line learning in 

real time, ultimately without knowing the system dynamics 

f 1x 2 , g 1x 2 . Therefore, we next show how to exploit the no-

tion that the Bellman equation and the Bellman  optimality 

equation (11) are fixed point equations to develop forward-

in-time methods for solving the optimal control problem.

We are now in a position to use these constructions as 

a foundation for reinforcement learning optimal  control. 

Consider any given admissible policy uk 5 h 1xk 2  with val-

ue Vh 1xk 2 . Motivated, though not justified, by (12) deter-

mine a new policy from this value using the operation

 h r 1xk 2 5 arg min
h1 # 2

1r 1xk, h 1xk 2 2 1 gVh 1xk11 2 2 . (13)

This procedure is justified in Bertsekas [1996], where it 

is shown that the new policy h r 1xk 2  is improved in that 

it has value Vhr 1xk 2  less than or equal to the old value 

Vh 1xk 2 . This is known as the one step improvement prop-

erty of rollout algorithms. That is, the step (13) has giv-

en an improved policy.

This suggests the following iterative method for de-

termining the optimal control, which is known as Policy 

Iteration [Leake and Liu 1967], [Sutton and Barto 1998], 

[Bertsekas 1996]. See Figure 3. 

Policy Iteration (PI) Algorithm

Initialize. Select any admissible (i.e. stabilizing) con-

trol policy h0 1xk 2
Policy Evaluation Step. Determine the value of the 

current policy using the Bellman Equation

 Vj11 1xk 2 5 r 1xk, hj 1xk 2 2 1 gVj11 1xk11 2 . (14)

Policy Improvement Step. Determine an improved 

policy using

 hj11 1xk 2 5 arg min
h1 # 2

1r 1xk, h 1xk 2 2 1 gVj11 1xk11 2 2 .  (15)

If the utility has the special form and the dynamics are 

(1), then the policy improvement step looks like

 hj11 1xk 2 5 2
g

2
R21gT 1xk 2=Vj11 1xk11 2 , (16)

where =V 1x 2 5 'V 1x 2 /'x is the gradient of the value func-

tion, interpreted here as a column vector.

Note that the initial policy in PI must be admissible, 

which requires that it be stabilizing. It has been shown 

by [Leake and Liu 1967], [Howard 1960] and others that 

this algorithm converges under certain conditions to 

the optimal value and control policy, that is, to the solu-

tion of (11), (12).

The evaluation of the value of the current policy us-

ing the Bellman Equation (14) amounts to determining 

the value of using the policy hj 1xk 2  starting in all cur-

rent states xk. This is called a full backup in [Sutton and 

Barto 1998] and can involve significant computation. 

In fact, it can be shown that the Bellman equation is a 

fixed point equation. That is, given an admissible policy 

uk 5 h 1xk 2 , has a unique fixed point Vh 1xk 2 , and the fol-

lowing contraction map

 Vi11 1xk 2 5 r 1xk, h 1xk 2 2 1 gVi 1xk11 2  
can be iterated starting with any value V 0 1xk 2 , and there 

results in the limit Vi 1xk 2 S Vh 1xk 2 . Therefore one can re-

place the policy iteration step (14) by
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 Vi11 1xk 2 5 r 1xk, hj 1xk 2 2 1 gVi 1xk11 2 , for i 5 1, 2, … , (17)

where the iteration in i is carried out with the same 

policy hj 1 # 2  until convergence. Then, Vi 1x 2 S Vj11 1x 2  as 

i S `. One generally selects at step j V 0 1xk11 2 5 Vj 1xk11 2 . 
This can be called Iterative Policy Iteration [Sutton and 

Barto 1998]. It is noted that each step in (17) is far sim-

pler to implement that a single step of (14), as we see 

below when we consider the LQR case.

This suggests further the idea of iterating (17) for only 

K  steps, for a fixed finite integer K. That is, only K steps are 

taken towards evaluating the value of the current policy. 

This is known as Generalized Policy Iteration in [Sutton and 

Barto 1998]. In GPI, at each policy update step, only a par-

tial backup is done of the values. An extreme case is to take 

K 5 1, which gives the next algorithm, known as Value Itera-

tion. There, only a 1-step backup of values is performed.

Value Iteration (VI) Algorithm

Initialize. Select any control policy h0 1xk 2 , not neces-

sarily admissible or stabilizing.

Value Update Step. Update the value using 

 Vj11 1xk 2 5 r 1xk, hj 1xk 2 2 1 gVj 1xk11 2 . (18)

Policy Improvement Step. Determine an improved 

policy using

 hj11 1xk 2 5 arg min
h1 # 2

1r 1xk, h 1xk 2 2 1 gVj11 1xk11 2 2 .  (19)

It is important to note that now, the old value is used on the 

right-hand side of (14), in contrast to the PI step (14). It has 

been shown that VI converges under certain situations. 

Note that VI does not require an initial stabilizing policy. 

In fact, on further thought, it is seen that Value Iteration 

is based on the fact that the Bellman Optimality Equation 

(11) is also a fixed point equation. The interleaved steps 

of value update and policy improvement are the means of 

iterating the contraction map associated to (11). 

It is important to note that PI requires at each step 

the solution of (14), which is a nonlinear Lyapunov equa-

tion. This solution is difficult for general nonlinear sys-

tems. On the other hand, VI relies on the solution of (18), 

which is simply a recursion equation.

Generally, fixed point equations can be used, with 

suitable formulation, as a basis for on-line reinforcement 

learning algorithms that learn by observing data accrued 

along system trajectories. We shall shortly develop re-

inforcement learning schemes based on these notions. 

First, to pin down ideas, let us consider the LQR case.

The DT Linear Quadratic 

Regulator (LQR) Case

The main purpose of this section is to show that the rein-

forcement learning notions of Policy Iteration and Value 

Iteration are in fact in line with familiar ideas in feedback 

control systems. A second purpose is to give explicit for-

mulae for the above constructions for an important class 

of problems that illustrates further their meaning.

A large class of important discrete-time (DT) sys-

tems can be described in the linear time invariant state-

space form

 xk11 5 Axk 1 Buk (20)

with state xk [ Rn and control input uk [ Rm. The control 

policies of interest are then state variable feedbacks of 

the form

 uk 5 h 1xk 2 5 2 Kxk (21)

with the control policy a constant feedback gain matrix 

K to be determined. 

Given a prescribed policy, the cost function is the 

sum of quadratic functions

Vh 1xk 2 5a
`

i5k

1xi
TQxi 1 ui

TRui 2
  5a

`

i5k

xi
T 1Q 1KTRK 2xi ;VK 1xk 2 ,   (22)

which has utility r 1xk, uk 2 5 xk
TQxk 1 uk

TRuk with weight-

ing matrices Q 5 QT $ 0, R 5 RT . 0. It is assumed that 

(A, B) is stabilizable, i.e., there exists a feedback gain 

matrix K such that the closed-loop system

 xk11 5 1A 2 BK 2xk ; Acxk   (23)

is asymptotically stable. It is also assumed that 1A, "Q 2  
is detectable, i.e. "Q xk S 0 implies that xk S 0.

Optimal Control Solution for the DT LQR

The objective of this design is to select the state feed-

back gain K, i.e. the control policy, to minimize the 

cost-to-go Vh 1xk 2 5 VK 1xk 2  for all current states xk. This 

is called the linear quadratic regulator (LQR) problem 

[Lewis and Syrmos 1995]. 

It can be shown that the optimal value for the LQR is 

quadratic in the current state so that

 V * 1xk 2 5 xk
TPxk (24)

for some matrix P, which is to be determined. Therefore, 

the Bellman equation for the LQR is

 xk
TPxk 5 xk

TQxk 1 uk
TRuk 1 xk11

T Pxk11. (25)

In terms of the feedback gain this can be written as

 xk
TPxk 5 xk

T 1Q 1 KTRK 1 1A 2 BK 2TP 1A 2 BK 2 2xk. (26)

Since this must hold for all current states xk one has

 1A 2 BK 2T P 1A 2 BK 2 2 P 1 Q 1 KTRK 5 0. (27)
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This matrix equation is linear in P and is known as a 

Lyapunov equation when K is fixed. Solving this equation 

given a prescribed stabilizing gain K yields P 5 PT . 0 

such that VK 1xk 2 5 xk
TPxk is the cost of using the policy

K. That is,

 VK 1xk 2 5 a
`

i5k

xi
T 1Q 1 KTRK 2xi 5 xk

TPxk. (28)

The equations and are easily solved for the LQR. Write 

the Bellman equation as

 xk
TPxk 5 xk

TQxk 1 uk
TRuk 1 1Axk 1 Buk 2TP 1Axk 1 Buk 2 , (29)

whence the minimization is easily performed by differ-

entiating with respect to uk to obtain

 Ruk 1 BTP 1Axk 1 Buk 2 5 0 

or

 uk 521R 1 BTPB 221BTPAxk, (30)

so the optimal feedback gain is

 K 5 1R 1 BTPB 221BTPA. (31)

Substituting this into the Bellman equation (29) and 

simplifying yields the DT HJB equation

 ATPA 2 P 1 Q 2 ATPB 1R 1 BTPB 221BTPA 5 0. (32)

This equation is quadratic in P and is known as the 

Riccati equation.

To solve the DT LQR optimal control problem, one first 

solves the Riccati equation for P, then the optimal value is 

given by V * 1xk 2 5 xk
TPxk and the optimal policy by (31).

On-line learning vs. off-line planning solution 

of the LQR. It is important to note the following key 

point. In going from the formulation (25) of the Bell-

man equation to the formulation (27), which is the Ly-

apunov equation, one has performed two steps. First, 

the system dynamics are substituted for xk11 to yield 

(26), next the current state xk is cancelled to obtain 

(27). These two steps make it impossible to apply 

real-time online reinforcement learning methods to 

find the optimal control, which we shall do in the next 

section. Because of these two steps, optimal controls 

design in the Control Systems Community is almost 

universally an off-line procedure involving solutions 

of Riccati equations, where full knowledge of the sys-

tem dynamics 1A, B 2  is required.

Policy Iteration and Value Iteration 

for the DT LQR

We will now see that Policy Iteration and Value Iteration 

are actually well known in the Control Systems Commu-

nity, though there they are called something else, name-

ly Hewer’s method for solving the DT Riccati equation 

[Hewer 1971].

For the LQR, Bellman’s equation (8) is written as (25) 

and hence is equivalent to the Lyapunov equation (32). 

Therefore, in the Policy Iteration Algorithm, the policy 

evaluation step for LQR is

 1A 2 BKj 2TPj11 1A 2 BKj 2 2 Pj11 1 Q 1 Kj
TRKj 5 0.  (33)

and the policy update is

 Kj11 5 1R 1 BT Pj11B 221 BT Pj11A.  (34)

However, iteration of these two equations is exactly 

Hewer’s algorithm [Hewer 1971] to solve the Riccati 

equation (32). Hewer proved that it converges under the 

stabilizability and detectability assumptions.

In the Value Iteration Algorithm, the policy evalua-

tion step for LQR is

 Pj11 5 1A 2 BKj 2TPj 1A 2 BKj 2 1 Q 1 Kj
TRKj.   (35)

and the policy update (29) is (34). However, iteration 

of these two equations has been studied by Lancaster 

and  Rodman [1995], who showed that it converges to the 

 Riccati equation solution under the stated assumptions.

Note that Policy Iteration involves full solution of a 

Lyapunov equation (33) at each step and requires a sta-

bilizing gain Kj at each step. This is called a full backup 

in reinforcement learning terms. On the other hand, Val-

ue Iteration involves only a Lyapunov recursion (35) at 

each step, which is very easy to compute, and does not 

require a stabilizing gain. This is called a partial backup 

in reinforcement learning.

The recursion (35) can be performed even if Kj is not 

stabilizing. If Kj is in fact stabilizing, then iterating the 

Lyapunov recursion (35), with a fixed feedback gain Kj, 

until convergence provides the solution to the Lyapunov 

equation (33).

Reinforcement Learning suggests another algorithm 

for solving the Riccati equation, namely Generalized 

Policy Iteration. In GPI, one would perform the following 

at each step.

Every living organism interacts with its environment and uses those interactions 
to improve its own actions in order to survive and increase.
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Generalized Policy Algorithm for LQR

Initialize. Select any control policy K0, not necessar-

ily admissible or stabilizing.

Value Update Step. At step j, update the value using 

Pj
i11 5 1A 2 BKj 2TPj

i 1A2BKj 21 Q 1 Kj
TRKj,

 i 50,  1, ... , K 2 1 (36)

for some finite K, setting as initial condition Pj
0 5 Pj. 

Set Pj11 5 Pj
K.

Policy Improvement Step. Determine an improved 

policy using

 Kj11 5 1R 1 BTPj11B 221BTPj11A. (37)

This algorithm takes K steps towards solving the 

 Lyapunov equation at each iteration j. That is, the value 

update step in GPI consists of K steps of the recursion 

(35) using the same fixed gain. Setting K 5 1 yields Value 

Iteration, i.e. (35), whereas setting K 5 ` (i.e. perform 

(36) until convergence) yields Policy Iteration, which 

solves the Lyapunov equation (33).

Reinforcement Learning, ADP, and 

Adaptive Control

The optimal control solution using dynamic program-

ming is a backwards-in-time procedure. Therefore, it can 

be used for off-line planning but not online learning. We 

have seen that the Bellman equation (8) leads to several 

iterative methods for learning the solution of the opti-

mal control equation without solving the HJB equation, 

including Policy Iteration and Value Iteration. In this 

section we shall see how to formulate these as on-line 

real-time reinforcement learning methods for solving the 

optimal control problem using data measured along sys-

tem trajectories [Sutton and Barto 1998]. These methods 

are broadly called approximate dynamic  programming 

(ADP) [Werbos 1974, 1989, 1991, 1992] or neurodynamic 

programming (NDP) [Bertsekas 1996]. There are two key 

ingredients: temporal difference (TD) error and  value 

function approximation (VFA).

The Bellman equation is a fixed point equation which 

can be viewed as a consistency equation that the value 

must satisfy if it is consistent with the current control 

policy. Generally, fixed point equations can be used, 

with suitable formulation, as a basis for reinforcement 

learning algorithms. Let us now develop on-line rein-

forcement learning schemes based on these notions. 

ADP-Temporal Difference (TD) and 

Value Function Approximation (VFA)

Approximate Dynamic Programming (ADP), or Neuro-

dynamic Programming (NDP), is a practical method for 

determining the optimal control solution online forward 

in time by using measured system data along the sys-

tem trajectories. It is based on providing methods for 

solving the dynamic programming problem forward in 

time in real-time and for approximating the value func-

tion. References are the work of Sutton and Barto [1998], 

 Werbos [1974, 1989, 1991, 1992], and Bertsekas [1996]. 

Temporal Difference (TD) Error. To turn these con-

cepts into forward-in-time online solution methods, 

based on the Bellman equation define a time-varying 

residual equation error as

 ek 5 r 1xk, h 1xk 2 2 1 gVh 1xk11 2 2 Vh 1xk 2 . (38)

One notes that the right-hand side of this is the DT Ham-

iltonian function. Function ek is known as the tempo-

ral difference error. If the Bellman equation holds, the 

TD  error is zero. Therefore, for a fixed control policy 

u 5 h 1x 2one may solve the equation ek 5 0 at each time 

k for the value function Vh 1 # 2  that is the least-squares 

solution to the TD equation

 0 5 r 1xk, h 1xk 2 2 1 gVh 1xk11 2 2 Vh 1xk 2 . (39)

This yields the best approximation to the value correspond-

ing to using the current policy, i.e. to the summation (3). 

The TD error can be considered as a prediction error 

between predicted performance and observed perfor-

mance in response to an action applied to the system. 

See Figure 1.

Figure 1. Reinforcement learning applies an action command 
and observes the resulting behavior or reward. The differ-
ence between the predicted performance and the observed 
reward plus the current estimate of future behavior is used 
to modify the action commands to make this difference 
smaller. This is captured formally in the Bellman Equation.

Observed
Behavior/Reward

Current Estimate
of Future Behavior

Prediction Error

Action Predicted
Performance

The means by which the value or cost of a control policy is determined 
is one of the key differences between feedback control theory and 

reinforcement learning.
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Solving the TD equation amounts to solving a non-

linear Lyapunov equation on line and without knowing 

the system dynamics, but using only data measured along 

the system trajectories. Unfortunately, the TD equation is 

diffi cult to solve for general nonlinear systems.

Value Function Approximation (VFA). To provide a 

practical means for solving the TD equation, one may 

approximate the value function Vh 1 . 2  using a paramet-

ric approximator. This has been called Approximate 

Dynamic Programming (ADP) by Werbos [1974, 1989, 

1991, 1992] and neurodynamic programming (NDP) by 

Bertsekas [1996], both of whom used neural networks 

as the approximators.

To motivate this approach, let us consider VFA for 

the LQR case. In LQR, one knows that the value of any 

admissible control policy uk 5 2Kxk is quadratic in the 

state, i.e. holds for some matrix P. Substituting into 

yields the LQR TD error

 ek 5 xk
TQxk 1 uk

TRuk 1 xk11
T Pxk11 2 xk

TPxk. (40)

This equation is linear in the unknown parameter ma-

trix P. 

To further simplify the TD equation, use the Kroneck-

er product to write

 VK 1xk 2 5 xk
TPxk 5 1vec 1P 2 2T 1xk # xk 2 ; pTxk  (41)

with #  the Kronecker product and vec(P) the vector 

formed by stacking the columns of matrix P. Note that 

xk 5 xk # xk is the quadratic polynomial vector con-

taining all possible products of the n components of xk. 

Noting that P  is symmetric and has only n 1n 1 1 2 /2 inde-

pendent elements, one removes the redundant terms in 

xk # xk to define a quadratic basis set xk with n 1n 1 1 2 /2
independent elements. The unknown parameter vector is 

p, the elements of matrix P.

Using these constructions, the TD error is written as

ek 5 xk
TQxk 1 uk

TRuk 1 pTxk11 2 pTxk

 5 r 1xk, uk 2 1 p Txk11 2 pT xk. (42)

In the LQR case, a complete basis set for the value func-

tion Vh 1xk 2  is provided by the quadratic functions in the 

components of xk. In the nonlinear case one assumes 

that the value is sufficiently smooth. Then, according to 

the Weierstrass higher order approximation Theorem, 

there exists a dense basis set 5fi 1x 2 6 such that

Vh 1x 2 5 a
`

i51

wiwi 1x 2 5 a
L

i51

wiwi 1x 2 1 a
`

i5L11

wiwi 1x 2
 ; WTf 1x 2 1 eL 1x 2 , (43)

where basis vector f 1x 2 5 3w1 1x 2 w2 1x 2 c wL 1x 2 4:
Rn S RL and eL 1x 2  converges uniformly to zero as the num-

ber of terms retained L S `. In the Weierstrass Theorem, 

standard usage takes a polynomial basis set. In the neu-

ral network community, approximation results have been 

shown for various other basis sets including sigmoid, 

hyperbolic tangent, Gaussian radial basis functions, etc. 

There, standard results show that the NN approximation 

error eL 1x 2  is bounded by a constant on a compact set. L 

is referred to as the number of hidden-layer neurons.

VFA makes several contributions to reinforcement 

learning. In learning the value function by reinforcement 

learning methods, it is necessary to store the optimal 

value and the optimal control as a function of the state 

vector x [ Rn. In Markov Decision Process applications, 

which are discrete-state systems, e.g., the state can take 

on only a finite number of prescribed discrete values, 

this leads to the so-called curse of dimensionality. In 

CoD, as the number of states and the number of allowed 

values increases, more and more information must be 

store, generally in look up tables. However, using value 

function approximation (VFA), where the critic and, if 

desired, the actor are parameterized using function ap-

proximators, this CoD problem is mitigated. 

ADP- On-Line Reinforcement 

Learning Optimal Control

Assuming the approximation

 Vh 1x 2 5 WTf 1x 2 , (44)

one substitutes into the Bellman TD equation to obtain

 ek 5 r 1xk, h 1xk 2 2 1 gW Tf 1xk11 2 2 W Tf 1xk 2 . (45)

The equation ek 5 0 is a fixed point equation. It is a 

consistency equation that is satisfied at each time k

for the value Vh 1 . 2  corresponding to the current policy 

u 5 h 1x 2 . As such, iterative procedures for solving the 

TD  equation may be used, including Policy Iteration and 

Value Iteration.

The usual assumptions made in deriving the Riccati Equation make 
it impossible to use online learning techniques for the design of 

optimal feedback control systems.
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On-Line Policy Iteration Algorithm

Initialize. Select any admissible (i.e., stabilizing) con-

trol policy h0 1xk 2 .
Policy Evaluation Step. Determine the least-squares 

solution Wj11 to

 Wj11
T 1f 1xk 2 2 gf 1xk11 2 2 5 r 1xk, hj 1xk 2 2 . (46)

Policy Improvement Step. Determine an improved 

policy using

  hj11 1xk 2 5 arg min
h1.2

1r 1xk, h 1xk 2 2 1 gWj11
T w 1xk11 2 2 . (47)

If the utility has the special form (4) and the dynamics 

are (1), then the policy improvement step looks like

 hj11 1xk 2 5 2
g

2
R21gT 1xk 2=fT 1xk11 2Wj11, (48)

where =f 1x 2 5 'f 1x 2 /'x [ RL3n is the Jacobian of the 

activation function vector.

Note that is a scalar equation, whereas the unknown 

parameter vector Wj11 [ RL has L elements. At time 

k11 one measures the previous state xk, the control 

uk 5 hj 1xk 2 , the next state xk11, and computes the utility 

r 1xk, hj 1xk 2 2 . This gives one scalar equation. This is re-

peated for subsequent times using the same policy hj 1 . 2  
until one has at least L equations, at which point one 

may determine the LS solution Wj 11. One may use batch 

LS for this.

However, note that equations of the form (46) are 

exactly those solved by recursive least-squares (RLS) 

techniques. Therefore, one may run RLS online until 

convergence. Write (46) as

 Wj11
T F 1k 2 ;Wj11

T 1f 1xk 22gf 1xk11 2 25r 1xk, hj 1xk 2 2  (49)

with F 1k 2 ; 1f 1xk 2 2 gf 1xk11 2 2  a regression vector. 

Then, at step j of the PI algorithm, one fixes the control 

policy at u 5 hj 1x 2 . Then, at each time k one measures the 

data set 1xk, xk11, r 1xk, hj 1xk 2 2 2 , which consists of the cur-

rent state, the next state, and the resulting utility  incurred. 

One step of RLS is then performed. This is repeated for 

subsequent times until convergence to the parameters 

corresponding to the value Vj11 1x 2 5 Wj11
T f 1x 2 .

Note that for RLS to converge, the regression vector 

F 1k 2 ; 1f 1xk 2 2 gf 1xk11 2 2  must be persistently exciting.

As an alternative to RLS, one could use a gradient de-

scent tuning method such as

  W j11
i11 5 W j11

i 2a F 1k 2 1 1W j11
i 2TF 1k22r 1xk, hj 1xk 2 2  (50)

with a . 0 a tuning parameter. The index i is increment-

ed at each increment of the time index k. 

Once the value parameters have converged, the con-

trol policy is updated according to (47), (48). Then, the 

procedure is repeated for step j 1 1. This entire proce-

dure is repeated until convergence to the optimal con-

trol solution, i.e., the approximate solution to (11), (12). 

This provides an online reinforcement learning al-

gorithm for solving the optimal control problem using 

Policy Iteration by measuring data along the system 

trajectories. Likewise, an online reinforcement learning 

algorithm can be given based on Value Iteration. 

On-Line Value Iteration Algorithm

Initialize. Select any control policy h0 1xk 2 , not neces-

sarily admissible or stabilizing.

Value Update Step. Determine the least-squares solu-

tion Wj11 to

 Wj11
T f 1xk 2 5 r 1xk, hj 1xk 2 2 1 Wj

Tgf 1xk11 2 . (51)

Policy Improvement Step. Determine an improved 

policy using

 hj11 1xk 2 52
g

2
R21gT 1xk 2=fT 1xk11 2Wj11. (52)

To solve in real-time one can use batch LS, RLS, or gra-

dient-based methods. 

Note that the old weight parameters are on the 

right-hand side of (51). Thus, the regression vector is 

now f 1xk 2 , which must be persistently exciting for con-

vergence of RLS.

Reinforcement Learning and Adaptive Control

The form of these reinforcement learning algorithms is 

captured in the figure. Note that they are of the Actor 

Critic structure. Note that the value update in the crit-

ic is performed by solving (46) or (51) using standard 

adaptive control techniques, namely RLS. Then the con-

trol is updated using (52). 

Adaptive control can be performed either in a direct 

fashion, wherein the controller parameters are directly 

estimated, or in an indirect fashion, wherein the system 

model parameters are first estimated and then the con-

troller is computed. One sees that reinforcement learning 

is an indirect adaptive controller wherein the parameters 

of the Value (44) are estimated. Then the control is com-

puted using (52). However, the optimal control is directly 

computed in terms of the learned parameters using (48), 

so this is actually a direct adaptive control scheme!

The importance of reinforcement learning is that 

it provides an adaptive controller that converges to 

the optimal control. This is new in the Control System 

 Community, where adaptive controllers do not typically 

converge to optimal control solutions. Indirect adaptive 

controllers have been designed that first estimate sys-

tem parameters and then solve Riccati equations, but 

these are clumsy. Reinforcement Learning provides Op-

timal Adaptive Controllers learned online. 

Note that this is a two-time scale system wherein the 

control action in an inner loop occurs at the sampling 

time, but the performance is evaluated in an outer loop 
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over a longer horizon, corresponding to the convergence 

time needed for RLS.

It is important to note that, in the LQR case, the 

 Riccati equation (32) provides the optimal control solu-

tion. The Lyapunov equation (27) is equivalent to (45). 

The dynamics (A,B) must be known for the solution of 

the Lyapunov equation and the Riccati equation. As such 

these equations provide offline planning solutions. On 

the other hand, fixed point equation can be evaluated 

online along the system trajectories using reinforcement 

learning techniques by measuring at each time the data 

set 1xk, xk11, r 1xk, hj 1xk 2 2 2 , which consists of the current 

state, the next state, and the resulting utility incurred. 

This corresponds to learning the optimal control online 

by evaluating the performance of nonoptimal controllers.

Reinforcement learning actually solves the Riccati equa-

tion online without knowing the dynamics by observing 

the data 1xk, xk11, r 1xk, hj 1xk 2 2 2  at each time along the sys-

tem trajectory.

Introduction of a Second ‘Actor’ Neural Network

The PI (resp. VI) reinforcement learning algorithm solves a 

nonlinear Lyapunov equation (resp. Lyapunov recursion) 

during the Value Update portion of each iteration step j by 

observing only the data set 1xk, xk11, r 1xk, hj 1xk 2 2 2  at each 

time along the system trajectory. In the LQR PI case, for 

instance, this means that the Lyapunov (33) equation has 

been replaced by

 pj11
T 1xk11 2 xk 25 r 1xk, hj 1k 2 25 xk

T 1Q 1 Kj
TRKj 2xk, (53)

which is solved for the parameters pj11 5 vec 1Pj11 2  using 

RLS by measuring the data set 1xk, xk11, r 1xk, hj 1xk 2 2 2  at 

each time. For this step the dynamics 1A, B 2  can be un-

known as they are not needed.

Thus, reinforcement learning solves an underlying non-

linear Lyapunov equation (the Bellman equation) at each 

step on-line and without knowing the dynamics, by using 

only data observed along the system trajectories.

However, note that in the LQR case the policy update is 

given by 

 Kj11 5 1R 1 BTPj11B 221BTPj11A, (54)

which requires full knowledge of the dynamics 1A, B 2 . 
Note further that the embodiment (47) cannot easily be 

implemented in the nonlinear case because it is implicit 

in the control, since xk11 depends on h 1 . 2  and is the ar-

gument of a nonlinear activation function.

These problems are solved by introducing a second 

neural network for the control policy, known as the ac-

tor NN [Werbos 1974, 1989, 1991, 1992]. Therefore, intro-

duce an actor parametric approximator structure

 uk 5 h 1xk 2  5 UTs 1xk 2  (55)

with s 1x 2 :Rn S RM a vector of M activation functions and 

U [ RM3m a matrix of weights or unknown parameters. 

After convergence of the critic NN parameters to 

Wj11 in PI or VI, it is required to perform the policy 

update (47), (52). To achieve this one may use a gra-

dient descent method for tuning the actor weights U 

such as

 Uj11
i11 5 Uj11

i 2 bs 1xk 2 12R 1Uj11
i 2Ts 1xk 2

 1 gg 1xk 2T=fT 1xk11 2Wj11 2T (56)

with b . 0 a tuning parameter. The tuning index i is in-

cremented with the time index k. 

Several items are worthy of note at this point. First, 

the tuning of the actor NN requires observations at each 

time k of the data set 1xk, xk11 2 , i.e., the current state 

and the next state. However, as per the formulation (55), 

the actor NN yields the control uk at time k in terms of 

the state xk at time k. Thus, it is a legitimate feedback 

 controller. Second, in the LQR case, the actor NN (55) 

embodies the gain computation (54). This is highly in-

triguing, for the latter contains the state internal dy-

namics A, but the former does not. This means that the 

A matrix is NOT needed to compute the feedback con-

trol. The reason is that the actor NN has learned infor-

mation about A in its weights, since 1xk, xk11 2  are used 

in its tuning.

Finally, note that only the input function g 1 . 2  (in the LQR 

case, the B matrix) is needed in to tune the actor NN. Thus, 

introducing a second actor NN has completely avoided the 

need for knowledge of the state internal dynamics f 1 . 2  (or 

A in the LQR case).

The implementation of reinforcement learning us-

ing two NNs, one as a critic and one as an actor, yields 

the structure shown in Figure 2. In this control system, 

the critic and the actor are tuned online using the ob-

served data 1xk, xk11, r 1xk, hj 1xk 2 2 2  along the system tra-

jectory. The critic and actor are tuned sequentially in 

both PI and VI. That is, the weights of one NN are held 

constant while the weights of the other are tuned until 

convergence. This procedure is repeated until both NN 

have converged. Then, the controller has learned the 

optimal controller online. Thus, this is an online adap-

tive optimal control system wherein the value function 

parameters are tuned online and the convergence is 

to the optimal value and control. The convergence of 

nonlinear Value Iteration using two NN was proven in 

[Al-Tamimi 2008].

Synchronous methods for tuning the actor and 

critic are given in [He and Jagannathan 2007]. There, 

the two NN are tuned simultaneously, and stability of 

the closed-loop system is guaranteed using Lyapunov 

 energy-based techniques.
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Q Learning and Dual Learning

In learning the value function by reinforcement learn-

ing methods, the optimal value and the optimal control 

are stored as a function of the state vector x [ Rn. We 

just saw that, using value function approximation (VFA), 

where the critic and, if desired, the actor are param-

eterized using function approximators, this is done in 

a straightforward manner. The NN weights are tuned 

online to learn the optimal value and optimal control 

policy for any value of the state xk. 

Werbos [1974, 1989, 1991, 1992] has introduced four ba-

sic methods of approximate dynamic programming (ADP). 

He has called reinforcement learning based on learning 

the scalar value function Vh 1xk 2 , Heuristic Dynamic Pro-

gramming (HDP). Action dependent HDP (AD HDP), in-

troduced as Q learning for discrete-state MDP by Watkins 

[1989], learns the so-called Q function (also a scalar) and 

allows one to perform reinforcement learning without any 

knowledge of the system dynamics. Dual heuristic pro-

gramming (DHP) uses online learning of the costate func-

tion lk 5 'Vh 1xk 2 /'xk, which is an n-vector gradient and so 

carries more information than the value. AD DHP is based 

on learning the gradients of the Q function. 

Q Learning

Unfortunately, in value function learning or HDP, one re-

quires knowledge of the system dynamics (see (48) and 

(54)). At a minimum, one needs the input coupling func-

tion g 1 . 2  or the B matrix. This is because in performing 

the minimization (without control constraints)

  hj11 1xk 2 5 arg min
h1 # 2

1r 1xk, h 1xk 2 2 1 gWj11
T f 1xk11 2 2  (57)

one must differentiate with respect to the control to ob-

tain

0 5
'
'uk

1Q 1xk 2 1 uk
TRuk 2 1

'
'uk

gWj11
T f 1xk11 2

 5  2Ruk 1 a '
'uk

f 1xk11 2 b
T

gWj11 

 5 2Ruk 1 a'xk11

'uk

bT

=fT 1xk11 2gWj11. (58)

However in evaluating 

 
'xk11

'uk

5 g 1xk 2 , (59)

one requires the system input matrix g 1 . 2 . If a second ac-

tor NN is used, then one still needs g 1 . 2  to tune the actor 

NN weights as per (56).

To avoid knowing any of the system dynamics, one 

must provide an alternative path to take partial deriva-

tives with respect to the control input that does not 

go through the system. Werbos has used the concept 

of backpropagation to accomplish this using action 

dependent HDP (AD HDP). Watkins [1989] introduced 

similar notions for discrete-space MDP, which he called 

Q learning.

Consider the Bellman equation (8), which allows one 

to compute the value of using any prescribed admissi-

ble policy h 1 . 2 . The optimal control is determined using 

(10)or (11). Therefore, let us define the Q (quality) func-

tion associated with policy u 5 h 1x 2  as

 Qh 1xk, uk 2 5 r 1xk, uk 2 1 gVh 1xk11 2 .  (60)

Note that the Q function is a function of both the state xk 

and the control uk at time k. It has been called the action 

value function. Define the optimal Q function as

 Q* 1xk, uk 2 5 r 1xk, uk 2 1 gV * 1xk11 2 . (61)

In terms of Q*, one writes the Bellman Optimality equa-

tion in the very simple form

 V * 1xk 2 5 min
u

1Q* 1xk, u 2 2  (62)

and the optimal control as

 h* 1xk 2 5 arg min
u

1Q* 1xk, u 2 2 . (63)

In the absence of control constraints, one obtains the 

minimum value by solving

 
'
'u

Q* 1xk, u 2 5 0. (64)

In contrast to (58) this does NOT require any deriva-

tives involving the system dynamics. That is, assuming 

one knows the Q function for every 1xk, uk 2 , one does 

not need to find 'xk11/'uk. 

In value function learning (HDP) one must learn and 

store the optimal value for all possible states xk. By 

contrast, in Q learning, one must store the optimal Q 

function for all values of 1xk, uk 2 , that is, for all possible 

control actions performed in each possible state. This 

Figure 2. Reinforcement Learning with an actor/critic 
structure. Using policy evaluation criteria based on opti-
mality mimics nature and also allows for a mathematical 
formulation that admits rigorous analysis.
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is far more information. We shall soon see how to use 

Q function approximation to accomplish this.

Fixed Point Equation for 

Q Function

We would like to employ online reinforcement tech-

niques to learn the Q function. To do this, we must de-

termine: 1. a fixed point equation for Q to use TD, and 2. 

a suitable parametric approximator structure for Q to 

use VFA (actually Q function approximation-QFA). 

To determine a fixed point equation for Q, note that

 Qh 1xk, h 1xk 2 2 5 Vh 1xk 2 . (65)

Therefore a ‘Bellman equation’ for Q is 

 Qh 1xk, uk 2 5 r 1xk, uk 2 1 gQh 1xk11, h 1xk11 2 2  (66)

or

 Qh 1xk, h 1xk 2 2 5 r 1xk, h 1xk 2 2 1 gQh 1xk11, h 1xk11 2 2 . (67)

The Optimal Q value satisfies or

 Q* 1xk, uk 2 5 r 1xk, uk 2 1 gQ* 1xk11, h
* 1xk11 2 2 . (68)

Equation (67)is a fixed point equation or ‘Bellman equa-

tion’ for Q. Compare it to (8). Now, one can use any on-

line reinforcement learning method from above as the 

basis for ADP, including PI and VI.

Q Function for LQR Case 

To motivate the choice of suitable approximator struc-

tures for Q function approximation (QFA), let us com-

pute the Q function for the LQR case.

According to (60) one has for the LQR

 QK 1xk, uk 2 5 xk
TQxk 1 uk

TRuk 1 xk11
T Pxk11,  (69)

where P is the solution to the Lyapunov equation for the 

prescribed policy K . Therefore,

QK 1xk, uk 2 5 xk
TQxk 1 uk

TRuk 1 1Axk 1 Buk 2TP 1Axk 1 Buk 2
 (70)

or

 QK 1xk,uk 2 5 cxk

uk

d T cQ 1 ATPA BTPA

ATPB R 1 BTPB
d cxk

uk

d ; zT
kHzk. 

 (71)

This is the Q function for LQR. It is quadratic in 

1xk, uk 2 .
Using the Kronecker product one writes 

 QK 1xk, uk 2 5 H T zk 

with H 5 vec 1H 2  and zk 5 zk # zk 5 cxk

uk

d # cxk

uk

d  the qua-

dratic basis set made up from the components of the 

state and the control input. Then, the fixed point equa-

tion (67) is

 HTzk 5 xk
TQxk 1 uk

TRuk 1 HTzk11 

with uk 52Kxk. Compare to (42).

Q Function for Reinforcement Learning Using 

Policy or Value Iteration

Motivated by the LQR example, for nonlinear systems one 

assumes a parametric approximator or NN of the form

 Qh 1x, u 2 5 WTf 1x, u 2 5 WTf 1z 2  (72)

with w 1x, u 2  a basis set of activation functions. This 

yields the TD error based on (67) of

 ek 5 r 1xk, h 1xk 2 2 1 gW Tf 1zk11 2 2 W Tf 1zk 2 . (73)

Now reinforcement learning methods, including PI or 

VI, may be used to learn H 5 vec 1H 2  online, exactly as 

above. Policy Iteration is illustrated below. RLS or gra-

dient-descent can be used to identify the Q function as-

sociated to a given policy K as discussed in connection 

with (46) and (51).

For these methods, the policy update step is based 

upon 

 
'
'u

Qh 1xk, u 2 5 0. (74)

For the LQR case, define

 QK 1xk,uk 2 5 zT
kHzk 5 cxk

uk

d T cHxx Hxu

Hux Huu

d cxk

uk

d . (75)

Then, (74) yields

 0 5 Huxxk 1 Huuuk 

or

 uk 52 1Huu 221Huxxk. (76)

Since the quadratic kernel matrix H has been found us-

ing online reinforcement learning, the system dynamics 

is not needed for this step. Note that performing (74) on 

(71) yields exactly (54).

For the general nonlinear case with the critic NN (72) 

one obtains

 
'
'u

Qh 1xk, u 2 5
'
'u

W Tf 1xk, u 2 5 0. (77)

Since this NN depends explicitly on the control action 

u (action dependent HDP), the derivatives can be com-

puted without reference to further details such as the 

system dynamics. To solve for u to obtain an explicit 
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policy uk 5 h 1xk 2  one requires application of the implicit 

function theorem to this NN structure.

Both PI and VI can be used for Q Learning. For illus-

tration, we give the 

Q Learning Policy Iteration Algorithm

Initialize. Select any admissible (i.e., stabilizing) con-

trol policy h0 1xk 2 .
Policy Evaluation Step. Determine the least-squares 

solution Wj11 to

 W j11
T 1f 1zk 2 2 gf 1zk11 2 2 5 r 1xk, hj 1xk 2 2 . (78)

Policy Improvement Step. Determine an improved 

policy using

 hj11 1xk 2 5 arg min
h1.2

1W j11
T f 1xk, u 2 2 . (79)

The minimization in (79) is given by (77) and can be 

more explicitly computed given the basis activation 

functions selected for the NN. For instance, in the 

LQR case one has (76). 

In the policy improvement step one notes a prob-

lem. Examine (71) and note that for Q learning one sets 

uk 52Kxk with K the current policy. This makes uk de-

pendent on xk and means that the persistence of excita-

tion on F 1k 2 5 1f 1zk 2 2 gf 1zk11 2 2  required to solve (78) 

using LS techniques does not hold. Therefore, one must 

add a PE probing noise so that uk 5 2Kxk 1 nk [Bradtke 

1994]. In [Al-Tamimi 2007] it is shown that this does not 

result in any bias in the Q function estimates.

The resulting structure for reinforcement Q learning is 

the same as the actor-critic system shown in Figure 2. 

It can be shown [Landelius 1997] that for the LQR 

case, (78) is exactly equivalent to (33), and (79) is the 

same as (34). Therefore, Q learning effectively solves 

the Riccati equation online without knowing any system 

dynamics 1A, B 2 .
Several ideas of Werbos [1991, 1992] are intriguing 

about Q. First, an alternative path has been found to 

backpropagate the partial derivative '/'uk without going 

through the system dynamics (compare (58) and (77)). 

Second, the Q function critic NN (72) now has not only 

the state xk but also the control action uk as its inputs. 

This is the reason '/'uk can be evaluated without going 

through the system. We say the critic NN depends now 

on the action; Werbos therefore calls this action depen-

dent HDP (AD HDP).

Note that in Q learning, one must store the optimal 

Q function for all values of 1xk, uk 2 , in contrast to value 

learning, where one only stores the optimal value for 

all values of the state xk. In MDP this presents an enor-

mous problem of curse of dimensionality. However, 

VFA (actually QFA) allows one to handle his in a practi-

cal manner.

Dual or Gradient Learning

HDP reinforcement Learning methods based on the 

value can be determined using the Bellman or fixed 

point equation

 Vh 1xk 2 5 r 1xk, h 1xk 2 2 1 gVh 1xk11 2 . (80)

AD HDP reinforcement Learning methods based on the 

Q function can be determined using the Bellman or fixed 

point equation

  Qh 1xk, h 1xk 2 2 5 r 1xk, h 1xk 2 2 1 gQh 1xk11, h 1xk11 2 2 . (81)

Both the value and the Q function are scalars so that learn-

ing is being evaluated on the basis of a rather meager re-

sponse stimulus from the environment and convergence 

can be slow for systems with large number n of states. 

Werbos [1989, 1991, 1992] has proposed using rein-

forcement learning techniques on the costate

 lk 5 'Vh 1xk 2 /'xk, (82)

which is an n-vector gradient and so carries more in-

formation than the value. This he called dual heuristic 

programming (DHP). To perform this, it is necessary to 

find a fixed point equation for the costate. This is easily 

done by differentiating to obtain

'
'xk

Vh 1xk 2 5
'
'xk

r 1xk, h 1xk 2 2 1
'
'xk

gVh 1xk11 2
or

lk5
'r 1xk, uk 2
'xk

1c 'uk

'xk

d T'r 1xk, uk 2
'uk

 

 1g c 'xk11

'xk

1
'xk11

'uk

 
'uk

'xk

dTlk11 

for a prescribed policy uk 5 h 1xk 2 . Now a NN structure 

can be used to approximate lk and reinforcement learn-

ing can proceed.

Unfortunately, any reinforcement learning scheme 

based on this fixed point equation requires knowledge of 

the full plant dynamics since 'xk11/'xk5 f 1xk 2 ,  'xk11/'uk5  

g 1xk 2 . Moreover, this requires online RLS implementation 

for an n -vector, which is computationally intensive.

Similarly, one can find reinforcement learning tech-

niques based on the gradients of the Q function lx
k 5

'Qh 1xk, uk 2 /'xk,  lk
u 5 'Qh 1xk, uk 2 /'uk. This is known as AD 

DHP, and has the same deficiencies just noted for DHP.

Reinforcement Learning and ADP for 

Continuous-Time Systems

Reinforcement Learning is considerably more difficult for 

continuous-time systems than for discrete-time systems, 

and its development has lagged. We shall now see why.
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Consider the continuous-time nonlinear dynamical 

system

 x
#

5 f 1x 2 1 g 1x 2u  (83)

with state x 1 t 2 [ Rn, control input u 1 t 2 [ Rm, and the usu-

al mild assumptions required for existence of unique so-

lutions and an equilibrium point to x 5 0, e.g f 10 2 5 0 and 

f 1x 2 1 g 1x 2u Lipschitz on a set V # Rn that contains the 

origin. We assume the system is stabilizable on V, that is 

there exists a continuous control function u 1 t 2  such that 

the closed-loop system is asymptotically stable on V.

The notion of goal-directed optimal behavior is 

captured by defining a performance measure or cost 

function associated with the feedback control policy 

u 5 m 1x 2  as

 Vm 1x 1 t 2 2 5 3

`

t

r 1x 1t 2 , u 1t 2 2dt (84)

with utility r 1x, u 2 5 Q 1x 2 1 uTRu, with Q 1x 2  positive def-

inite, i.e., 4x 2 0, Q 1x 2 . 0 and x 5 0 1 Q 1x 2 5 0, and 

R [ Rm3m a positive definite matrix. 

A policy is called admissible if it is continuous, sta-

bilizes the system, and has a fi nite associated cost. If 

the cost is smooth, then an infi nitesimal equivalent to 

(84) can be found by differentiation to be the nonlinear 

Lyapunov equation

 0 5 r 1x, m 1x 2 2 1 1=Vm 2T 1 f 1x 2 1 g 1x 2m 1x 2 2 ,   Vm 10 2 5 0, 

 (85)

where =Vm (a column vector) denotes the gradient of the 

cost function Vm with respect to x. 

This is the CT Bellman equation. It is defined based 

on the CT Hamiltonian function

 H 1x, m 1x 2 , =Vm 2 5 r 1x, m 1x 2 2 1 1=Vm 2T 1 f 1x 2 1 g 1x 2m 1x 2 2 . 
  (86)

We now see the problem with CT systems immediately.

Compare the CT Bellman Hamiltonian (86) to the DT 

Hamiltonian (9). The former contains the full system dy-

namics f 1x 2 1 g 1x 2u, while the DT Hamiltonian does not. 

This means that there is no hope of using the CT Bell-

man equation (85) as a basis for reinforcement learning 

unless the full dynamics are known.

Several studies have been made about reinforcement 

learning and ADP for CT systems, including [Baird 1994, 

Doya 2000, Hanselmann 2007, Murray 2001, Mehta and 

Meyn 2009]. Baird uses Euler’s method to discretize the 

CT Bellman equation. Noting that 

 05r 1x, m 1x 221 1=Vm 2T 1 f 1x 21g 1x 2m 1x 2 25r 1x, m 1x 221V
#
m 

 (87)

one uses Euler’s method to discretize this to obtain

05r 1xk, uk21V m 1xk1122V m 1xk2
T

  ;
rS 1xk, uk 2

T
1

V m 1xk1122V m 1xk2
T

 (88)

with sample period T so that t 5 kT. The discrete sam-

pled utility is rS 1xk, uk 2 5 r 1xk, uk 2T, where it is important 

to multiply the CT utility by the sample period. 

Now note that the discretized CT Bellman equation (88) 

has the same form as the DT Bellman equation (8). There-

fore, all the reinforcement learning methods just described 

can be applied. Baird defined Advantage Learning based 

on this as a method of improving the conditioning of rein-

forcement learning for sampled CT systems. He noted that if 

the utility is not properly discretized, then the DT solutions 

do not converge to the CT solutions as T becomes small.

However, this is an approximation only. An alternative 

exact method for CT reinforcement learning was given in 

[Vrabie 2009]. One may write the cost in the interval re-

inforcement form

 Vm 1x 1 t 2 2 5 3

t1T

t

r 1x 1t 2 , u 1t 2 2dt   1  Vm 1x 1 t 1 T 2 2 . (89)

For any T . 0. This is exactly in the form of the DT Bell-

man equation (8). According to Bellman’s principle, the 

optimal value is given in terms of this construction as 

[Lewis and Syrmos 1995]

V * 1x 1 t 2 2 5 min
u1t:t1T2a 3

t1T

t

r 1x 1t 2 , u 1t 2 2dt   1  V * 1x 1 t 1 T 2 2 b,

where u 1 t:t 1 T 2 5 5u 1t 2 :t # t , t 1 T6. The optimal con-

trol is

 m* 1x 1 t 2 2 5 arg min
u1t:t1T2 a 3

t1T

t

r 1x 1t 2 , u 1t 2 2dt   1  V * 1x 1 t 1 T 2 2 b.

It is shown in [Vrabie 2009] that the nonlinear Lyapunov 

equation (85) is exactly equivalent to the interval rein-

forcement form (89). That is, the positive definite solu-

tion of both is the value (84) of the policy u 5 m 1x 2 .
The interval reinforcement form is a Bellman equa-

tion for CT systems, and serves as a fixed point equa-

tion. Therefore, one can define the temporal difference 

error for CT systems as 

 e 1 t:t 1 T 2 5 3

t1T

t

r 1x 1t 2 , u 1t 2 2dt    

   1  V m 1x 1 t 1 T 2 2  2  V m 1x 1 t 2 2 . (90)

This does not involve the system dynamics. 
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Now, it is direct to formulate policy iteration and val-

ue iteration for CT systems.

CT Policy Iteration (PI) Algorithm

Initialize. Select any admissible (i.e., stabilizing) con-

trol policy m102 1x 2 .
Policy Evaluation Step. Solve for Vm

1i2 1x 1 t 2 2  using

Vm
1i2 1x 1 t 2 2 5 3

t1T

t

r 1x 1s 2 , m1i2 1x 1s 2 2 2ds 1 Vm
1i2 1x 1 t 1 T 2 2  with  

 Vm
1i2 10 2 5 0. (91)

Policy Improvement Step. Determine an improved 

policy using

 m1i112 5 arg min
u

3H 1x, u, =V x
m
1i2 2 4, (92)

which explicitly is

 m1i112 1x 2 5 2
1

2
 R21gT 1x 2=Vx

m
1i2
.  (93)

CT Value Iteration (VI) Algorithm

Initialize. Select any control policy m102 1x 2 , not neces-

sarily stabilizing.

Policy Evaluation Step. solve for Vm
1i2 1x 1 t 2 2  using

Vm
1i2 1x 1 t 2 2 5 3

t1T

t

r 1x 1s 2 , m1i2 1x 1s 2 2 2ds 1 Vm
1i212 1x 1 t 1 T 2 2  with 

 Vm
1i2 10 2 5 0. (94)

Policy Improvement Step. Determine an improved 

policy using

 m1i112 5 arg min
u

3H 1x, u, =V x
m
1i2 2 4, (95)

which explicitly is

 m1i112 1x 2 52
1

2
 R21gT 1x 2=Vx

m
1i2
. (96)

Note that neither algorithm requires knowledge about 

the internal system dynamics function f 1 . 2 . That is, they 

work for partially unknown systems.

Both of these algorithms may be implemented on-

line using the above reinforcement learning techniques. 

The time is incremented at each iteration by the pe-

riod T. The measured data at each time increment is 

1x 1 t 2 , x 1 t 1 T 2 , r 1 t:t 1 T 2 2  where

r 1 t:t 1 T 2 5 3

t1T

t

r 1x 1t 2 , u 1t 2 2dt

is the reinforcement measured on each time interval. 

The reinforcement learning time interval T need not 

be the same at each iteration. T  can be changed de-

pending on how long it takes to get meaningful informa-

tion from the observations.

In the LQR case, Policy Iteration is exactly the same as 

Kleinman’s algorithm [Kleinman 1968] for solving the CT 

Riccati equation. However, these RL methods allow one 

to implement the algorithm using only information about 

g 1 . 2  (e.g. the B matrix). Information about f 1 . 2  (A matrix) is 

not needed. That is, CT PI solves the CT Riccati equation 

online without knowing the system internal dynamics by 

using data measured along the system trajectories.

Figure 3. Reinforcement learning using policy iteration. At each time one observes the current state, the next state, and 
the cost incurred. This is used to update the value estimate. Based on the new value, the action is updated. 

System/
Environment

CRITIC—Evaluates
the Current

Control Policy 

Control
Action

Value Update Using Bellman Equation
Vj + 1 (xk) = r (xk, hj (xk)) + γVj + 1(xk + 1)
Use RLS Until Convergence

ACTOR—
Implements the
Control Policy 

System
Output

(xk, xk + 1, r (xk, hj (xk)))
Reward/Response
from Environment 

Control Policy Update

hj + 1 (xk) = arg min (r (xk, uk) +  γVj + 1(xk + 1))
uk

hj  (xk)
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Reinforcement Learning Mechanisms in the Brain

It is interesting to note the similarities between these ADP 

Reinforcement learning controller structures and learn-

ing mechanisms in the mammal brain [Vrabie 2009]. The 

critic structure learns, in an episodic manner and based 

on samples of the reward signal from the environment, 

the parameters of a function which describes the actor 

performance. Once a performance evaluation episode is 

completed, the critic passes this information to the actor 

structure which will use it to adapt for improved perfor-

mance. At all times the actor must perform continuous-

time control for the system (the environment in which 

optimal behavior is sought). This description of the way 

in which the actor/critic structure works while search-

ing for optimal control policies points out the existence 

of two time scales for the mechanisms involved:

a fast time scale which characterizes the feedback  ■

control process at which the actor operates, and

a slower time scale which characterizes the learn- ■

ing processes at the level of the critic. 

Thus the actor and critic structures perform tasks at dif-

ferent operation frequencies in relation with the nature 

of the task to be performed (i.e., learning or control). 

Evidence regarding the oscillatory behavior natural-

ly characterizing biological neural systems is presented 

in a comprehensive manner in [Levine, Brown, Shirey 

2000]. Different oscillation frequencies are connected 

with the way in which different areas of the brain per-

form their functions of processing the information re-

ceived from the sensors. Low level control structures 

must quickly react to new information received from the 

environment while higher level structures slowly evalu-

ate the results associated with the present behavior 

policy. This is reflected in the fact that motor control 

occurs at approximately 200 Hz, while theta rhythms in 

the limbic system, where reinforcement learning is be-

lieved to operate, occur at 4–10 Hz.

In ADP, it was shown that having only a little 

 information about the system states measured from the 

sensors, and extracted from the system only at specific 

time values (i.e., 1x 1 t 2 , x 1 t 1 T 2 , r 1 t:t 1 T 2 2), the Critic 

is able to evaluate the infinite horizon continuous-time 

performance of the system associated with a given con-

trol policy described in terms of the Actor parameters. 

The critic learns the cost function associated with a cer-

tain control behavior based on a computed temporal dif-

ference (TD) error signal (90).

It is interesting to mention here that in a number of 

reports, e.g., [Schultz 2004], [Schultz et al. 1997], [Doya 

et al. 2001], it is argued that the temporal difference er-

ror between the received and the expected rewards is 

physically encoded in the dopamine signal produced 

by basal ganglia structures in the mammal brain. At the 

same time, it is known that the dopamine signal encoding 

the temporal error difference favors the learning process 

by increasing the synaptic plasticity of certain groups of 

neurons. We also note an interesting point presented in 

[Perlovsky 2009] associating certain emotions with the 

need for cognition, i.e., emotions play the role of reinforce-

ment signals which drive the need for cognition. This kind 

of reinforcement learning is located at a higher level than 

the dopamine driven learning, thus suggesting that there 

exists a hierarchy of reinforcement-based learning mecha-

nisms in the mammal brain. 
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