
Digital Object Identifier 10.1109/MCS.2012.2214134

Date of publication: 12 November 2012

76  IEEE CONTROL SYSTEMS MAGAZINE »  december 2012

Using natural decision methods to
design optimal adaptive controllers

Frank L. Lewis, Draguna Vrabie,
and Kyriakos G. Vamvoudakis

Reinforcement Learning
and Feedback Control

T
his article describes the use of principles of reinforcement learning to design
feedback controllers for discrete- and continuous-time dynamical systems that
combine features of adaptive control and optimal control. Adaptive control [1], [2]
and optimal control [3] represent different philosophies for designing feedback
controllers. Optimal controllers are normally designed offline by solving Hamilton–

Jacobi–Bellman (HJB) equations, for example, the Riccati equation, using complete knowl-
edge of the system dynamics. Determining optimal control policies for nonlinear systems

1066-033X/12/$31.00©2012ieee

december 2012 «  IEEE CONTROL SYSTEMS MAGAZINE  77

requires the offline solution of nonlinear HJB equations,
which are often difficult or impossible to solve. By contrast,
adaptive controllers learn online to control unknown sys-
tems using data measured in real time along the system
trajectories. Adaptive controllers are not usually designed to
be optimal in the sense of minimizing user-prescribed per-
formance functions. Indirect adaptive controllers use system
identification techniques to first identify the system param-
eters and then use the obtained model to solve optimal
design equations [1]. Adaptive controllers may satisfy cer-
tain inverse optimality conditions [4].

This article shows that the technique known as rein-
forcement learning allows for the design of a class of adap-
tive controllers with actor-critic structure that learn
optimal control solutions by solving HJB design equa-
tions online, forward in time, and without knowing the
full system dynamics. In the linear quadratic case, these
methods determine the solution to the algebraic Riccati
equation online, without specifically solving the Riccati
equation and without knowing the system state matrix
A. As such, these controllers can be considered as being
optimal adaptive controllers. Chapter 11 of [3] places
these controllers in the context of optimal control
systems.

Reinforcement learning is a type of machine learning
developed in the computational intelligence community
in computer science and engineering. It has close connec-
tions to both optimal control and adaptive control. More
specifically, reinforcement learning refers to a class of
methods that enable the design of adaptive controllers
that learn online, in real time, the solutions to user-pre-
scribed optimal control problems. Reinforcement learn-
ing methods were used by Ivan Pavlov in the 1860s to
train his dogs. In machine learning, reinforcement learn-
ing [5]–[9] is a method for solving optimization problems
that involves an actor or agent that interacts with its envi-
ronment and modifies its actions, or control policies,
based on stimuli received in response to its actions. Rein-
forcement learning is inspired by natural learning mecha-
nisms, where animals adjust their actions based on reward
and punishment stimuli received from the environment
[10], [11]. Other reinforcement learning mechanisms oper-
ate in the human brain, where the dopamine neurotrans-
mitter in the basal ganglia acts as a reinforcement
informational signal that favors learning at the level of the
neuron [12]–[15].

Reinforcement learning implies a cause-and-effect rela-
tionship between actions and reward or punishment. It
implies goal-directed behavior, at least insofar as the agent
has an understanding of reward versus lack of reward or
punishment. The reinforcement learning algorithms are
constructed on the idea that effective control decisions
must be remembered, by means of a reinforcement signal,
such that they become more likely to be used a second time.
Reinforcement learning is based on real-time evaluative

information from the environment and could be called
action-based learning. Reinforcement learning is connected
from a theoretical point of view with both adaptive control
and optimal control methods.

One type of reinforcement learning algorithms
employs the actor-critic structure shown in Figure 1 [16].
This structure produces forward-in-time algorithms that
are implemented in real time wherein an actor compo-
nent applies an action, or control policy, to the environ-
ment, and a critic component assesses the value of that
action. The learning mechanism supported by the actor-
critic structure has two steps, namely, policy evaluation,
executed by the critic, followed by policy improvement,
performed by the actor. The policy evaluation step is
performed by observing from the environment the
results of applying current actions. These results are
evaluated using a performance index, or value function
[5], [6], [11], [17], [18], that quantifies how close the cur-
rent action is to optimal. Performance or value can
be defined in terms of optimality objectives such as
minimum fuel, minimum energy, minimum risk, or
maximum reward. Based on the assessment of the per-
formance, one of several schemes can then be used to
modify or improve the control policy in the sense that
the new policy yields a value that is improved relative to
the previous value. In this scheme, reinforcement learn-
ing is a means of learning optimal behaviors by observ-
ing the real-time responses from the environment to
nonoptimal control policies.

Werbos [7], [14], [19] developed actor-critic techniques
for feedback control of discrete-time dynamical systems
that learn optimal policies online in real time using data
measured along the system trajectories. These methods,
known as approximate dynamic programming (ADP) or
adaptive dynamic programming, comprise a family of

Policy
Update/Improvement

Control
Action

System/
Environment System

Output

Reward/
Response
from
Environment

Actor:
Implements
the Control

Policy

Critic:
Evaluates the

Current
Control Policy

Figure 1  Reinforcement learning with an actor/critic structure.
This structure provides methods for learning optimal control
solutions online based on data measured along the system
trajectories.

78  IEEE CONTROL SYSTEMS MAGAZINE »  december 2012

four basic learning methods. The ADP controllers are
actor-critic structures with one learning network for the
control action and one learning network for the critic.
Many surveys of ADP are available [20]–[24]. Bertsekas
and Tsitsiklis developed reinforcement learning meth-
ods for the control of discrete-time dynamical systems
[17]. This approach, known as neurodynamic programming,
used offline solution methods. ADP has been extensively
used in feedback control applications. Applications have
been reported for missile control [25], automotive control
[26], aircraft control over a flight envelope [27], aircraft
landing control [20], [28], [29], helicopter reconfiguration
after rotor failure [30], power system control [31], and
vehicle steering and speed control [32]. Convergence
analyses of ADP are available [31], [33], [34].

One framework for studying reinforcement learning
is based on Markov decision processes (MDPs).
Many dynamical decision problems can be formulated
as MDPs including feedback control systems for
human-engineered systems, feedback regulation mech-
anisms for population balance and survival of species
[35], [36], decision-making in multiplayer games, and
economic mechanisms for regulation of global financial
markets.

This article presents the main ideas and algorithms
of reinforcement learning and their applications to feed-
back control of dynamical systems. We start from a dis-
cussion of MDP and develop the Bellman equation,
upon which rest many reinforcement learning methods.
Policy iteration and value iteration [5], [6], [11] are pre-
sented, and it is described how they relate to dynamic
programming [18], which is a backward-in-time method
for computing optimal controllers. We focus next on
temporal difference methods to show how reinforce-
ment learning leads to a family of optimal adaptive con-
trollers for discrete-time systems. These adaptive
controllers have an actor-critic structure and as such
learn the solutions to optimal control problems online
in real time. Applications of reinforcement learning for
feedback control of continuous-time systems have been
impeded by the inconvenient form of the continuous-
time Hamiltonian, which contains the system dynam-
ics. Descriptions are given on how to use a method
known as integral reinforcement learning [15], [37] to
circumvent this problem and design a class of optimal
adaptive controllers for continuous-time systems. These
methods enable the solution of HJB design equations to
be solved online and forward in time without knowing
the full system dynamics.

The optimal adaptive controllers presented in this arti-
cle are a natural extension of adaptive controllers. Direct
adaptive controllers tune the controller parameters. Indi-
rect adaptive controllers identify a model for the system,
and the identified model is then used in design equations
to compute a controller. Optimal adaptive controllers based
on the actor-critic structure are a logical extension of this
sequence in that they identify the performance value of the
current control policy, and then use that information to
update the controller.

Note that in computational intelligence, the control
action is applied by an agent to the system, which is inter-
preted to be the environment. By contrast, in control system
engineering, the control action is interpreted as being
applied to a system or plant that represents the vehicle, pro-
cess, or device being controlled. This difference captures
the differences in philosophy between reinforcement learn-
ing in computational intelligence and in feedback control
systems design.

Markov Decision Processes
MDPs provide a framework for studying reinforcement
learning. This section reviews MDP [5], [11], [17], start-
ing by defining optimal sequential decision problems,
where decisions are made at stages of a process evolv-
ing through time. Dynamic programming is next pre-
sented, which provides methods for solving optimal
decision problems by working backward through time.
Dynamic programming is an offline solution technique
that cannot be implemented online in a forward-in-
time fashion. Reinforcement learning and adaptive con-
trol are concerned with determining control solutions
in real time and forward in time. The key to this
approach is provided by the Bellman equation, which is
then described. The subsequent section describes meth-
ods known as policy iteration and value iteration that pro-
vide algorithms based on the Bellman equation for
solving optimal decision problems in real time forward
in time based on data measured along the system tra-
jectories.

Consider the MDP (, , ,)X U P R , where X is a set of
states and U is a set of actions or controls. The transition
probabilities : ,P X U X 0 1"# # 6 @ describe, for each state
x X! and action u U! , the conditional probability

{ , }PrP x x u,x x
u ;= ll of transitioning to state x X!l given

the MDP is in state x and takes action u. The cost function
:R X U X R"# # is the expected immediate cost R ,xx

u paid
after transition to state x X!l given that the MDP starts
in state x X! and takes action u U! . The Markov

This article presents the main ideas and algorithms of reinforcement

learning and their applications to feedback control of dynamical systems.

december 2012 «  IEEE CONTROL SYSTEMS MAGAZINE  79

property refers to the fact that transition probabilities
P ,x x

u
l depend only on the current state x and not on the

history of how the MDP attained that state.
The basic problem for MDP is to find a mapping

: [,]X U 0 1"#r that gives, for each state x and action u, the
conditional probability (,) { }Prx u u x;r = of taking action
u given that the MDP is in state x. Such a mapping is
referred to as a closed-loop control or action strategy or
policy. The strategy or policy (,) { }Prx u u x;r = is called sto-
chastic or mixed if there is a nonzero probability of selecting
more than one control when in state x. Mixed strategies can
be viewed as probability distribution vectors having as
component i the probability of selecting the ith control
action while in state x X! . If the mapping : [,]X U 0 1"#r
admits only one control, with probability one, when in
every state x, the mapping is called a deterministic policy.
Then, (,) { }Prx u u x;r = corresponds to a function map-
ping states into controls (): .x X U"n

MDPs that have finite state and action spaces are termed
finite MDPs.

Optimal Sequential Decision Problems
Dynamical systems evolve causally through time. We con-
sider sequential decision problems and impose a discrete
stage index k such that the MDP takes an action and
changes states at nonnegative integer stage values k. The
stages may correspond to time or more generally to
sequences of events. We refer to the stage value as the time.
Denote state values and actions at time k by ,x uk k . MDPs
evolve in discrete time.

It is often desirable for human-engineered systems to be
optimal in terms of conserving resources such as cost, time,
fuel, and energy. Thus, the notion of optimality should
be captured in selecting control policies for MDPs.
Define a stage cost at time k by (, ,)r r x u xk k k k k 1= + . Then

{ , , }R E r x x u u x xxx
u

k k k k 1;= = = =+ ll , with { }E $ the expected
value operator. Define a performance index as the sum of
future costs over the time interval [,]k k T+ ,

	 ,J r r,k T
i

k i
i k

i k

k T

i
i

T

0
c c= =+

-

=

+

=

// 	 (1)

where 0 11# c is a discount factor that reduces the weight
of costs incurred further in the future.

The usage of MDPs in the fields of computational intel-
ligence and economics usually considers rk as a reward
incurred at time k, also known as utility, and J ,k T as a dis-
counted return, also known as a strategic reward. This arti-
cle instead refers to stage costs and discounted future costs to
be consistent with objectives in the control of dynamical
systems.

Consider that an agent selects a control policy
(,)x uk k kr that is used at each stage k of the MDP. We are

primarily interested in stationary policies, where the con-
ditional probabilities (,)x uk k kr are independent of k.
Then (,) (,) { },Prx u x u u xk ;r r= = for all k . Nonstation-

ary deterministic policies have the form { , , }0 1 gr n n= ,
where each entry is a function (): ; , ,x X U k 0 1k " fn = .
Stationary deterministic policies are independent of
time, that is, have the form { , , }gr n n= .

Select a fixed stationary policy (,) { }Prx u u x;r = . Then
the “closed-loop” MDP reduces to a Markov chain with
state space X. That is, the transition probabilities between
states are fixed with no further freedom of choice of
actions. The transition probabilities of this Markov chain
are given by

	 { , } { } (,) ,Pr PrP x x u u x x u Pp , , ,x x x x
u

x x
u

u
/ ; ; r= =r ll l l/ / 	 (2)

where the Chapman-Kolmogorov identity [38] is used.
A Markov chain is ergodic if all states are positive

recurrent and aperiodic [38]. Under the assumption
that the Markov chain corresponding to each policy,
with transition probabilities given in (2), is ergodic, it
can be shown that every MDP has a stationary deter-
ministic optimal policy [17], [39]. Then, for a given
policy, there exists a stationary distribution ()xpr over X
that gives the steady-state probability the Markov chain
is in state x.

The value of a policy is defined as the conditional
expected value of future cost when starting in state x at
time k and following policy (,)x ur thereafter,

	 () { } ,V x E J x x E r x x,k k T k
i k

i k
i k

k T

; ;c= = = =r
r r

-

=

+

) 3/ 	 (3)

where { }E $r is the expected value given that the agent fol-
lows policy (,)x ur , and ()V xr is known as the value func-
tion for policy (,)x ur , which is the value of being in state x
given that the policy is (,)x ur .

A main objective of MDP is to determine a policy (,)x ur

to minimize the expected future cost

	 (,) () .arg min arg minx u V s E r x xk
i k

i k
i k

k T

;r c= = =)

r

r

r
r

=

+
-) 3/

	(,) () .arg min arg minx u V s E r x xk
i k

i k
i k

k T

;r c= = =)

r

r

r
r

=

+
-) 3/ 	 (4)

This policy is termed the optimal policy, and the correspond-
ing optimal value is given as

	 () () .min minV x V x E r x xk k
i k

i k
i k

k T

;c= = =)

r

r

r
r

-

=

+

) 3/ 	 (5)

In computational intelligence and economics, the interest is
in utilities and rewards, and the interest is in maximizing
the expected performance index.

A Backward Recursion for the Value
By using the Chapman-Kolmogorov identity and the
Markov property, the value of the policy (,)x ur can be
written as

80  IEEE CONTROL SYSTEMS MAGAZINE »  december 2012

	 () { } ,V x E J x x E r x xk k k
i k

i k
i k

k T

; ;c= = = =r
r r

-

=

+

) 3/ 	 (6)

	 () ,V x E r r x x()
k k

i k
i k

i k

k T
1

1
;c c= + =r

r
- +

= +

+

) 3/ 	 (7)

	 () (,) .V x x u P R E r x x()
k

u
xx
u

x
xx
u i k

i k
i k

k T
1

1
1

;r c c= + =r
r

- +
+

= +

+

ll

l

l= G) 3/ / /	

	() (,) .V x x u P R E r x x()
k

u
xx
u

x
xx
u i k

i k
i k

k T
1

1
1

;r c c= + =r
r

- +
+

= +

+

ll

l

l= G) 3/ / / 	 (8)

Therefore the value function for the policy (,)x ur satis-
fies

	 () (,) () .V x x u P R V xk
u

xx
u

x
xx
u

k 1r c= +r r
+ ll

l

l6 @/ / 	 (9)

This equation provides a backward recursion for the value
at time k in terms of the value at time .k 1+

Dynamic Programming
The optimal cost can be written as

	 () () (,) ()min minV x V x x u P R V xk k
u

xx
u

x
xx
u

k 1r c= = +)

r

r

r

r
+ ll

l

l6 @/ /
	() () (,) ()min minV x V x x u P R V xk k

u
xx
u

x
xx
u

k 1r c= = +)

r

r

r

r
+ ll

l

l6 @/ / .	 (10)

Bellman’s optimality principle [18] states that “An optimal
policy has the property that no matter what the previous
control actions have been, the remaining controls constitute
an optimal policy with regard to the state resulting from
those previous controls.” This principle implies that (10) can
be written as

	 () (,) (') .minV x x u P R V x'
'

'k
u

xx
u

x
xx
u

k 1r c= +))

r
+6 @/ / 	 (11)

Suppose an arbitrary control u is now applied at time k,
and the optimal policy is applied from time k 1+ on. Then
Bellman’s optimality principle indicates that the optimal
control policy at time k is given by

	 (,) (,) () .arg minx u x u P R V x
u

xx
u

x
xx
u

k 1r r c= +))

r
+ ll

l

l6 @/ / 	 (12)

Under the assumption that the Markov chain correspond-
ing to each policy, with transition probabilities given in (2), is
ergodic, every MDP has a stationary deterministic optimal
policy. Then we can equivalently minimize the conditional
expectation over all actions u in state x. Therefore,

	
() () ,minV x P R V xk u xx

u

x
xx
u

k 1c= +))
+ ll

l

l6 @/ 	 (13)

	 () .arg minu P R V xk
u

xx
u

x
xx
u

k 1c= +))
+ ll

l

l6 @/ 	 (14)

The backward recursion (11), (13) forms the basis for
dynamic programming [18], which gives offline methods
for working backward in time to determine optimal policies
[3]. DP is an offline procedure for finding the optimal value

and optimal policies that requires knowledge of the com-
plete system dynamics in the form of transition probabili-
ties { , }PrP x x u,x x

u ;= ll and expected costs {R E r xxx
u

k k;=l
, , }x u u x xk k 1= = =+ l .

Bellman Equation and Bellman Optimality Equation
Dynamic programming is a backward-in-time method
for finding the optimal value and policy. By contrast,
reinforcement learning is concerned with finding opti-
mal policies based on causal experience by executing
sequential decisions that improve control actions based
on the observed results of using a current policy. This
procedure requires the derivation of methods for finding
optimal values and optimal policies that can be executed
forward in time. The key to this is the Bellman equation.
References for this section include [5]–[7], [11], and [16].

To derive forward-in-time methods for finding optimal
values and optimal policies, set the time horizon T to infin-
ity and define the infinite-horizon cost

	 .J r rk
i

k i
i

i k
i

i k0
c c= =

3 3

+

=

-

=

/ / 	 (15)

The associated infinite-horizon value function for the
policy  (,)x ur is

	 () { } .V x E J x x E r x xk k
i k

i k
i k

; ;c= = = =
3

r
r r

-

=

' 1/ 	 (16)

By using (8) with T 3= , it is seen that the value function
for the policy (,)x ur satisfies the Bellman equation

	 () (,) ()V x x u P R V x
u

xx
u

x
xx
u

r c= +r r ll

l

l6 @/ / .	 (17)

The key to deriving this equation is that the same value
function appears on both sides, which is due to the fact
that the infinite-horizon cost is used. Therefore, the Bell-
man equation (17) can be interpreted as a consistency
equation that must be satisfied by the value function at
each time stage. It expresses a relation between the cur-
rent value of being in state x and the value of being in
next state x’ given that policy (,)x ur is used. The solution
to the Bellman equation is the value given by the infinite
sum in (16).

The Bellman equation (17) is the starting point for devel-
oping a family of reinforcement learning algorithms for
finding optimal policies by using causal experiences
received stagewise forward in time. The Bellman optimal-
ity equation (11) involves the “minimum” operator and so
does not contain any specific policy (,)x ur . Its solution
relies on knowing the dynamics, in the form of transition
probabilities. By contrast, the form of the Bellman equation
is simpler than that of the optimality equation, and it is
easier to solve. The solution to the Bellman equation yields
the value function of a specific policy (,)x ur . As such, the
Bellman equation is well suited to the actor-critic method
of reinforcement learning shown in Figure 1. It is shown

december 2012 «  IEEE CONTROL SYSTEMS MAGAZINE  81

subsequently that the Bellman equation provides methods
for implementing the critic in Figure 1, which is responsible
for evaluating the performance of the specific current
policy. Two key ingredients remain to be put in place. First,
it is shown that methods known as policy iteration and
value iteration use the Bellman equation to solve optimal
control problems forward in time. Second, by approximat-
ing the value function in (17) by a parametric structure,
these methods can be implemented online using standard
adaptive control system identification algorithms such as
recursive least-squares.

In the context of using the Bellman equation (17) for
reinforcement learning, ()V xr may be considered as a pre-
dicted performance, (,)x u P R

u xx
u

xx
u

x
r l ll

/ / the observed
one-step reward, and ()V xr l as a current estimate of future
behavior. Such notions will be used in the subsequent
discussion of temporal difference learning to develop
adaptive control algorithms that can learn optimal behav-
ior online in real-time applications.

If the MDP is finite and has N states, then the Bellman
equation (17) is a system of N simultaneous linear equa-
tions for the value ()V xr of being in each state x given the
current policy (,)x ur .

The optimal value satisfies

	 () () (,) () .min minV x V x x u P R V x
u

xx
u

x
xx
u

r c= = +)

r

r

r

r ll

l

l6 @/ /

	() () (,) () .min minV x V x x u P R V x
u

xx
u

x
xx
u

r c= = +)

r

r

r

r ll

l

l6 @/ / 	 (18)

Bellman’s optimality principle then yields the Bellman opti-
mality equation

	 () () (,) () .min minV x V x x u P R V x
u

xx
u

x
xx
u

r c= = +))

r

r

r
ll

l

l6 @/ /

	() () (,) () .min minV x V x x u P R V x
u

xx
u

x
xx
u

r c= = +))

r

r

r
ll

l

l6 @/ / 	 (19)

Equivalently, under the ergodicity assumption on the
Markov chains corresponding to each policy, the Bellman
optimality equation can be written as

	 () () .minV x P R V x
u xx

u

x
xx
u

c= +)) ll

l

l6 @/ 	 (20)

This equation is known as the HJB equation in control
systems. If the MDP is finite and has N states, then the
Bellman optimality equation is a system of N nonlinear
equations for the optimal value ()V x) of being in each
state. The optimal control is given by

	 () .arg minu P R V x
u

xx
u

x
xx
u

c= +)) ll

l

l6 @/ 	 (21)

These equations can be written in the context of feedback
control of dynamical systems. “Bellman Equation for the
Discrete-Time LQR, the Lyapunov Equation” shows that, for
the linear quadratic regulator (LQR), the Bellman equation
(17) becomes a Lyapunov equation. “The Bellman Optimal-

ity Equation for Discrete-Time LQR Is an Algebraic Riccati
Equation” shows that the Bellman optimality equation (19)
becomes an algebraic Riccati equation in the LQR case.

Policy Evaluation and Policy Improvement
Given a current policy (,)x ur , its value (16) can be deter-
mined by solving the Bellman equation (17). This proce-
dure is known as policy evaluation. Moreover, given the
value for some policy (,)x ur , we can always use it to find
another policy that is better, or at least no worse. This step
is known as policy improvement. Specifically, suppose ()V xr
satisfies (17). Then define a new policy (,)x url by

	 (,) () .arg minx u P R V xxx
u

x
xx
u

r c= +
r

rl ll

l

l6 @/ 	 (22)

Then it can be shown that () ()V x V x#r rl [5], [17]. The policy
determined as in (22) is said to be greedy with respect to
value function ()V xr .

In the special case that () ()V x V x=r rl in (22), then
(),V xrl (,)x url satisfy (20), (21). Therefore (,) (,)x u x ur r=l

is the optimal policy and () ()V x V x=r rl the optimal value.
That is, an optimal policy, and only an optimal policy, is
greedy with respect to its own value. In computational
intelligence, greedy refers to quantities determined by opti-
mizing over short or one-step horizons, without regard to
potential impacts far into the future.

Now consider algorithms that repeatedly interleave the
two procedures:

Policy Evaluation by Bellman Equation

	 () (,) ()V x x u P R V xxx
u

xu
xx
u

r c= +r r ll

l

l6 @// , 	

	 for all .x S X! 3 	 (23)

Policy Improvement

	 (,) ()arg minx u P R V xxx
u

x
xx
u

r c= +
r

rl ll

l

l6 @/ ,

	 for all x S X! 3 	 (24)

where S is a suitably selected subspace of the state space, to
be discussed in more detail later. An application of (23) fol-
lowed by an application of (24) is referred to as one step.
This terminology is in contrast to the decision time stage k
defined above.

At each step of such algorithms, a policy is obtained
that is no worse than the previous policy. Therefore, it is
not difficult to prove convergence under fairly mild con-
ditions to the optimal value and optimal policy. Most
such proofs are based on the Banach fixed point theorem.
Note that (20) is a fixed point equation for ()V $) . Then the
two equations (23), (24) define an associated map that can
be shown under mild conditions to be a contraction map
[6], [17], [40] that converges to the solution of (20).

82  IEEE CONTROL SYSTEMS MAGAZINE »  december 2012

A large family of algorithms is available that imple-
ments the policy evaluation and policy improvement pro-
cedures in different ways, or interleaves them differently,
or select the subspace S X3 in different ways, to determine
the optimal value and optimal policy. Some of these algo-
rithms are outlined later in this article.

The relevance of this discussion for feedback control
systems is that these two procedures can be implemented
for dynamical systems online in real time by observing
data measured along the system trajectories. The result is a
family of adaptive control algorithms that converge to opti-
mal control solutions. Such algorithms are of the actor-critic

class of reinforcement learning systems, shown in Figure 1.
There, a critic agent evaluates the current control policy
using methods based on (23). After this evaluation is com-
pleted, the action is updated by an actor agent based on (24).

Policy Iteration
One method of reinforcement learning for using (23), (24) to
find the optimal value and optimal policy is policy iteration.

Policy Iteration Algorithm
Select an initial policy (,)x u0r . Starting with j = 0, iterate
on j until convergence:

Consider the discrete-time linear quadratic regulator (LQR)

problem, where the MDP is deterministic and satisfies the

state transition equation

	 ,x Ax Buk k k1 = ++ 	 (S1)

with the discrete time index k . The associated infinite-horizon

performance index has deterministic stage costs and is

	 () .J r x Qx u Ru2
1

k i
i k

i
T

i i
T

i
i k

2
1= = +

3 3

= =

/ / 	 (S2)

In this example, the state space X Rn= and action space

U Rm= are infinite and continuous.

The Bellman Equation for Discrete-Time LQR is a

Lyapunov Equation

Select a policy ()u xk kn= and write the associated value func-

tion as

	 () () .V x r x Qx u Ru2
1

2
1

k i
i k

i
T

i i
T

i
i k

= = +
3 3

= =

/ / 	 (S3)

An equivalent difference equation is

	
() () ()

() () .

V x x Qx u Ru x Qx u Ru

x Qx u Ru V x

2
1

2
1

2
1

i k
T

k k
T

k i
T

i i
T

i
i k

k
T

k k
T

k k

1

1

= + + +

= + +

3

= +

+

/
	

(S4)

That is, the solution ()V xk to this equation that satisfies

()V 00 = is the value given by (S3). Equation (S4) is exactly the

Bellman equation (17) for the LQR.

Assuming that the value is quadratic in the state so that

	 () ,V x x Px2
1

k k k
T

k= 	 (S5)

for some kernel matrix P, yields the Bellman equation form

	 () ,V x x Px x Qx u Ru x Px2 k k
T

k k
T

k k
T

k k
T

k1 1= = + + + + 	 (S6)

which, using the state equation, can be written

	 () () () .V x x Qx u Ru Ax Bu P Ax Bu2 k k
T

k k
T

k k k k k
T= + + + + 	 (S7)

Assuming a constant, that is, stationary, state feedback

policy ()u x Kxk k kn= =- for some stabilizing gain K, write

	 ()V x x Px2 k k
T

k=

	 x Qx x K RKxk
T

k k
T T

k= +

	 () () .x A BK P A BK xk
T T

k+ - - 	 (S8)

Since this equation holds for all state trajectories, we have

	 () () ,A BK P A BK P Q K RK 0T T- - - + + = 	 (S9)

which is a Lyapunov equation. That is, the Bellman equation

(17) for the discrete-time LQR is equivalent to a Lyapunov

equation. Since the performance index is undiscounted, that

is, ,1c = a stabilizing gain K , that is, a stabilizing policy, must

be selected.

The formulations (S4), (S6), (S8), and (S9) for the Bellman

equation are all equivalent. Note that forms (S4) and (S6) do not

involve the system dynamics (A, B). On the other hand, note that

the Lyapunov equation (S9) can only be used if the state dynam-

ics (A, B) are known. Optimal control design using the Lyapunov

equation is the standard procedure in control systems theory.

Unfortunately, by assuming that (S8) holds for all trajectories and

going to (S9), we lose all possibility of applying any sort of rein-

forcement learning algorithms to solve for the optimal control and

value online by observing data along the system trajectories. By

contrast, we show that by employing the form (S4) or (S6) for the

Bellman equation, reinforcement learning algorithms for learn-

ing optimal solutions online can be devised by using temporal

difference methods. That is, reinforcement learning allows the

Lyapunov equation to be solved online without knowing A or B.

Bellman Equation for the Discrete-Time LQR, the Lyapunov Equation
MDP Dynamics for Deterministic Discrete-Time

Systems

december 2012 «  IEEE CONTROL SYSTEMS MAGAZINE  83

Policy Evaluation (Value Update)

	 () (,) ()V x x u P R V xj j
u

xx
u

x
xx
u

jr c= + ll

l

l6 @/ / ,

	 for all .x X! 	 (25)

Policy Improvement (Policy Update)

	 (,) ()arg minx u P R V xj xx
u

x
xx
u

j1r c= +
r

+ ll

l

l6 @/ ,

	 for all .x X! 	 (26)

At each step j, the policy iteration algorithm determines
the solution of the Bellman equation (25) to compute the
value ()V xj of using the current policy (,)x ujr . This value
corresponds to the infinite sum (16) for the current policy.
Then the policy is improved using (26). The steps are con-
tinued until there is no change in the value or the policy.

Note that j is not the time or stage index k but a policy
iteration step iteration index. As detailed in the next sec-
tions, policy iteration can be implemented for dynami-
cal systems online in real time by observing data
measured along the system trajectories. Data for multi-
ple times k are needed to solve the Bellman equation (25)
at each step j.

The policy iteration algorithm must be suitably ini-
tialized to converge. The initial policy (,)x u0r and value
V0 must be selected so that V V1 0# . Then, for finite
Markov chains with N states, policy iteration converges
in a finite number of steps, less than or equal to N,
because there are only a finite number of policies [17].

If the MDP is finite and has N states, then the policy
evaluation equation (25) is a system of N simultaneous
linear equations, one for each state. Instead of directly
solving the Bellman equation (25), it can be solved by an
iterative policy evaluation procedure. Note that (25) is a
fixed point equation for ()Vj $ that defines the iterative
policy evaluation map

	 () (,) () , , , ,V x x u P R V x i 1 2j
i

j xx
u

x
xx
u

j
i

u

1 fr c= + =+ ll

l

l6 @//   (27)

which can be shown to be a contraction map under rather
mild conditions. By the Banach fixed point theorem, the
iteration can be initialized at any nonnegative value of

()Vj
1 $ and the iteration converges to the solution of (25).

Under certain conditions, this solution is unique. A suitable
initial value choice is the value function ()Vj 1 $- from the
previous step j − 1. On close enough convergence, set

() ()V Vj j
i$ $= and proceed to apply (26).

The index j in (27) refers to the step number of the
policy iteration algorithm. By contrast, i is an iteration
index. Iterative policy evaluation (27) should be compared
to the backward-in-time recursion (9) for the finite-
horizon value. In (9), k is the time index. By contrast,
in (27), i is an iteration index. Dynamic programming is
based on (9) and proceeds backward in time. The methods
for online optimal adaptive control described in this
article proceed forward in time and are based on policy
iteration and similar algorithms.

Value Iteration
A second method for using (23), (24) in reinforcement learn-
ing is value iteration.

Value Iteration Algorithm
Select an initial policy (,)x u0r . Starting with j = 0, iterate on
j until convergence:

Value Update

	 () (,) ()V x x u P R V xj j
u

xx
u

x
xx
u

j1 r c= ++ ll

l

l6 @/ / ,

	 for all .x S Xj! 3 	 (28)

Policy Improvement

	 (,) ()arg minx u P R V xj xx
u

xx
u

j
x

1 1r c= +
r

+ + ll l

l

6 @/ ,

	 for all .x S Xj! 3 	 (29)

T he discrete-time LQR Hamiltonian function is

	
() ()

() .

H x u x Qx u Ru Ax Bu

P Ax Bu x Px
,k k k

T
k k

T
k k k

T

k k k
T

k#

= + + +

+ -
	

(S10)

The Hamiltonian is equivalent to the temporal difference

error in MDP. A necessary condition for optimality is the sta-

tionarity condition (,) /H x u u 0k k k2 2 = , which is equivalent to

(22). Solving this equation yields the optimal control

	 () .u Kx B PB R B PAxk k
T T

k
1=- =- + -

Inserting this equation into (S8) yields the discrete-time alge-

braic Riccati equation (ARE)

	 () .A PA P Q A PB B PB R B PA 0T T T T1- + - + =- 	 (S11)

The ARE is exactly the Bellman optimality equation (19) for the

discrete-time LQR.

The Bellman Optimality Equation for Discrete-Time LQR Is an Algebraic Riccati Equation

84  IEEE CONTROL SYSTEMS MAGAZINE »  december 2012

The value update and policy improvement can be com-
bined into one equation to obtain the equivalent form for
value iteration

	 () (,) ()minV x x u P R V xj
u

xx
u

x
xx
u

j1 r c= +
r

+ ll

l

l6 @/ / ,

	 for all .x S Xj! 3 	 (30)

or, equivalently under the ergodicity assumption, in terms
of deterministic policies

	 () ()minV x P R V xj u xx
u

x
xx
u

j1 c= ++ ll

l

l6 @/ ,

	 for all .x S Xj! 3 	 (31)

Note that now (28) is a simple one-step recursion, not a
system of linear equations as is (25) in the policy iteration
algorithm. In fact, value iteration uses one iteration of (27)
in its value update step. It does not find the value corre-
sponding to the current policy but takes only one iteration
toward that value. Again, j is not the time index, but the
value iteration step index.

Subsequent sections describe how to implement value
iteration for dynamical systems online in real time by
observing data measured along the system trajectories.
Data for multiple times k are needed to solve the update (28)
for each step j.

Standard value iteration takes the update set as ,S Xj =
for all j . That is, the value and policy are updated for all
states simultaneously. Asynchronous value iteration meth-
ods perform the updates on only a subset of the states at
each step. In the extreme case, updates can be performed
on only one state at each step.

It is shown in [17] that standard value iteration, which
has ,S Xj = for all j , converges for a finite MDP for all
initial conditions when the discount factor satisfies

.0 11 1c When ,S Xj = for all j and ,1c = an absorb-
ing state is added and a “properness” assumption is
needed to guarantee convergence to the optimal value.
When a single state is selected for value and policy
updates at each step, the algorithm converges, for all
choices of initial value, to the optimal cost and policy if
each state is selected for update infinitely often. More
universal algorithms result if the value update (28) is
performed multiple times for different choices of Sj
prior to a policy improvement. Then, it is required that
updates (28) and (29) be performed infinitely often for
each state, and a monotonicity assumption must be satis-
fied by the initial starting value.

Considering (19) as a fixed point equation, value itera-
tion is based on the associated iterative map (28), (29),
which can be shown under certain conditions to be a
contraction map. In contrast to policy iteration, which
converges under certain conditions in a finite number of
steps, value iteration usually takes an infinite number of

steps to converge [17]. Consider finite MDP, and consider
the transition probability graph having probabilities (2)
for the Markov chain corresponding to an optimal policy

(,)x ur) . If this graph is acyclic for some (,)x ur) , then
value iteration converges in at most N steps when initial-
ized with a large value.

Having in mind the dynamic programming equation (9)
and examining the value iteration value update (28), ()V xj l
can be interpreted as an approximation or estimate for the
future stage cost to go from the future state xl. Those algo-
rithms wherein the future cost estimates are themselves
costs or values for some policy are called rollout algorithms
in [17]. Such policies are forward looking and self-correct-
ing. These methods can be used to derive algorithms for
receding horizon control [41].

MDP, policy iteration, and value iteration are closely
tied to optimal and adaptive control. “Policy Iteration
and Value Iteration for the Discrete-Time LQR” shows
that for the discrete-time LQR, policy iteration and
value iteration can be used to derive algorithms for solu-
tion of the optimal control problem that are quite
common in the feedback control systems, including
Hewer’s algorithm.

Generalized Policy Iteration
In policy iteration the system of linear equations (25) is
completely solved at each step to compute the value (16) of
using the current policy (,)x ujr . This solution can be
accomplished by running iterations (27) until convergence.
By contrast, in value iteration only one iteration of (27) is
taken in the value update step (28). Generalized policy itera-
tion algorithms make several iterations (27) in their value
update step.

Usually, policy iteration converges to the optimal
value in fewer steps j since it does more work in solving
equations at each step. On the other hand, value itera-
tion is the easiest to implement as it only takes one iter-
ation of a recursion in (28). Generalized policy iteration
provides a suitable compromise between computational
complexity and convergence speed. Generalized policy
iteration is a special case of the value iteration algo-
rithm given above, where we select ,S Xj = for all j and
perform value update (28) multiple times before each
policy update (29).

Q Function
The conditional expected value in (13),

	 (,) () { () , },Q x u P R V x E r V x x x u uk xx
u

x
xx
u

k k k k1 1 k;c c= + = + = =)))
r+ +l ll

l

l6 @/ 	

	(,) () { () , },Q x u P R V x E r V x x x u uk xx
u

x
xx
u

k k k k1 1 k;c c= + = + = =)))
r+ +l ll

l

l6 @/ 	 (32)

is known as the optimal Q function [42], [43]. The letter Q
comes from “quality function.” The Q function is also called

december 2012 «  IEEE CONTROL SYSTEMS MAGAZINE  85

T he Bellman equation (17) for the discrete-time LQR is

equivalent to all the formulations (S4), (S6), (S8), (S9) in

“Bellman Equation for the Discrete-Time LQR, the Lyapunov

Equation.” Any of these formulations can be used to implement

policy iteration and value iteration.

Policy Iteration, Hewer’s Algorithm

With step index j, and using superscripts to denote algorithm

steps and subscripts to denote the time k, the iterative policy

evaluation step (25) applied on (S4) in “Bellman Equation for

the Discrete-Time LQR, the Lyapunov Equation” yields

	 () () .V x x Qx u Ru V x2
1j

k k
T

k k
T

k
j

k
1 1

1= + ++ +
+^ h 	 (S12)

Policy iteration applied on (S6) yields

	 ,x P x x Qx u Ru x P xk
T j

k k
T

k k
T

k k
T j

k
1

1
1

1= + ++
+

+
+ 	 (S13)

and policy iteration on (S9) yields the Lyapunov equation

() () () .A BK P A BK P Q K R K0 j T jj j j j T1 1= - - - + ++ + 	 (S14)

In all cases the policy improvement step is

()x K xj
k

j
k

1 1n =+ +

	 (),arg min x Qx u Ru x P xk
T

k k
T

k k
T j

k1
1

1= + + +
+

+ 	 (S15)

which can be written explicitly as

	 () .K B P B R B P Aj T T jj1 1 1 1=- ++ + - + 	 (S16)

The policy iteration algorithm format (S14), (S16) relies on

repeated solutions of Lyapunov equations at each step and is

Hewer’s algorithm. This algorithm is proven to converge in [44]

to the solution of the Riccati equation (S11) in “The Bellman Op-

timality Equation for Discrete-Time LQR Is an Algebraic Riccati

Equation.” Hewer’s algorithm is an offline algorithm that requires

complete knowledge of the system dynamics (A, B) to find the

optimal value and control. The algorithm requires that the initial

gain K0 be stabilizing.

Value Iteration and Lyapunov Recursions

Applying value iteration (28) to Bellman equation format (S6)

in “Bellman Equation for the Discrete-Time LQR, the Lyapunov

Equation” yields

	 ,x P x x Qx u Ru x Pk
T j

k k
T

k k
T

k k
T

k
j1

1 1= + ++
+ + 	 (S17)

and on format (S9) in “Bellman Equation for the Discrete-Time

LQR, the Lyapunov Equation” yields the Lyapunov recursion

	 () () () .P A BK P A BK Q K RKj j T j j j T j1 = - - + ++ 	 (S18)

In both cases the policy improvement step is still given by

(S15), (S16).

The value iteration algorithm format (S16), (S18) is a Ly-

apunov recursion, which is easy to implement and does not,

in contrast to policy iteration, require Lyapunov equation solu-

tions. This algorithm is shown to converge in [45] to the solu-

tion of the Riccati equation (S11) in “The Bellman Optimality

Equation for Discrete-Time LQR Is an Algebraic Riccati Equa-

tion.” Lyapunov recursion is an offline algorithm that requires

complete knowledge of the system dynamics (A, B) to find the

optimal value and control. This algorithm does not require that

the initial gain be stabilizing and can be initialized with any

feedback gain.

Online Solution of the Riccati Equation Without

Knowing the Plant Matrix A

Hewer’s algorithm and the Lyapunov recursion algorithm are

both offline methods for solving the algebraic Riccati equation

(S11) in “The Bellman Optimality Equation for Discrete-Time

LQR is an Algebraic Riccati Equation.” Full knowledge of the

plant dynamics (A, B) is needed to implement these algo-

rithms. By contrast, both the policy iteration algorithm format

(S13), (S15) and the value iteration algorithm format (S17),

(S15) can be implemented online to determine the optimal val-

ue and control in real time using data measured along the sys-

tem trajectories,and without knowing the system matrix A. This

aim is accomplished through the temporal difference methods

described in the text. That is, reinforcement learning allows the

solution of the algebraic Riccati equation online without know-

ing the system matrix A.

Iterative Policy Evaluation

Given a fixed policy K, the iterative policy evaluation procedure

(27) becomes

	 () () .P A BK P A BK Q K RKj T j T1 = - - + ++ 	 (S19)

This recursion converges to the solution to the Lyapunov

equation () ()P A BK P A BK Q K RKj T T1 = - - + ++ if ()A BK-

is stable, for any choice of initial value P0 .

Policy Iteration and Value Iteration for the Discrete-Time LQR

the action-value function [5]. The Q function is equal to the
expected return for taking an arbitrary action u at time k in
state x and thereafter following an optimal policy. The Q
function is a function of the current state x and the action u.

In terms of the Q function, the Bellman optimality
equation has the particularly simple form

	 () (,),minV x Q x uk u k=)) 	 (33)

86  IEEE CONTROL SYSTEMS MAGAZINE »  december 2012

T he Q function following a given policy ()u xk kn= is defined in

(35). For the discrete-time LQR in “Bellman Equation for the

Discrete-Time LQR, the Lyapunov Equation,” the Q function is

	 (,) (),Q x u x Qx u Ru V x2
1

k k k
T

k k
T

k k 1= + + +^ h 	 (S20)

where, the control uk is arbitrary and the policy ()u xk kn= is

followed for k 1+ and subsequent times. Writing

(,) () (),Q x u x Qx u Ru Ax Bu P Ax Buk k k
T

k k k k k kk
T T= + + + + 	 (S21)

with P being the Riccati solution, yields the Q function for the

discrete-time LQR:

	 (,) .Q x u
x

u
A PA Q

A PB
B PA

B PB R
x
u2

1
k k

k

k

T

T

T

T
k

k
=

+

+
; ; ;E E E 	 (S22)

Define

	 (,) ,Q x u
x
u

S
x
u

x
u

S
S

S
S

x
u2

1
k k

k

k

T k

k

k

k

T xx

ux

xu

uu

k

k
2
1/ =; ; ; ; ;E E E E E 	 (S23)

for kernel matrix S.

Applying (,) /Q x u u 0k k k2 2 = to (S23) yields

	 ,u S S xk uu ux k
1=- - 	 (S24)

and to (S22) yields

	 () .u B PB R B PAxk
T T

k
1=- + - 	 (S25)

The latter equation requires knowledge of the system

dynamics (A, B) to perform the policy improvement step of

either policy iteration or value iteration. On the other hand,

(S24) requires knowledge only of the Q function matrix kernel

S. “Adaptive Controller for Online Solution of Discrete-Time

LQR Using Q Learning” shows how to use reinforcement learn-

ing temporal difference methods to determine the kernel matrix

S online in real time without knowing the system dynamics

(A, B) using data measured along the system trajectories. This

procedure provides a family of Q learning algorithms that can

solve the algebraic Riccati equation online without knowing the

system dynamics (A, B).

Q Function for the Discrete-Time LQR

	 (,)arg minu Q x uk
u

k=)) .	 (34)

Given some fixed policy (,)x ur , define the Q function
for that policy as

	 (,) { () , } () ,Q x u E r V x x x u u P R V xk k k k k xx
u

x
xx
u

k1 1;c c= + = = = +r
r

r r
+ +l ll

l

l6 @/

	(,) { () , } () ,Q x u E r V x x x u u P R V xk k k k k xx
u

x
xx
u

k1 1;c c= + = = = +r
r

r r
+ +l ll

l

l6 @/ 	 (35)

where (9) is used. This function is equal to the expected
return for taking an arbitrary action u at time k in state
x and thereafter following the existing policy (,)x ur .
The meaning of the Q function is elucidated by “Q
Function for the Discrete-Time LQR.”

Since () (, (,))V x Q x x uk k r=r r , (35) can be written as the
backward recursion in the Q function:

	 (,) (, (,)) .Q x u P R Q x x uk xx
u

x
xx
u

k 1c r= +r r
+ l l ll

l

l6 @/ 	 (36)

The Q function is a function of both the current state x
and the action u. By contrast, the value function is a func-
tion of the state. For finite MDP, the Q function can be
stored as a lookup table for each state/action pair. Note that
direct minimization in (11), (12) requires knowledge of the
state transition probabilities, which correspond to the
system dynamics, and costs. By contrast, the minimization

in (33), (34) requires knowledge only of the Q function and
not the system dynamics.

The utility of the Q function is twofold. First, it con-
tains information about control actions in every state.
As such, the best control in each state can be selected
using (34) by knowing only the Q function. Second, the
Q function can be estimated online in real time directly
from date observed along the system trajectories, with-
out knowing the system dynamics information, that is,
the transition probabilities. The implementation of this
online real-time estimation is described later in this
article.

The infinite-horizon Q function for a prescribed fixed
policy is given by

	 (,) () .Q x u P R V xxx
u

x
xx
u

c= +r r ll

l

l6 @/ 	 (37)

The Q function also satisfies a Bellman equation. Given a
fixed policy (,)x ur ,

	 () (, (,)),V x Q x x ur=r r 	 (38)

hence according to (37) the Q function satisfies the Bellman
equation

	
(,) (, (,)) ,Q x u P R Q x x uxx

u

x
xx
u

c r= +r r l l ll

l

l6 @/ 	 (39)

december 2012 «  IEEE CONTROL SYSTEMS MAGAZINE  87

the Bellman optimality equation for the Q function is

	 (,) (, (,)) ,Q x u P R Q x x u
'

xx
u

x
xx
u

c r= +)))l l ll l6 @/ 	 (40)

	 (,) (,) .minQ x u P R Q x u
'

xx
u

x
xx
u

u
c= +)) l ll l

l
8 B/ 	 (41)

Compare (20) and (41), where the minimum operator and
the expected value operator are reversed.

Policy iteration and value iteration are especially
easy to implement in terms of the Q function (35),
as follows.

Policy Iteration Using the Q Function

Policy Evaluation (Value Update)

(,) (, (,))Q x u P R Q x x uj xx
u

x
xx
u

jc r= + l l ll

l

l6 @/ , for all .x X! (42)

Policy Improvement

	 (,) (,)arg minx u Q x uj
u

j1r =+ , for all .x X! 	 (43)

Value Iteration Using the Q Function

Value Update

	 (,) (', (', '))Q x u P R Q x x u'
'

'j xx
u

x
xx
u

j1 c r= ++ 6 @/ ,

	 for all .x S Xj! 3 	 (44)

Policy Improvement

	 (,) (,)arg minx u Q x uj
u

j1 1r =+ + , for all .x S Xj! 3 	 (45)

Combining both steps of value iteration yields the form

	 (,) (,)minQ x u P R Q x uj xx
u

x
xx
u

u
j1 c= ++ l ll

l

l
l

8 B/ ,

	 for all ,x S Xj! 3 	 (46)

which may be compared to (31).
As shown below, the utility of the Q function is that these

algorithms can be implemented online in real time, without
knowing the system dynamics, by measuring data along the
system trajectories. These algorithms are an implementation
of optimal adaptive control, that is, adaptive control algo-
rithms that converge online to optimal control solutions.

Methods for Implementing Policy
Iteration and Value Iteration
Multiple methods are available for performing the value
and policy updates for policy iteration and value itera-

tion [5], [6], [17]. The main three methods are exact com-
putation, Monte Carlo methods, and temporal difference
learning. The last two methods can be implemented
without knowledge of the system dynamics. Temporal
difference learning, which is covered in the next section,
is the means by which optimal adaptive control algo-
rithms can be derived for dynamical systems.

Policy iteration requires the solution at each step of
Bellman equation (25) for the value update. For a finite
MDP with N states, this is a set of linear equations in N
unknowns, namely, the values of each state. Value itera-
tion requires performing the one-step recursive update
(28) at each step for the value update. Both of these itera-
tions can be accomplished exactly if the transition proba-
bilities { , }PrP x x uxx

u ;= ll and costs Rxx
u
l of the MDP are

known, which corresponds to knowing full system
dynamics information. Likewise, the policy improve-
ments (26), (29) can be explicitly computed if the dynamics
are known. It is shown in “Bellman Equation for the Dis-
crete-Time LQR, the Lyapunov Equation” and “The Bell-
man Optimality Equation for Discrete-Time LQR Is an
Algebraic Riccati Equation” that, for the discrete-time
LQR, the exact computation method for computing the
optimal control yields the Riccati equation solution
approach. In this case policy iteration and value iteration
are repetitive solutions of Lyapunov equations or Lyapu-
nov recursions. In fact, policy iteration becomes Hewer’s
method [44], and the value iteration becomes the Lyapu-
nov recursion scheme that is known to converge [45].
These techniques are offline methods that rely on matrix
equation solutions and require complete knowledge of the
system dynamics.

Monte Carlo learning is based on the definition (16) for
the value function and uses repeated measurements of
data to approximate the expected value. The expected
values are approximated by averaging repeated results
along sample paths. An assumption on the ergodicity of
the Markov chain with transition probabilities (2) for the
given policy being evaluated is implicit. This assumption
is suitable for episodic tasks, with experience divided into
episodes [5], namely, processes that start in an initial
state and run until termination and are then restarted at
a new initial state. For finite MDP, Monte Carlo methods
converge to the true value function if all states are visited
infinitely often. Therefore, to ensure accurate approxima-
tions of value functions, the episode sample paths must
go through all the states x X! many times. This issue is
called the problem of maintaining exploration. Several
methods are available to ensure this amount of explora-
tion, with one method being the use of exploring starts, in
which every state has nonzero probability of being
selected as the initial state of an episode.

Monte Carlo techniques are useful for dynamic con-
trol because the episode sample paths can be interpreted
as system trajectories beginning in a prescribed initial

88  IEEE CONTROL SYSTEMS MAGAZINE »  december 2012

state. However, no updates to the value function esti-
mate or the control policy are made until after an epi-
sode terminates. In fact, Monte Carlo learning methods
are closely related to repetitive or iterative learning con-
trol [46]. These methods do not learn in real time along a
trajectory but learn as trajectories are repeated.

Temporal Difference Learning
and Optimal Adaptive Control
It is now shown that the temporal difference method [5] for
solving Bellman equations leads to a family of optimal
adaptive controllers, that is, adaptive controllers that learn
online the solutions to optimal control problems without
knowing the full system dynamics. Temporal difference
learning is true online reinforcement learning, wherein
control actions are improved in real time based on estimat-
ing their value functions by observing data measured
along the system trajectories.

Temporal Difference Learning Along State Trajectories
Policy iteration requires the solution at each step of N linear
equations (25). Value iteration requires performing the
recursion (28) at each step. Temporal difference reinforce-
ment learning methods are based on the Bellman equation
and solve equations such as (25), (28) without using systems
dynamics knowledge, but using data observed along a
single trajectory of the system. Therefore, temporal differ-
ence learning is applicable for feedback control applica-
tions. Temporal difference updates the value at each time
step as observations of data are made along a trajectory.
Periodically, the new value is used to update the policy.
Temporal difference methods are related to adaptive con-
trol in that they adjust values and actions online in real
time along system trajectories.

Temporal difference methods can be considered to be
stochastic approximation techniques where by the Bellman
equation (17), or its variants (25), (28), is replaced by its eval-
uation along a single sample path of the MDP. Then, the
Bellman equation becomes a deterministic equation that
allows the definition of a temporal difference error.

Equation (9) is used to write the Bellman equation (17)
for the infinite-horizon value (16). According to (7)–(9), an
alternative form for the Bellman equation is

	 () { } { () } .V x E r x E V x xk k k k k1; ;c= +r
r r

r
+ 	 (47)

This equation forms the basis for temporal difference
learning.

Temporal difference reinforcement learning uses one
sample path, namely the current system trajectory, to
update the value. Then, (47) is replaced by the deterministic
Bellman equation

	 () (),V x r V xk k k 1c= +r r
+ 	 (48)

which holds for each observed data experience set
(, ,)x x rk k k1+ at each time stage k. This data set consists of the
current state xk , the observed cost incurred rk , and the next
state xk 1+ . The temporal difference error is defined as

	 () (),e V x r V xk k k k 1c=- + +r r
+ 	 (49)

and the value estimate is updated to make the temporal dif-
ference error small.

In the context of temporal difference learning, the
interpretation of the Bellman equation is shown in
Figure 2, where ()V xk

r may be considered as a predicted
performance or value, rk as the observed one-step
reward, and ()V xk 1c r

+ as a current estimate of future

1) Apply Control Action

2) Update Predicted Value to Satisfy the Bellman Equation

3) Improve Control Action

Observe the 1-Step Reward

Compute Current Estimate of Future Value of Next State xk+1

Compute Predicted Value of Current State xk

k

Vr (xk) = rk + cVr (xk+1)

rk

cVr (xk+1)

Vr (xk)

k+1 Time

Figure 2  Temporal difference interpretation of the Bellman equation that shows how use of the Bellman equation captures the action,
observation, evaluation, and improvement mechanisms of reinforcement learning.

december 2012 «  IEEE CONTROL SYSTEMS MAGAZINE  89

value. The Bellman equation can be interpreted as a con-
sistency equation that holds if the current estimate for
the predicted value ()V xk

r is correct. Temporal difference
methods update the predicted value estimate ()V xk

r| to
make the temporal difference error small. The idea,
based on stochastic approximation, is that if we use the
deterministic version of Bellman’s equation repeatedly
in policy iteration or value iteration, then on average
these algorithms converge toward the solution of the
stochastic Bellman equation.

Optimal Adaptive Control
for Discrete-Time Systems
A family of optimal adaptive control algorithms can now
be described for dynamical systems. These algorithms
determine the solutions to HJ design equations online in
real time without knowing the system drift dynamics. In
the LQR case, this means that the algorithms solve the
Riccati equation online without knowing the system
matrix A. Physical analysis of dynamical systems using
Lagrangian mechanics or Hamiltonian mechanics pro-
duces system descriptions in terms of nonlinear ordinary
differential equations. Discretization yields nonlinear
difference equations. Most research in reinforcement
learning is conducted for systems that operate in discrete
time [5], [14], [21], [39], so discrete-time dynamical
systems are covered first, followed by continuous-time
systems.

Temporal difference learning is a stochastic approxi-
mation technique based on the deterministic Bellman
equation (48). Therefore, little is lost by considering
deterministic systems here. Consider a class of discrete-
time systems described by deterministic nonlinear
dynamics in the affine state space difference equation
form

	 () () ,x f x g x uk k k k1 = ++ 	 (50)

with state x Rk
n! and control input Ruk

m! . This form is
used because its analysis is convenient. The following
development can be generalized to the sampled-data form

(,)x F x uk k k1 =+ .
A deterministic control policy is defined as a function

from state space to control space ():h R Rn m
"$. That is, for

every state xk , the policy defines a control action

	 ()u h xk k= .	 (51)

That is, a policy is a feedback controller.
Define a deterministic cost function that yields the

value function

	 () (,) () ,V x r x u Q x u Ruh
k

i k
i i

i k

i k
i i

T
i

i k
c c= = +

3 3
-

=

-

=

^ h/ / 	 (52)

with 0 11 #c a discount factor, ()Q x 0k 2 , R 02 , and
()u h xk k= is a prescribed feedback control policy. That is,

the stage cost is

	 (,) () .r x u Q x u Ruk k k k
T

k= + 	 (53)

The stage cost is taken as quadratic in uk to simplify the
development but can be any positive-definite function of
the control. Assume that the system is stabilizable on some
set Rn!X , that is, there exists a control policy ()u h xk k=
such that the closed-loop system () () ()x f x g x h xk k kk1 = ++ is
asymptotically stable on X . A control policy ()u h xk k=
is said to be admissible if it is stabilizing and yields a finite
cost () .V xh

k

For the deterministic value (52), the optimal value is
given by the Bellman optimality equation,

	 () (, ()) ()minV x r x h x V x
()

k
h

k k k 1c= +)

$

)
+^ h,	 (54)

which is just the discrete-time HJB equation. The optimal
policy is then given as

	 () (, ()) ()arg minh x r x h x V x
()

k
h

k k k 1c= +)

$

)
+^ h.	 (55)

In this setup, the deterministic Bellman’s equation (48) is

	 () (,) ()V x r x u V xh
k k k

h
k 1c= + + 	

	 () (), () ,Q x u Ru V x V 0 0k k
T

k
h

k
h

1c= + + =+ 	 (56)

which is a difference equation equivalent to the value in
(52). That is, instead of evaluating the infinite sum (52), the
difference equation (56) can be solved, with boundary con-
dition V(0) = 0, to obtain the value of using a current policy

()u h xk k= .
The discrete-time Hamiltonian function can be

defined as

	 (, (),) (, ()) () (),H x h x V r x h x V x V xk k k k k
h

k
h

k1cD = + -+   (57)

where () ()V V x V xk h k h k1T c= -+ is the forward differ-
ence operator. The Hamiltonian function captures the
energy content along the trajectories of a system as
reflected in the desired optimal performance. In fact,
the Hamiltonian is the temporal difference error (49).
The Bellman equation requires that the Hamiltonian
be equal to zero for the value associated with a pre-
scribed policy.

For the discrete-time linear quadratic regulator case, the
system and Bellman equations are

	 ,x Ax Buk k k1 = ++ 	 (58)

	 () ,V x x Qx u Ru2
1h

k
i k

i
T

i i
T

i
i k
c= +

3
-

=

^ h/ 	 (59)

90  IEEE CONTROL SYSTEMS MAGAZINE »  december 2012

and the Bellman equation can be written in several ways as
described in “Bellman Equation for the Discrete-Time LQR,
the Lyapunov Equation.”

Policy Iteration and Value Iteration
for Discrete-Time Dynamical Systems
Two forms of reinforcement learning can be based on
policy iteration and value iteration. For temporal difference
learning, policy iteration is written as follows in terms of
the deterministic Bellman equation.

Policy Iteration Using Temporal Difference Learning

Initialize
Select some admissible control policy ()h xo k . Starting with
j = 0, iterate on j until convergence:

Policy Evaluation

	 () (, ()) () .V x r x h x V xj k k j k j k1 1 1c= ++ + + 	 (60)

Policy Improvement

	 () (, ()) () ,arg minh x r x h x V x
()

j k
h

k k j k1 1 1c= +
$

+ + +^ h 	 (61)

or

	 () () (),h x R g x V x
2j k

T
k j k1

1
1 14

c
=-+

-
+ + 	 (62)

where () ()/V x V x x4 2 2= is the gradient of the value func-
tion, interpreted here as a column vector.

Value iteration is similar but with the following policy
evaluation procedure.

Value Iteration Using Temporal Difference Learning
Value Update Step. Update the value using

	 () (, ()) () .V x r x h x V xj k k j k j k1 1c= ++ + 	 (63)

In value iteration, any initial control policy ()h xk0
can be selected, which is not necessarily admissible or
stabilizing.

“Bellman Equation for the Discrete-Time LQR, the
Lyapunov Equation” shows that, for the discrete-time
LQR, the Bellman equation (56) is a linear Lyapunov equa-
tion. “The Bellman Optimality Equation for Discrete-
Time LQR Is an Algebraic Riccati Equation” shows that
(54) yields the discrete-time algebraic Riccati equation
(ARE). For the discrete-time LQR, the policy evaluation
step (60) in policy iteration is a Lyapunov equation and
policy iteration exactly corresponds to Hewer’s algorithm
[44] for solving the discrete-time ARE. Hewer proved that
the algorithm converges under stabilizability and detect-
ability assumptions. For the discrete-time LQR, value

iteration is a Lyapunov recursion that converges to the
solution to the discrete-time ARE under the stated
assumptions by [45] (see “Policy Iteration and Value Itera-
tion for the Discrete-Time LQR”).

These policy iteration and value iteration algorithms are
offline design methods that require knowledge of the dis-
crete-time dynamics (A, B). The next section describes online
methods for implementing policy iteration and value itera-
tion that do not require full dynamics information.

Value Function Approximation
Policy iteration and value iteration can be implemented
for a finite MDP by storing and updating lookup tables.
The key to implementing policy and value iteration online
for dynamical systems with infinite state and action
spaces is to approximate the value function by a suitable
approximator structure in terms of unknown parameters.
Then, the unknown parameters are tuned online exactly
as in system identification. This idea of value function
approximation (VFA) is used by Werbos [14], [19] and
called approximate dynamic programming (ADP) or adaptive
dynamic programming. The approach is used by Bertsekas
and Tsitsiklis [17] and called neurodynamic programming
[6], [11].

For nonlinear systems (50), the value function con-
tains higher order nonlinearities. We assume the Bell-
man equation (56) has a local smooth solution [47].
Then, according to the Weierstrass higher order
approximation theorem, there exists a dense basis set
{ ()}xi{ such that

	 () () () () () (),V x w x w x w x W x xi
i

i i
i

i i
i L

i
T

L

L

1 1 1
/{ { { z f= = + +

3 3

= = = +

/ / /

	() () () () () (),V x w x w x w x W x xi
i

i i
i

i i
i L

i
T

L

L

1 1 1
/{ { { z f= = + +

3 3

= = = +

/ / / 	 (64)

where basis vector () () () () :x x x x R RL
n L

1 2 "gz { { {=6 @
and ()xLf converges uniformly to zero as the number of
terms retained L " 3 . The standard usage of the Weier-
strass theorem employs a polynomial basis set. In the
neural network research, approximation results are shown
for other basis sets including sigmoid, hyperbolic tangent,
Gaussian radial basis functions, and others. There, stan-
dard results show that the neural network approximation
error ()xLf is bounded by a constant on a compact set,
where L is the number of hidden-layer neurons, ()xi{ are
the neural network activation functions, and wi are the
neural network weights.

In the LQR case, it is known that the value is quadratic
in the state, so that () (/)V x x Px1 2k k

T
k= for some kernel

matrix P. Then the basis set { ()}xi{ consists of quadratic
terms in the state components and the weight vector W
consists of the elements of matrix P. Since P is symmetric
and has only n(n + 1)/2 independent elements, there are
n(n + 1)/2 independent elements in { ()} .xi{

december 2012 «  IEEE CONTROL SYSTEMS MAGAZINE  91

Optimal Adaptive Control Algorithms
for Discrete-Time Systems
With the above background, several adaptive control algo-
rithms can be presented based on temporal difference rein-
forcement learning that converge online to the optimal
control solution.

The parameters in pr or W are unknown. Substitution of
the value function approximation () ()V x W xTz=t into the
value update (60) in policy iteration results in the following
algorithm.

Optimal Adaptive Control Using
a Policy Iteration Algorithm

Initialize
Select some admissible control policy ()h xk0 . Starting with
j = 0, iterate on j until convergence:

Policy Evaluation Step
Determine the least-squares solution Wj 1+ to

	 () () (, ()) () () () .W x x r x h x Q x h x Rh xj
T

k k k j k k j
T

k j k1 1z cz- = = ++ +^ h

	() () (, ()) () () () .W x x r x h x Q x h x Rh xj
T

k k j k k j
T

k j k1 1z cz- = = ++ +^ h 	 (65)

Policy Improvement Step

Determine an improved policy using

	 () () () .h x R g x x W
2j

T
k

T
k j1

1
1 14

c
z=-+

-
+ + 	 (66)

This algorithm is easily implemented online by stan-
dard system identification techniques [48]. Note that (65) is
a scalar equation, whereas the unknown parameter vector
W Rj

L
1 !+ has L elements. Therefore, data from multiple

time steps are needed for its solution. At time k + 1 we mea-
sure the previous state xk , the control ()u h xk j k= , the next
state xk 1+ , and compute the resulting utility (, ())r x h xk j k .
These data result in one scalar equation. This procedure is
repeated for subsequent times using the same policy ()hj $
until at least L equations are obtained, at which point the
least-squares solution Wj 1+ can be determined. Batch least-
squares can be used for this procedure.

Alternatively, note that equations of the form (65) are
exactly those solved by recursive least-squares (RLS) tech-
niques [48]. Therefore, RLS can be run online until conver-
gence. Write (65) as

	 () () () (, ()),W k W x x r x h xj
T

j
T

k k k j k1 1 1/ z czU - =+ + +^ h 	 (67)

with () () ()k x xk k 1/ z czU - +^ h being a regression vector. At
step j of the policy iteration algorithm, the control policy is
fixed at ()u h xj= . Then, at each time k the data set

, , (, ())x x r x h xk k k j k1+^ h is measured. One step of RLS is then
performed. This procedure is repeated for subsequent times

until convergence to the parameters corresponding to the
value () ()V x W xj j

T
1 1z=+ + . For RLS to converge, the regres-

sion vector () () ()k x xk k 1/ z czU - +^ h must be persistently
exciting.

An alternative to RLS is a gradient descent tuning
method such as

	 () () () (, ()) ,W W k W k r x h xj
i

j
i

j
i T

k j k1
1

1 1aU U= - -+
+

+ +^ h 	 (68)

with 02a being a tuning parameter. The step index j is
held fixed, and index i is incremented at each increment of
the time index k. Note that the quantity inside the large
brackets is just the temporal difference error.

Once the value parameters have converged, the control
policy is updated according to (66). Then, the procedure is
repeated for step j + 1. This entire procedure is repeated
until convergence to the optimal control solution.

This method provides an online reinforcement learning
algorithm for solving the optimal control problem using
policy iteration by measuring data along the system trajec-
tories. Likewise, an online reinforcement learning algo-
rithm can be given based on value iteration. Substitution of
the value function approximation into the value update (63)
in value iteration results in the following algorithm.

Optimal Adaptive Control Using
a Value Iteration Algorithm

Initialize
Select some control policy ()h xk0 , not necessarily admis-
sible or stabilizing. Starting with j = 0, iterate on j until
convergence:

Value Update Step
Determine the least-squares solution Wj 1+ to

	 () (, ()) () .W x r x h x W xj
T

k k j k j
T

k1 1z cz= ++ + 	 (69)

Policy Improvement Step
Determine an improved policy using (66).

Equation (69) can be solved in real time using batch
least-squares, RLS, or gradient-based methods based on
data , , (, ())x x r x h xk k k j k1+^ h measured at each time along the
system trajectories. Then the policy is improved using (66).
Note that the old weight parameters are on the right-hand
side of (69). Thus, the regression vector is now ()xkz , which
must be persistently exciting for convergence of RLS.

Introduction of a Second “Actor” Neural Network
Using value function approximation (VFA) allows stan-
dard system identification techniques to be used to find
the value function parameters that approximately solve
the Bellman equation. The approximator structure just
described that is used for approximation of the value
function is known as the critic neural network, as it

92  IEEE CONTROL SYSTEMS MAGAZINE »  december 2012

determines the value of using the current policy. Using
VFA, the policy iteration reinforcement learning algo-
rithm solves a Bellman equation during the value update
portion of each iteration step j by observing only the data
set , , (, ())x x r x h xk k k j k1+^ h at each time along the system tra-
jectory and solving (65). In the case of value iteration, VFA
is used to perform a value update using (69).

The critic network solves the Bellman equation using
observed data without knowing the system dynamics.
According to “Policy Iteration and Value Iteration for the
Discrete-Time LQR,” in the LQR case the critic solves
Lyapunov equation (65) or Lyapunov recursions (69) with-
out knowing the system matrices (A, B).

Note that in the LQR case the policy update (66) is given by

	 () ,K B P B R B P Aj T j T j1 1 1 1=- ++ + - + 	 (70)

which requires full knowledge of the dynamics (A, B).
Note further that the embodiment (66) cannot easily be
implemented in the nonlinear case because it is implicit in
the control, since xk 1+ depends on h(·) and is the argument
of a nonlinear activation function.

These problems are both solved by introducing a second
neural network for the control policy, known as the actor
neural network [14], [19], [34]. Consider a parametric approxi-
mator structure for the control action

	 () (),u h x U xk k
T

kv= = 	 (71)

with ():x R Rn M
"v being a vector of M activation functions

and U RM m! # being a matrix of weights or unknown
parameters. In the LQR, the optimal state feedback is linear
in the states so that the basis set ()xv can be taken as the
state vector.

After convergence of the critic neural network parame-
ters to Wj 1+ in policy iteration or value iteration, perform-
ing the policy update (66) is required. To achieve this aim, a
gradient descent method for tuning the actor weights U
such as

	 () () () () ()U U x R U x g x x W2j
i

j
i

k j
i T

k k
T T

k j
T

1
1

1 1 1 14bv v c z= - ++
+

+ + + +^ h	

	() () () () ()U U x R U x g x x W2j
i

j
i

k j
i T

k k
T T

k j
T

1
1

1 1 1 14bv v c z= - ++
+

+ + + +^ h 	 (72)

can be used, with 02b being a tuning parameter [34].
The tuning index i can be incremented with the time
index k.

The tuning of the actor neural network requires obser-
vations at each time k of the data set (,)x xk k 1+ , that is, the
current state and the next state. However, as per the formu-
lation (71), the actor neural network yields the control uk at
time k in terms of the state xk at time k. The next state xk 1+
is not needed in (71). Thus, after (72) converges, (71) is a
legitimate feedback controller. Note that, in the LQR case,
the actor neural network (71) embodies the feedback gain

computation (70). Equation (70) contains the state internal
dynamics A, but (71) does not. Therefore, the A matrix is
not needed to compute the feedback control. The reason is
that the actor neural network learns information about A in
its weights, since (,)x xk k 1+ are used in its tuning.

Finally, note that only the input function g(·) or, in the
LQR case, the B matrix, is needed in (72) to tune the actor
neural network. Introducing a second actor neural network
completely avoids the need for knowledge of the state drift
dynamics f(·), or the matrix A in the LQR case.

Example 1. Discrete-Time Optimal Adaptive Control
of Power System Using Value Iteration
This example shows the use of discrete-time value iteration to
solve the discrete-time ARE online without knowing the
system matrix A. We simulate the online value iteration algo-
rithm (69), (72) for load frequency control of an electric power
system. Power systems are complicated nonlinear systems.
However during normal operation the system load, which
produces the nonlinearity, has only small variations. As such,
a linear model can be used to represent the system dynamics
around an operating point specified by a constant load value.
A problem arises from the fact that in an actual plant
the parameter values are not precisely known, reflected in
an unknown system A matrix, yet an optimal control solution
is sought.

The model of the system that is considered here is
x Ax Bu= +o , where

	 , .A

T

RT
K

T
K

T T

T T

B
T

1

0

1

1

0

0

0

1

1

0

0

0

1

0

0
0
1

0

P

G

E

P

P

T T

G G

G

=

-

-

- -

- -

=

R

T

S
S
S
S
S
S
S

R

T

S
S
S
SS

V

X

W
W
W
W
W
W
W

V

X

W
W
W
WW

The system state is ()E t] ,()X t 33()P t() [()x t f t g g
T3= 3

where ()f t3 is the incremental frequency deviation in
hertz, ()P tg3 is the incremental change in the generator
output (p.u. megawatt), ()X tg3 is the incremental change
in the governor position in p.u. megawatt, and ()E t3 is the
incremental change in integral control. The system param-
eters are the governor time constant TG , turbine time con-
stant TT , plant model time constant TP , plant model gain
KP , speed regulation due to the governor action R, and the
integral control gain KE .

The values of the continuous-time system parameters
were randomly picked within specified ranges so that

	
.

.
.

. .
. . ,nA

0 0665
0
6 86
0 6

8
3 663
0
0

0
3 663
13 736

0

0
0

13 736
0

=

-

-

-

- -

R

T

S
S
S
SS

V

X

W
W
W
WW

	
. .B 0 0 13 7355 0T = 6 @

december 2012 «  IEEE CONTROL SYSTEMS MAGAZINE  93

The discrete-time dynamics were obtained using the zero-
order hold method with a sampling period of 0.01 s. The
solution to the discrete-time ARE with cost function
weights Q I4= , R 1= , and 1c = is

	

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.P

0 4805
0 4772
0 0604
0 4771

0 4772
0 7892
0 1240
0 3855

0 0604
0 1240
0 0567
0 0304

0 4771
0 3855
0 0304
2 3513

DARE =

R

T

S
S
S
SS

V

X

W
W
W
WW

In this simulation, only the time constant TG of the gov-
ernor, which appears in the B matrix, is considered to be
known, while the values for all the other parameters
appearing in the system A matrix are not known. That is,
the A matrix is needed only to simulate the system and
obtain the data and is not needed by the control algorithm.

For the discrete-time LQR, the value is quadratic in the
states, () (/)V x x Px1 2 T= . Therefore, the basis functions
for the critic neural network in (64) are selected as the qua-
dratic polynomial vector in the state components. Since
there are n = 4 states, this vector has ()/n n 1 2 10+ = com-
ponents. The control is linear in the states, u Kx=- , and
the basis functions for the actor neural network (71) are
taken as the state components.

Value iteration can be implemented online by setting
up a batch least-squares problem to solve for the ten critic
neural network parameters, which are in the Riccati solu-
tion entries Wj 1+ in (69) for each step j. In this simulation,
the matrix Pj 1+ corresponding to Wj 1+ is determined
after collecting 15 points of data (, , (,))x x r x uk k k k1+ for each
least-squares problem. This least-squares problem for the
critic weights is solved each 0.15 s. Then the actor neural
network parameters, that is, the feedback gain matrix
entries, are updated using (72). The simulations were per-
formed over a time interval of 60 s.

The system state trajectories are shown in Figure 3,
which shows that the states are regulated to zero as
desired. The convergence of the Riccati matrix parameters
is shown in Figure 4. The final values of the critic neural
network parameter estimates are

	

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.P

0 4802
0 4768
0 0603
0 4754

0 4768
0 7887
0 1239
0 3843

0 0603
0 1239
0 0567
0 0300

0 4754
0 3834
0 0300
2 3433

critic NN =

R

T

S
S
S
SS

V

X

W
W
W
WW

The optimal adaptive control value iteration algo-
rithm converges to the optimal control solution as given
by the algebraic Riccati equation solution. This solution
is performed in real time without knowing the system
A matrix.

Actor-Critic Implementation of Discrete-Time
Optimal Adaptive Control
Two algorithms for optimal adaptive control of dis-
crete-time systems based on reinforcement learning
have given a policy iteration algorithm implemented
by solving (65) using RLS and a policy update by run-
ning (72) and a value iteration algorithm implemented
by solving (69) using RLS and a policy update by
running (72).

The implementation of reinforcement learning using
two neural networks, one as a critic and one as an actor,
yields the actor/critic reinforcement learning structure
shown in Figure 1. In this control system, the critic and
the actor are tuned online using the observed
data (, , (, ()))x x r x h xk k k j k1+ along the system trajectory. The
critic and actor are tuned sequentially in both the policy
iteration and the value iteration algorithms. That is, the

0.1

0.08

0.06

0.04

0.02

0

-0.02

-0.04

-0.06

-0.08

-0.1
0 1 2 3

Time (s)

4 5 6

S
ys

te
m

 S
ta

te
s

Figure 3  System states during the first 6 s. This figure shows that,
even though the A matrix of the power system is unknown, the
adaptive controller based on value iteration keeps the states
stable and regulates them to zero.

2.5

2

1.5

1

0.5

0

-0.5
0 10 20 30

Time (s)

P (1, 1)
P (1, 3)
P (2, 4)
P (4, 4)

40 50 60

P
 M

at
rix

 P
ar

am
et

er
s

Figure 4  Convergence of selected algebraic Riccati equation
solution parameters. This plot shows that the adaptive controller
based on value iteration converges to the ARE solution in real time
without knowing the system matrix A.

94  IEEE CONTROL SYSTEMS MAGAZINE »  december 2012

This sidebar presents an adaptive control algorithm based

on Q learning that converges online to the solution to the

discrete-time LQR problem. This is accomplished by solving

the algebraic Riccati equation in real time without knowing the

system dynamics by using data measured along the system

trajectories.

Q learning is implemented by repeatedly perform-

ing the iterations (79) and (80). In it is seen that the LQR

Q function is quadratic in the states and inputs so that

(,) () (/)Q x u Q z z Sz1 2k k k k
T

k/= where z x uk k
T

k
T T

= 6 @ . The ker-

nel matrix S is explicitly given by (S22) in terms of the system

parameters A and B. However, matrix S can be estimated on-

line without knowing A and B by using system identification

techniques. Specifically, write the Q function in parametric

form as

	 (,) () (),Q x u Q z W zTz= = 	 (S26)

with W being the vector of the elements of S and the basis vector

()zz consisting of quadratic terms in the elements of z, which

contains state and input components. Redundant entries are

removed so that W is composed of the ()() /n m n m 1 2+ + +

elements in the upper portion of S, with , .x R u Rk
n

k
m! !

Now, for the LQR, the Q learning Bellman equation (79) can

be written as

	 () () () .W z z x Qx u Ru2
1

j
T

k k k
T

k k
T

k1 1z z- = ++ +^ h 	 (S27)

Note that the Q matrix here is the state weighting matrix in

the performance index; it should not be confused with the Q

function (),Q x uk k . This equation must be solved at each step

j of the Q learning process. Note that (S27) is one equation in

() /n n 1 2+ unknowns, namely the entries of vector W . This is

exactly the sort of equation encountered in system identifica-

tion, and is solved online using methods from adaptive control

such as recursive least squares (RLS).

Therefore, Q learning is implemented as follows.

Initialize.

Select an initial feedback policy u K xk k
0=- at j 0= . The ini-

tial gain matrix need not be stabilizing and can be selected

equal to zero.

Step j.

Identify the Q Function Using RLS.

At time k, apply the control uk based on the current policy

u K xk
j

k=- and measure the data set (, , ,),x u x uk k k k1 1+ +

where uk 1+ is computed using u K xk
j

k1 1=-+ + . Com-

pute the quadratic basis sets (), ()z zk k 1z z + . Now per-

form a one-step update in the parameter vector W by

applying RLS to equation (S27). Repeat at the next time

k 1+ and continue until RLS converges and the new

parameter vector W j 1+ is found.

Update the Control Policy

Unpack the vector W j 1+ into the kernel matrix

() ,Q x u
x
u

S
x
u

x
u

S
S

S
S

x
u2

1
2
1

,k k
k

k

T k

k

k

k

T xx

ux

xu

uu

k

k
/ =; ; ; ; ;E E E E E 	 (S28)

Perform the control update using (S24), which is

	 ,u S S xk ux kuu
1=- - 	 (S29)

Set j j 1= + . Go to Step j.

Termination.

This algorithm is terminated when there are no further updates

to the Q function or the control policy at each step.

This is an adaptive control algorithm implemented using Q func-

tion identification by RLS techniques. No knowledge of the system

dynamics (A, B) is needed for its implementation. The algorithm

effectively solves the algebraic Riccati equation online in real-time

using data (, ,)x u x u,k k k k1 1+ + measured in real time at each time

stage k. It is necessary to add probing noise to the control input to

guarantee persistence of excitation to solve (S27) using RLS.

weights of one neural network are held constant while the
weights of the other are tuned until convergence. This pro-
cedure is repeated until both neural networks have con-
verged. Thus, the controller learns the optimal controller
online. This procedure amounts to an online adaptive opti-
mal control system wherein the value function parameters
are tuned online and the convergence is to the optimal
value and control. The convergence of value iteration using
two neural networks for the discrete-time nonlinear
system (50) is proven in [34].

According to reinforcement learning principles, the
optimal adaptive control structure requires two loops, a
critic and an actor, and operates at multiple timescales.
A fast loop implements the control action inner loop, a

slower timescale operates in the critic loop, and a third
timescale operates to update the policy.

Q Learning for Optimal Adaptive Control
The above text described how to implement an optimal
adaptive controller using reinforcement learning that only
requires knowledge of the system input function ()g xk . The
Q learning reinforcement learning method results in an
adaptive control algorithm that converges online to the
optimal control solution for completely unknown systems.
That is, it solves the Bellman equation (56) and the HJB
equation (54) online in real time by using data measured
along the system trajectories, without any knowledge of the
dynamics (), ()f x g xk k .

Adaptive Controller for Online Solution of Discrete-Time LQR Using Q Learning

december 2012 «  IEEE CONTROL SYSTEMS MAGAZINE  95

Q learning, developed by Watkins [42], [43] and Werbos
[7], [14], [19], is a simple method for reinforcement
learning that works for unknown MDPs, that is for sys-
tems with completely unknown dynamics. Q learning is
called action-dependent heuristic dynamic programming
(ADHDP) by Werbos, since the Q function depends on the
control input. Q learning learns the Q function (37) using
temporal difference methods by performing an action uk
and measuring at each time stage the resulting data expe-
rience set (, ,)x x rk k k1+ consisting of the current state, the
next state, and the resulting stage cost. Writing the Q
function Bellman equation (39) along a sample path gives

	 (,) (,) (, ()),Q x u r x u Q x h xk k k k k k1 1c= +r r
+ + 	 (73)

which defines a temporal difference error

	 (,) (,) (, ()) .e Q x u r x u Q x h xk k k k k k k1 1c=- + +r r
+ + 	 (74)

The value iteration algorithm for Q function is given by
(46). Based on this, the Q function is updated using the
algorithm

	
(,) (,) [(,)

(,) (,)] .min
Q x u Q x u r x u

Q x u Q x u
k k k k k k k k k

u k k k k k

1

1 1 1

a

c

= +

+ -

-

- + -
	 (75)

This algorithm is developed for finite MDPs and its conver-
gence has been proven by Watkins [42] using stochastic
approximation (SA) methods. It is shown the algorithm
converges for a finite MDP provided that all state-action
pairs are visited infinitely often and

	 , ,k
k

k
1

23 31a a=
3

=

/ / 	 (76)

which are standard stochastic approximation conditions.
On convergence, the temporal difference error is approxi-
mately equal to zero. For a finite MDP, Q learning requires
storing a lookup table in terms of all the states x and
actions u.

The requirement that all state-action pairs are visited
infinitely often translates to the problem of maintaining
sufficient exploration during learning.

The Q learning algorithm (75) is similar to SA methods
for adaptive control or parameter estimation used in the
control systems literature. Below is a derivation of methods

for Q learning for dynamical systems that yield adaptive
control algorithms that converge to optimal control
solutions.

Policy iteration and value iteration algorithms can be
given using the Q function in (42)–(46). A Q learning
algorithm is easily developed for discrete-time dynam-
ical systems using Q function approximation [7],
[14], [19], [49]. It is shown in “Q Function for the Dis-
crete-Time LQR” that, for the discrete-time LQR, the Q
function is a quadratic form in terms of z x uk k

T
k
T T

/ 6 @ .
Assume that, for nonlinear systems, the Q function is
parameterized as

	 (,) (),Q x u W zTz= 	 (77)

for some unknown parameter vector W and basis set vector
()zz . Substituting the Q function approximation into the

temporal difference error (74) yields

	 () (,) (),e W z r x u W zk
T

k k k
T

k 1z c z=- + + + 	 (78)

on which either policy iteration or value iteration algo-
rithms can be based. Considering the policy iteration
algorithm (42), equation (43) yields the Q function evalua-
tion step

	 (() ()) (, ()),W z z r x h xj
T

k k k j k1 1z cz- =+ + 	 (79)

and the policy improvement step

	 () (,)arg minh x W x uj k
u

j
T

k1 1z=+ +^ h, for all x X! .	 (80)

Q learning using value iteration (44) is given by

	 () (, ()) (),W z r x h x W zj
T

k k j k j
T

k1 1z c z= ++ + 	 (81)

and (80). These equations do not require knowledge of the
dynamics (), () .f g$ $

For online implementation, batch least-squares or RLS
can be used to solve (79) for the parameter vector Wj 1+
given the regression vector (() ())z zk k 1z cz- + , or (81)
using regression vector ()zkz . The observed data at each
time instant are (, , (,))z z r x uk k k k1+ with []z x uk k

T
k
T T/ . The

vector z x uk k
T

k
TT

1 1 1/+ + +6 @ is computed using ()u h xk j k1 1=+ +

A method known as Q learning allows the learning of optimal control solutions

online, in the discrete-time case, for completely unknown systems.

96  IEEE CONTROL SYSTEMS MAGAZINE »  december 2012

with ()hj $ being the current policy. Probing noise must
be added to the control input to obtain persistence of
excitation. On convergence, the action update (80) is per-
formed. This update is easily accomplished without
knowing the system dynamics due to the fact that the Q
function contains uk as an argument, therefore

((,))/W x u uj
T

k12 2z+ can be explicitly computed. The
details are presented in.

Due to the simple form of the action update (80), the
actor neural network is not needed for Q learning; it can be
implemented using only one neural network for Q function
approximation.

Approximate Dynamic Programming
Using Output Feedback
The aforementioned methods have relied on full state
variable feedback. Little work has been done in applica-
tions of reinforcement learning for feedback control
using output feedback, which corresponds to partially
observable Markov processes. Design of an ADP control-
ler that uses only output feedback is given in [50].

Integral Reinforcement Learning
for Optimal Adaptive Control of
Continuous-Time Systems
Reinforcement learning is considerably more difficult for
continuous-time systems than for discrete-time systems,
and fewer results are available. The development of an
offline policy iteration method for continuous-time sys-
tems is described in [51]. Using a method known as integral
reinforcement learning (IRL) [37], [15] allows the application
of reinforcement learning to formulate online optimal
adaptive control methods for continuous-time systems.
These methods find solutions to optimal HJ design equa-
tions and Riccati equations online in real time without
knowing the system drift dynamics ()f x , or in the LQR
case, without knowing the A matrix.

Consider the continuous-time nonlinear dynamical
system

	 () () ,x f x g x u= +o 	 (82)

with state ()x t Rn! , control input ()t Ru m! , an equilib-
rium point at x 0= , e.g., ()f 0 0= , and () ()f g x ux + Lip-
schitz on a set Rn3X that contains the origin. Assume
that the system is stabilizable on X , that is, there exists
a continuous control function ()u t such that the closed-
loop system is asymptotically stable on X .

Define a performance measure or cost function that has
the value associated with the feedback control policy

()u xn= given by

	 (()) ((), ()) ,V x t r x u d
t

x x x=

3

n # 	 (83)

with utility (,) ()r x u Q x u RuT= + , positive-definite ()Q x ,
that is, ()Q x 02 for all x and ()x Q x0 0&= = , and posi-
tive-definite matrix R R RT m m!= # .

For the continuous-time LQR, the above expressions are

	 ,x Ax Bu= +o 	 (84)

	 (()) () .V x t x Qx u Ru d
2
1 T T

t

x= +

3

n # 	 (85)

A policy is called admissible if it is continuous, stabilizes
the system, and has a finite associated cost. If the cost is
smooth, then an infinitesimal equivalent to (83) can be
found by Leibniz’s formula to be

) (() () ()), () ,V f x g x x V 0 0n+ =(, ()) (r x x0 T4n= + n n 	 (86)

where V4 n , taken here as a column vector, denotes the gra-
dient vector of the cost function Vn with respect to x.

Equation (86) is the continuous-time Bellman equation.
This equation is defined based on the continuous-time
Hamiltonian function

      ) (() () ()) .V f x g x xn+) (, ()) (V r x x 4n= +(, (),H x x T4n n n � (87)

The optimal value satisfies the continuous-time (HJB)
equation [3]

)V(, (),min H x x0 4n=)

n
	 (88)

and the optimal control satisfies

) .V(, (),arg min H x x 4n n=))

n
	 (89)

These expressions show why it is much more challenging
to apply reinforcement learning to continuous-time systems.
Comparing the continuous-time Hamiltonian (87) to the
discrete-time Hamiltonian (57), it is seen that (87) contains
the full system dynamics () () ,f x g u u+ whereas (57) does
not. What this means is that the continuous-time Bellman
equation (86) cannot be used as a basis for reinforcement
learning unless the full dynamics are known.

Reinforcement learning methods based on (86) can be
developed [52], [29], [40]. These methods have limited use
for adaptive control purposes because the system
dynamics must be known, state derivatives must be mea-
sured, or integration over an infinite horizon is required.
In another approach, Euler’s method can be used to
discretize the continuous-time Bellman equation (86)
(see [52]). Noting that

	
) (() () ())V f x g x xn+(, ()) (

(, ()) ,
r x x

r x x V

0 T4n

n

= +

= +

n

no 	 (90)

december 2012 «  IEEE CONTROL SYSTEMS MAGAZINE  97

Euler’s forward method can be used to discretize this
partial differential equation to obtain

	 (,)
() () () ()

,
(,)

r x u
T

V x V x
T

r
T

V x V xx u
0 k k

k k k kS k k1 1
/= +

-
+

-n n n n
+ +	

	(,)
() () () ()

,
(,)

r x u
T

V x V x
T

r
T

V x V xx u
0 k k

k k k kS k k1 1
/= +

-
+

-n n n n
+ + 	 (91)

with sample period T so that t = kT. The discrete sampled
utility is (,) (,) .r x u r x u Tk k k kS =

Now note that the discretized continuous-time Bellman
equation (91) has the same form as the discrete-time Bell-
man equation (56). Therefore, all the reinforcement learn-
ing methods just described for discrete-time systems can
be applied.

However, (91) is an approximation only. An alternative
exact method for continuous-time reinforcement learn-
ing is given in [37], [15]. That method is termed IRL. Note
that the cost (83) can be written in the integral reinforce-
ment form

	 (()) ((), ()) (()),V x t r x u d V x t T
t

t T

x x x= + +n n

+

# 	 (92)

for some T > 0. This equation is exactly in the form of the
discrete-time Bellman equation (56). According to Bell-
man’s principle, the optimal value is given in terms of this
construction as [3]

	 (()) ((), ()) (()) ,minV x t r x u d V x t T
(:)u t t T

t

t T

x x x= + +))

+

+

r
f p#

where (:) { (): } .u t t u t t TT 1#x x+ = +r The optimal con-
trol is

	 (()) ((), ()) (()) .arg minx t r x u d V x t T
(:)u t t T t

t T

n x x x= + +))

+

+

r
f p#

It is shown in [37] that the Bellman equation (86) is equiva-
lent to the integral reinforcement form (92). That is, the
positive-definite solution of both equations is the value (83)
of the policy ()u xn= .

The integral reinforcement form (92) serves as a Bellman
equation for continuous-time systems and serves as a fixed
point equation. Therefore, the temporal difference error for
continuous-time systems can be defined as

	 (:) ((), ()) (()) (()) .e t t T r x u d V x t T V x t
t

t T

x x x+ = + + -n n

+

(93)

This equation does not involve the system dynamics.
It is straightforward to use the above equation to for-

mulate policy iteration and value iteration for continu-
ous-time systems. The following algorithms are termed
as integral reinforcement learning for continuous-time sys-
tems [37], [15]. Both algorithms give optimal adaptive
controllers for continuous-time systems, that is, adaptive
control algorithms that converge to optimal control
solutions.

IRL Optimal Adaptive Control Using Policy Iteration

Initialize
Select some admissible control policy ()x0n . Starting with
j = 0, iterate on j until convergence:

Policy Evaluation Step
Solve for (())V x tj 1+ using

(()) ((), (())) (())V x t r x s x s ds V x t Tj j j

t

t T

1 1n= + ++ +

+

#
	 with () .V 0 0j 1 =+ 	 (94)

Policy Improvement Step
Determine an improved policy using

)],V[(, ,arg min H x uj
u

j1 14n =+ + 	 (95)

which explicitly is

	 .V() ()x R g x2
1

j
T

j1
1

14n =-+
-

+ 	 (96)

IRL Optimal Adaptive Control Using Value Iteration

Initialize
Select some control policy ()x0n , which is not necessarily
stabilizing. Starting with j = 0, iterate on j until conver-
gence.

Policy Evaluation Step
Solve for (())V x tj 1+ using

	 (()) ((), (())) (()) .V x t r x s x s ds V x t T()j j j

t

t T

1 n= + ++

+

# 	 (97)

The optimal adaptive controllers presented in this article are a natural

extension of adaptive controllers.

98  IEEE CONTROL SYSTEMS MAGAZINE »  december 2012

Policy Improvement Step
Determine an improved policy using (96).

Neither algorithm requires knowledge about the system
drift dynamics function ()f x . That is, the algorithms are
applicable to partially unknown systems. Convergence of
IRL policy iteration is proved in [37].

Online Implementation of IRL:
A Hybrid Optimal Adaptive Controller
Both of these IRL algorithms can be implemented online by
reinforcement learning techniques using value function
approximation () ()V x W xTz= in a critic approximator net-
work. Using VFA in the policy iteration algorithm (94) yields

	 (()) (()) ((), (())) .W x t x t T r x s x s dsj
T

j

t

t T

1 z z n- + =+

+

6 @ # 	 (98)

Using VFA in the value iteration algorithm (97) yields

	 (()) ((), (())) (()) .W x t r x s x s ds W x t Tj
T

j j
T

t

t T

1z n z= + ++

+

# 	 (99)

Then RLS or batch least-squares can be used to update
the value function parameters in these equations. On con-
vergence of the value parameters, the action is updated
using (96).

IRL provides an optimal adaptive controller, that is, an
adaptive controller that measures data along the system
trajectories and converges to optimal control solutions.
Only the system input coupling dynamics g(x) is needed to
implement these algorithms. The drift dynamics f(x) is
not needed.

The implementation of IRL optimal adaptive control is
shown in Figure 5. The time is incremented at each iteration

by the period T. The reinforcement learning time interval T
need not be the same at each iteration. The value of T can be
changed depending on how long it takes to receive mean-
ingful information from the observations; T is not a sample
period in the standard meaning.

The measured data at each time increment are ((),x t
(), (:))x t T t t Tt+ + where

	 (:) ((), ())t t T r x u d
t

t T

t x x x+ =

+

# 	 (100)

is the integral reinforcement measured on each time interval.
The integral reinforcement can be computed in real time by
introducing an integrator ((), ())r x t u tt =o as shown in
Figure 5. That is, the integral reinforcement ()tt is added as
an extra continuous-time state that functions as the
memory or controller dynamics. The remainder of the con-
troller is a sampled-data controller.

The control policy ()xn is updated periodically after the
critic weights have converged to the solution to (98) or (99).
Therefore, the policy is piecewise constant in time. On the
other hand, the control varies continuously with the state
between each policy update. It is seen that IRL for continu-
ous-time systems is in fact a hybrid continuous-time/dis-
crete-time adaptive controller that converges to the optimal
control solution in real time without knowing the drift
dynamics f(x). The optimal adaptive controller has multiple
control loops and several timescales. The inner control
action loop operates in continuous-time. Data are sampled
at intervals of length T. The critic network operates at a
slower timescale depending on how long it takes to solve
(98) or (99).

Due to the fact that the policy update (96) for continu-
ous-time systems does not involve the drift dynamics f(x),
no actor neural network is needed in IRL. Only a critic
neural network is needed for VFA.

Online Solution of Algebraic Riccati
Equation Without Full Plant Dynamics
It can be shown that the integral reinforcement form (92)
is equivalent to the Bellman equation (86) [37]. The IRL
controller solves the Bellman equation online without
knowing the drift dynamics ()f x . Moreover, IRL con-
verges to the optimal control so that it solves the HJB
equation (88).

In the continuous-time LQR case (84), (85) the control
policies are linear state feedbacks u Kx=- . Then the Bell-
man equation (86) is the Lyapunov equation

	 () ()A BK P P A BK Q K RK 0T T- + - + + = ,	 (101)

and (88) becomes the continuous-time ARE

	 .A P PA Q PBR B P 0T T1+ + - =- 	 (102)

Update FB Gain
After Critic

Has Converged

Run RLS or Use Batch L.S.
to Identify Value of Current
Control

Dynamic
Control
System
with
Memory

ZOH T

Critic

T T

Actor
n(x)

u xSystem
x = f(x) + g(x)u˙

t = r(x(t)), u(t))˙

t

Figure 5  Hybrid optimal adaptive controller based on integral
reinforcement learning (IRL), which shows the two-time scale
hybrid nature of the IRL controller. The integral reinforcement
signal is added as an extra state and functions as the memory of
the controller. The Critic runs on a slow time scale and learns
the value of using the current control policy. When the Critic
converges, the Actor control policy is updated to obtain an
improved value.

december 2012 «  IEEE CONTROL SYSTEMS MAGAZINE  99

Thus, IRL solves both the Lyapunov equation and the
ARE online in real time, using data measured along the
system trajectories, without knowing the A matrix.

For the continuous-time LQR, (94) is equivalent to a
Lyapunov equation at each step, so that policy iteration is
exactly the same as Kleinman’s algorithm [55] for solving
the continuous-time Riccati equation. This algorithm is a
Newton’s method for finding the optimal value. Continu-
ous-time value iteration, on the other hand, is an algorithm
that solves the continuous-time ARE based on iterations on
certain discrete-time Lyapunov equations that are equiva-
lent to (97).

Example 2. Continuous-Time Optimal
Adaptive Control Using IRL
This example shows the hybrid control nature of the IRL
optimal adaptive controller. It is also shown that IRL finds
the solution to the ARE online without solving the ARE
and without knowing the system matrix A. Consider the
simple dc motor model

. ,x Ax Bu x u
10

0 002
1
2

0
2= + =

-

- -
+; ;E E

with cost weight matrices , .Q I R 1= = The solution to the
continuous-time ARE is computed to be

.
.

.

. .P
0 05

0 0039
0 0039
0 2085=; E

This simulation uses the IRL-based continuous-time
value iteration algorithm. This algorithm does not require
knowledge of the system matrix A. For the continuous-
time LQR, the value is quadratic in the states and the basis
functions for the critic neural network are selected as the
quadratic polynomial vector in the state components,

() .x x x x x1
2

1 2 2
2z =6 @ The IRL time interval was selected

as .T 0 04= s. A batch least-squares solution was used to
update the three critic weights Wj 1+ , that is, the ARE solu-
tion elements, using (99). Measurements of the data set

, , (:)x t x t T t t Tt+ +^ ^^ h h h are taken over three time inter-
vals of .T 0 04= s. Then, provided that there is enough
excitation in the system, after each 0.12 s enough data are
collected from the system to solve for the value of the
matrix P. Then a greedy policy update is performed using
(96), that is .u R B Px xKT1 /=- --

The state trajectories in Figure 6 show that suitable regu-
lation is achieved. The control input and feedback gains are

shown in Figure 7. The control gains are piecewise con-
stant, while the control input is a continuous function of
the state between policy updates. The critic neural network
parameter estimates are shown in Figure 8. They converge
almost exactly to the entries in the Riccati solution matrix P.
Thus, the ARE is solved online without knowing the system
matrix A.

Adaptive controllers do not generally converge to optimal solutions, and

optimal controllers are designed offline using full dynamics information by

solving matrix design equations.

2

1.5

1

0.5

3.5

3

2.5

4

0

S
ys

te
m

 S
ta

te
s

Time (s)

0 0.5 1 1.5 2

Figure 6 System states during the first 2 s, which shows that the
continuous-time IRL adaptive controller regulates the states to
zero without knowing the system matrix A.

C
on

tr
ol

P
ar

am
et

er
s

Time (s)
0 0.5 1 1.5 2

Time (s)

0 0.5 1 1.5 2

-0.2

-0.4

0

C
on

tr
ol

 S
ig

na
l

-0.2

-0.1

-0.3

0

Figure 7  Control input and feedback gains, which show the hybrid
nature of the IRL optimal adaptive controller. The controller gain
parameters are discontinuous and piecewise constant, while the con-
trol signal itself is continuous between the gain parameter updates.

100  IEEE CONTROL SYSTEMS MAGAZINE »  december 2012

Example 3. Continuous-Time Optimal Adaptive
Control for Power System Using IRL
This example shows that IRL finds the solution to the ARE
online without solving the ARE and without knowing the

system matrix A. Here the continuous-time IRL optimal
adaptive control for the electric power system in Example
1 is demonstrated. The same system matrices and perfor-
mance index are used as in Example 1. The solution to the
continuous-time ARE is computed to be

	

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.P

0 4750
0 4766
0 0601
0 4751

0 4766
0 7831
0 1237
0 3829

0 0601
0 1237
0 0513
0 0298

0 4751
0 3829
0 0298
2 3370

ARE =

R

T

S
S
S
SS

V

X

W
W
W
WW

This matrix is close to the discrete-time ARE solution pre-
sented in Example 1 since the sample period used there is
small.

Both the IRL policy iteration algorithm and the IRL value
iteration algorithm are simulated. Neither requires knowl-
edge of the system matrix A. The IRL time interval was
taken as .T 0 05= s. Note that the IRL interval is not related
at all to the sample period used to discretize the system in
Example 1. It need not even be taken as a fixed constant for
each step. Fifteen data points ((), (), (:))x t x t T t t Tt+ + were
taken to compute each batch least-squares update for the
critic parameters Wpj j1 1/+ +r , that is, the elements of the
ARE solution P, using (99). The value estimate was updated
every .0 75 s. Then, the policy was computed using (96), that
is, u R B Px KxT1 /=- -- .

The state trajectories are similar to those presented in
Example 1 and so are not plotted here. In the figures show-
ing the value function parameter convergence, the star sym-
bols represent the true values of the parameters of the
optimal cost function calculated by solving the continuous-
time ARE. For learning using the IRL policy iteration algo-
rithm, the critic parameter estimates for the entries of the P
matrix are shown in Figure 9. For learning using the IRL
value iteration algorithm, the critic parameter estimates for
the P matrix entries are shown in Figure 10. In both cases,
the parameters converge to the true solution to the continu-
ous-time ARE. Thus, the ARE is solved online without
knowing the system A matrix. Note that IRL policy iteration
converges far faster than IRL value iteration. Policy iteration
is a Newton-Raphson method, so that its convergence rate
is quadratic.

Note that far less computation is needed using this IRL
algorithm on the continuous-time dynamics than is used in
Example 1 for the discrete-time optimal adaptive control
algorithm. There, the critic parameter estimates were
updated every 0.15 s. Yet, the parameter estimates for the P
matrix entries in Figures 4 and 10 almost overlay each other.

Now let’s simulate the effects of changes in the A matrix.
At t 30= s, the A matrix was changed to

	

.

.
.

. .
. . .A

0 0665
0
6 86
0 6

10
5 663
0
0

0
5 663
13 736

0

0
0

13 736
0

()t s30 =

-

-

-

- -
$

R

T

S
S
S
SS

V

X

W
W
W
WW

Evolution of Cost Function Parameters
During Learning—Policy Iteration

Time (s)

0

P11
P23
P24
P33
P44

0 10 20 30 40 50 60 70

1

2

3

4

5

P11
P23
P24
P33
P44

Figure 9  P matrix parameter estimates for IRL policy iteration,
which shows that the IRL adaptive controller converges online to
the optimal Riccati equation solution without knowing the system
matrix A.

-0.5
0

P11
P23
P24
P33
P44

0 10 20 30 40 50 60 70

0.5
1

1.5
2

2.5
P11
P23
P24
P33
P44

Time (s)

Evolution of Cost Function Parameters
During Learning—Value Iteration

Figure 10  P matrix parameter estimates for IRL value iteration,
which shows that the IRL adaptive controller converges online to
the optimal Riccati equation solution without knowing the system
matrix A.

0.05

0.15

0.1

0.2

0

C
rit

ic
 P

ar
am

et
er

s

Time (s)

P(1, 1)
P(1, 2)
P(2, 2)
P(1, 1) – Optimal
P(1, 2) – Optimal
P(2, 2) – Optimal

0 1 2 3 4 5 6

Figure 8  P matrix parameter estimates, which shows that the IRL
adaptive controller converges online to the optimal Riccati equa-
tion solution without knowing the system matrix A.

december 2012 «  IEEE CONTROL SYSTEMS MAGAZINE  101

According to the discussion in Example 1, this corresponds
to a change in /K Tp p from eight to ten and of /T1 T from
3.663 to 5.663. The parameters , ,K T TP TP are subject to
change on variations in the operating point of the machine,
such as what occurs on load changes. For learning using
the IRL policy iteration algorithm, the resulting critic
parameter estimates for the P matrix entries are shown in
Figure 11. For learning using the IRL value iteration algo-
rithm, the resulting critic parameter estimates for the P
matrix entries are shown in Figure 12. In both cases, the
parameters converge after 30 s to the new optimal solution
of the ARE corresponding to the new A matrix. This is
accomplished without knowing either the old or the new
A matrix.

Example 4. Continuous-Time IRL Optimal Adaptive
Control for Nonlinear System
This example demonstrates the use of IRL to solve the HJB
equation for nonlinear continuous-time systems by using
data measured along the trajectories in real time. This
example was developed using the converse HJB approach
[56], which allows construction of nonlinear systems start-
ing from the known optimal cost function.

Consider the nonlinear system given by

() ()
,

x x x x

x f x g x u

21 1 2 2
3

2

=- + +

= +

o

o
)

with () . () . () , ()sin sinf x x x x x x g x x0 5 0 5 1 21 2 2 2
2 2

1 1=- + + + = .
With the definitions () ,Q x x x x R2 11

2
2
2

2
4= + + = , then the opti-

mal cost function for this system is () .V x x x x0 5*
1
2

2
2

2
4= + +

and the optimal controller is * () ()sinu x x x x22 12
3=- + . It

can be verified that the HJB equation and the Bellman
equation are both satisfied for these choices.

The cost function is approximated by the smooth function
(()) (())V x t W x tj j

Tz= with L 8= neurons and () [x x x x1
2

1 2z =

]x x x x x x x x x T
2
2

1
4

1
3

2 1
2

2
2

1 2
3

2
4 . The policy iteration IRL algo-

rithm (98), (96) was used.

To ensure exploration so that the HJB solution is found
over a suitable region, data were taken along five trajecto-
ries defined by five different initial conditions chosen ran-
domly in the region ; ,x i1 1 1 2i# #X = - =" ,. The IRL
time period was taken as .T 0 1= s. At each iteration step, a
batch least-squares problem was used to solve for the eight
neural network weights using 40 data points measured on
each of the five trajectories in X . Each data point consisted
of (), (), (:)x t x t T t t Tt+ +^ hwith (:)t t Tt + the measured
integral reinforcement cost. In this way, at every 4 s, the
value was computed and then a policy update was
performed.

The result of applying the algorithm is presented in
Figure 13, which shows that the parameters of the critic
neural network converged to the coefficients of the
optimal cost function () .V x x x x0 5*

1
2

2
2

2
4= + + , that is,

. .W 0 5 0 1 0 0 0 0 1 T=6 @ It is observed that after three

iteration steps, that is, after 12 s, the critic neural network
parameters have effectively converged. Then, the controller is
close to the optimal controller * () ()sinu x x x x22 12

3=- + . The
approximate solution to the HJB equation was determined

Evolution of Cost Function Parameters
During Learning—Policy Iteration

0 10 20 30 40 50 60 70

Time (s)

3

2

1

0

5

4
P11
P23
P24
P33
P44

Figure 11  P matrix parameter estimates for IRL policy iteration
with a change in the A matrix at 30 s, which shows that the IRL
adaptive controller converges after 30 s to the new optimal Riccati
equation solution corresponding to the new A matrix.

Time (s)

Evolution of Cost Function Parameters
During Learning—Value Iteration

0 2010 30 40 50 7060

1.5

1

0.5

0

-0.5

2.5

2 P11
P23
P24
P33

P44

P11
P23
P24
P33

P44

Figure 12  P matrix parameter estimates for IRL value iteration
with a change in the A matrix at 30 s, which shows that the IRL
adaptive controller converges after 30 s to the new optimal Riccati
equation solution corresponding to the new A matrix.

1

0.5

0

2.5

2

1.5

3

C
rit

ic
 P

ar
am

et
er

s

Time (s)
0 5 10 15 20

w1

w2

w3

w4

w5

w6

w7

w8

w1

w2

w3

w4

w5

w6

w7

w8

Figure 13  Critic neural network parameters, which shows that the
IRL adaptive controller converges online to the optimal Riccati
equation solution without knowing the system matrix A.

102  IEEE CONTROL SYSTEMS MAGAZINE »  december 2012

online, and optimal control was found without knowing the
system drift dynamics ()f x . Note that analytic solution of the
HJB equation in this example would be intractable.

Synchronous Optimal Adaptive Control
for Continuous-Time Systems
The aforementioned IRL controller tunes the critic
neural network to determine the value while holding
the control policy fixed. Then, a policy update is per-
formed. Now an adaptive controller is described that
has two neural networks, one for value function
approximation and one to approximate the control,
which could be called the critic neural network and actor
neural network. The two neural networks are tuned
simultaneously, that is, synchronously in time. This
procedure is more nearly in line with accepted practice
in adaptive control. Though this synchronous control-
ler does require knowledge of the dynamics, it con-
verges to the approximate local solutions to the HJB
equation and the Bellman equation online, yet does not
require explicitly solving either equation. The HJB is
usually impossible to solve for nonlinear systems
except for special cases.

Based on the continuous-time Hamiltonian (87) and
the stationarity condition (, ,)/H x u V u0 2 d 2= n , a policy
iteration algorithm for continuous-time systems could be
written based on the policy evaluation step

	 (, (),)H x x V0 j j 1dn= +
	 (, ()) () (() () ()),r x x V f x g x xj j

T
j1dn n= + ++

	 ()V 0 0j 1 =+
		 (103)

and the policy improvement step

	 (, ,) .arg min H x Vj j1 1dn n=
n

+ + 	 (104)

Unfortunately, (103) is a nonlinear partial-differential equa-
tion and cannot usually be solved analytically.

However, this policy iteration algorithm provides the
structure needed to develop another adaptive control algo-
rithm that can be implemented online using measured data
along the trajectories and converges to the optimal control.
Specifically, select a value function approximation (VFA),
or critic neural network, structure as

	 () ()V x W xT
1 z= 	 (105)

and a control action approximation structure or actor
neural network as

	 () () .u x R g x W2
1 T T1

2dz=- - 	 (106)

These approximators could be, for instance, two neural
networks with unknown parameters or weights ,W W1 2

and ()xz the basis set or activation functions of the first
neural network. The structure of the second action neural
network comes from (96). Then tuning the neural network
weights as

	
()

[()],W W Q x u Ru
1T

T T
1 1 2 1a

v v

v
v=-

+
+ +o 	 (107)

	 {() () () },W F W F W D x W m x W
4
1T T

2 2 2 2 1 1 2 1a v=- - -o r 	 (108)

guarantees stability as well as convergence to the optimal
value and control [57].

In these parameter estimation algorithms, , , ,F F1 2 1 2a a
are algorithm tuning parameters, () () () () (),D x x g x R g x xT T1d dz z= -

() () () () (),D x x g x R g x xT T1d dz z= - (),f gudv z= + /(),1Tv v v v= +r and
() /() .m x 1T 2v v v= + A persistency of excitation condi-

tion on ()tvr is needed to achieve convergence to the opti-
mal value.

This synchronous policy iteration controller is an adap-
tive control algorithm that requires full knowledge of the
system dynamics (), (),f x g x yet converges to the optimal
control solution. That is, the algorithm locally approxi-
mately solves the HJB equation, which is usually intracta-
ble for nonlinear systems. In the continuous-time LQR
case, the algorithm solves the ARE using data measured
along the trajectories and knowledge of (,) .A B The utility
of this algorithm is that it can approximately solve the HJB
equation for nonlinear systems using data measured along
the system trajectories in real time. The HJB is usually
impossible to solve for nonlinear systems except in some
special cases.

The VFA tuning algorithm for W1 is based on gradient
descent, while the control action tuning algorithm is a form
of backpropagation [19] that is, however, also tuned by the
VFA weights W1 . This adaptive structure is similar to the
actor-critic reinforcement learning structure in Figure 1.
However, in contrast to IRL, this algorithm is a continuous-
time optimal adaptive controller with two parameter
estimators tuned simultaneously, that is, synchronously and
continuously in time.

Example 5. Continuous-Time Synchronous
Optimal Adaptive Control
This example demonstrates the use of the synchronous
optimal adaptive control algorithm to approximately solve
the HJB equation for a nonlinear continuous-time system
by using data measured along the trajectories in real time.
This example was developed using [56].

Consider the affine in control input nonlinear system
() () , ,x f x g x u x R2!= +o where

	 . (())() cos

x x

x x x
x x x xf x 0 25 2 2

1 2

1
3

2
2

1
2

2 1 1
3 2

- +

- - - + + +
=> H

	 ()() cos x xg x 2 2
0

1 1
3+ +

=; E.

december 2012 «  IEEE CONTROL SYSTEMS MAGAZINE  103

and select

 Q
1
0

0
1=; E, .R 1=

Then the optimal value function that solves the HJB
equation is () . .V x x x0 25 0 5*

1
4

2
2= + and the optimal control

policy is () (()) .. cosu x x x x2 20 5*
1 1

3
2=- + +

The critic neural network vector activation function are
selected as () [] .x x x x x1 2

2
1
4

2
42z = The tuning algorithms

(107), (108) were run for the critic neural network and control
actor neural network respectively, simultaneously in time.
A probing noise was added to the control to guarantee per-
sistence of excitation. This noise was decayed exponentially
during the simulation. The evolution of the states is shown

in Figure 14. The states are bounded and approach zero as
the probing noise decays to zero.

Figure 15 shows the critic parameters, denoted by
[]W W W W Wc c c c

T
1 1 2 3 4= After 80 s, the critic neural net-

work parameters converged to [. . . .]()W t 0 0033 0 4967 0 2405 0 0153f
T

1 =
[. . . .]()W t 0 0033 0 4967 0 2405 0 0153f

T
1 = , which is close to the true weights corre-

sponding to the optimal value ()V x* that solve the HJB
equation. The actor neural network parameters converged
to () [. . . .] .W t 0 0033 0 4967 0 2405 0 0153f

T
2 = The control

policy converged to the optimal control

() (() .cosu x x x
x

x
x

x
W t2

1 0
2 2

2
0

0
2

4
0

0
4

T

f2
1 1

3
1

2

1
3

2
3 2=-

+ +
t t; =E G

Figure 16 shows the three-dimensional (3-D) plot of the
difference between the approximated value function by using
the online synchronous adaptive algorithm, and the optimal
value. This error is small relative to the magnitude of the

-0.1

0.5

0.4

0.3

wc1
wc2
wc3
wc4

0.2

0.1

0

0.9

0.8

0.7

0.6

P
ar

am
et

er
s

of
 th

e
C

rit
ic

 N
N

Time (s)

0 10 20 30 40 50 60 70 80 90 100

Figure 15  Convergence of critic neural network parameters,
which shows that the optimal adaptive controller converges to the
approximate solution of the nonlinear Hamilton–Jacobi–Bellman
equation.

-0.04

0.02

0
-0.02

0.06

0.04

A
pp

ro
xi

m
at

io
n

E
rr

or
 o

f
th

e
V

al
ue

 F
un

ct
io

n

2

X2 X1

1
0
-1
-2 -2

-1
0

1
2

X2

1
0
-1

2 -1
0

1

Figure 16  Error between optimal and approximated value func-
tion. This 3-D plot of the value function error shows that the syn-
chronous optimal adaptive controller converges to a value function
that is very close to the true solution of the Hamilton–Jacobi–Bell-
man equation.

-0.2

0

2

X2
X1

1
0
-1

-2 -2
-1

0
1

2

-0.1

0.2

0.1

E
rr

or
 B

et
w

ee
n

O
pt

im
al

 a
nd

A
pp

ro
xi

m
at

ed
 C

on
tr

ol

2

0

X2

1
0
-1 -1

0
1

2

Figure 17  Error between optimal and approximated control input.
This 3-D plot of the feedback control policy error shows that the
synchronous optimal adaptive controller converges very close to
the true optimal control policy.

-1

0.5

0

x1
x2

-0.5

1.5

1

S
ys

te
m

 S
ta

te
s

Time (s)

0 10 20 30 40 50 60 70 80 90 100

x1
x2

Figure 14  Evolution of the states, which shows that the synchro-
nous optimal adaptive controller ensures stability and regulates
the states to zero.

104  IEEE CONTROL SYSTEMS MAGAZINE »  december 2012

value function. Figure 17 shows the 3-D plot of the difference
between the approximated feedback control policy found by
using the online algorithm and the optimal control.

This example demonstrates the use of the synchronous
optimal adaptive controller to approximately solve an HJB
equation online by using data measured along the system
trajectories. The HJB equation for this example is intracta-
ble to solve analytically.

Optimal Adaptive Control for Multi-player
Games and H-Infinity Control
The ideas presented in this article can be applied to multi-
player games and H-infinity control. Reinforcement
learning techniques have been applied to design adaptive
controllers that converge to the solution of two-player
zero-sum games in [58], and of multiplayer nonzero-sum
games in [59]. In these cases, the adaptive control struc-
ture has multiple loops, with action networks and critic
networks for each player. The adaptive controller for zero-
sum games finds the solution to the H-infinity control
problem online in real time. A Q-learning approach to
finding the H-infinity controller online is given in [60].
This adaptive controller does not require any systems
dynamics information.

Conclusion
This article uses computational intelligence techniques to
bring together adaptive control and optimal control. Adap-
tive controllers do not generally converge to optimal solu-
tions, and optimal controllers are designed offline using
full dynamics information by solving matrix design equa-
tions. The article describes methods from reinforcement
learning that can be used to design new types of adaptive
controllers that converge to optimal control solutions
online in real time by measuring data along the system tra-
jectories. These optimal adaptive controllers have multiloop,
multitimescale structures that come from the reinforce-
ment learning methods of policy iteration and value itera-
tion. These controllers learn the solutions to Hamilton-Jacobi
design equations such as the Riccati equation online with-
out knowing the full dynamical model of the system.
A method known as Q learning allows the learning of opti-
mal control solutions online, in the discrete-time case, for
completely unknown systems. Q learning has not yet been
fully investigated for continuous-time systems.

Acknowledgments
Support is acknowledged by NSF grant ECCS-1128050,
ARO grant W91NF-05-1-0314, and AFOSR grant FA9550-09-
1-0278.

Author Information
Frank L. Lewis (lewis@uts.edu) received the Ph.D. degree
from the Georgia Institute of Technology in 1981. He is the
Moncrief-O’Donnell Endowed Chair at the Automation

and Robotics Research Institute of The University of Texas
at Arlington. He is the coauthor of several books includ-
ing Optimal Control, Optimal Estimation, Aircraft Control and
Simulation, and Neural Network Control of Robot Manipu-
lators and Nonlinear Systems. His interests are nonlinear
control, optimal control, adaptive control, and intelligent
control. He can be contacted at the University of Texas at
Arlington Research Institute (UTARI), The University of
Texas at Arlington, 7300 Jack Newell Blvd. S, Ft. Worth,
Texas 76118-7115 USA.

Draguna Vrabie received the Ph.D. degree from The
University of Texas at Arlington and is now a senior
research scientist at United Technologies Research Center,
East Hartford, Connecticut. Her interests are reinforcement
learning, approximate dynamic programming, optimal
control, and industrial process control.

Kyriakos G. Vamvoudakis received the Ph.D. degree
in electrical engineering from The University of Texas at
Arlington in 2011. He is now a project research scientist
at the Center of Control, Dynamical Systems, and Com-
putation, at the Department of Electrical and Computer
Engineering at the University of California, Santa Bar-
bara. He is coauthor of one patent application, six book
chapters, 40 technical publications, and the book Optimal
Adaptive Control and Differential Games by Reinforcement
Learning Principles. He is the recipient of several awards.
His research interests include approximate dynamic pro-
gramming, game theory, neural network feedback control,
and optimal control. Recently, his research has focused on
network security and multiagent optimization.

References
[1] K. J. Astrom and B. Wittenmark, Adaptive Control. Reading, MA: Addi-
son-Wesley, 1995.

[2] P. Ioannou and B. Fidan, Adaptive Control Tutorial. Philadelphia, PA:
SIAM Press, 2006.

[3] F. L. Lewis, D. Vrabie, and V. Syrmos, Optimal Control, 3rd ed. New York:
Wiley, 2012.

[4] Z.-H. Li and M. Krstic, “Optimal design of adaptive tracking controllers
for nonlinear systems,” Automatica, vol. 33, no. 8, pp. 1459–1473, 1997.

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[6] W. B. Powell, Approximate Dynamic Programming. Hoboken, NJ: Wiley, 2007.

[7] P. J. Werbos, “A menu of designs for reinforcement learning over time,”
in Neural Networks for Control, W. T. Miller, R. S. Sutton, and P. J. Werbos,
Eds. Cambridge, MA: MIT Press, 1991, pp. 67–95.

[8] F. L. Lewis, G. Lendaris, and D. Liu, “Special issue on adaptive
dynamic programming and reinforcement learning for feedback control,”
IEEE Trans. Syst., Man, Cybern. B, vol. 38, no. 4, pp. 896–897, Aug. 2008.

[9] X. Cao, Stochastic Learning and Optimization. Berlin, Germany: Springer-
Verlag, 2007.

[10] J. M. Mendel and R. W. MacLaren, “Reinforcement learning control and
pattern recognition systems,” in Adaptive, Learning, and Pattern Recognition
Systems: Theory and Applications, J. M. Mendel and K. S. Fu, Eds. New York:
Academic, 1970, pp. 287–318.
[11] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst, Reinforcement
Learning and Dynamic Programming Using Function Approximators. Boca
Raton, FL: CRC Press, 2009.

december 2012 «  IEEE CONTROL SYSTEMS MAGAZINE  105

[12] W. Schultz, “Neural coding of basic reward terms of animal learning
theory, game theory, microeconomics and behavioral ecology,” Current
Opinion Neurobiol., vol. 14, no. 2, pp. 139–147, 2004.

[13] K. Doya, H. Kimura, and M. Kawato, “Neural mechanisms for learning
and control,” IEEE Control Syst. Mag., vol. 21, no. 4, pp. 42–54, Aug. 2000.

[14] P. J. Werbos, “Approximate dynamic programming for real-time control
and neural modeling,” in Handbook of Intelligent Control, D. A. White and D.
A. Sofge, Eds. New York: Van Nostrand Reinhold, 1992.

[15] D. Vrabie and F. L. Lewis, “Neural network approach to continuous-
time direct adaptive optimal control for partially-unknown nonlinear sys-
tems,” Neural Netw., vol. 22, no. 3, pp. 237–246, Apr. 2009.

[16] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuron-like adaptive
elements that can solve difficult learning control problems,” IEEE Trans.
Syst., Man, Cybern., vol. SMC-13, no. 5, pp. 834–846, Sep./Oct. 1983.

[17] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming. Bel-
mont, MA: Athena Scientific, 1996.

[18] R. E. Bellman, Dynamic Programming. Princeton, NJ: Princeton Univ.
Press, 1957.

[19] P. J. Werbos, “Neural networks for control and system identification,”
in Proc. IEEE Conf. Decision Control, Tampa, FL, 1989, pp. 260–265.

[20] D. Prokhorov and D. Wunsch, “Adaptive critic designs,” IEEE Trans.
Neural Netw., vol. 8, no. 5, pp. 997–1007, Sep. 1997.

[21] J. Si, A. Barto, W. Powell, and D. Wunsch, Handbook of Learning and Ap-
proximate Dynamic Programming. Piscataway, NJ: IEEE Press, 2004.

[22] S. N. Balakrishnan, J. Ding, and F. L. Lewis, “Issues on stability of ADP
feedback controllers for dynamical systems,” IEEE Trans. Syst., Man, Cy-
bern. B, vol. 38, no. 4, pp. 913–917, Aug. 2008.

[23] F. Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic program-
ming: An introduction,” IEEE Comput, Intell, Mag., vol. 4, no. 2, pp. 39–47,
May 2009.

[24] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dy-
namic programming for feedback control,” IEEE Circuits Syst. Mag., vol. 9,
no. 3, pp. 32–50, 2009.

[25] D. Han and S. N. Balakrishnan, “State-constrained agile missile control
with adaptive-critic-based neural networks,” IEEE Trans. Control Syst. Tech-
nol., vol. 10, no. 4, pp. 481–489, Jul. 2002.

[26] D. Prokhorov, Computational Intelligence in Automotive Applications. New
York: Springer-Verlag, 2008.

[27] S. Ferrari and R. F. Stengel, “An adaptive critic global controller,” in
Proc. American Control Conf., May 2002, pp. 2665–2670.

[28] D. Prokhorov, R. A. Santiago, and D. C. Wunsch, II, “Adaptive critic
designs: A case study for neurocontrol,” Neural Netw., vol. 8, no. 9, pp. 1367–
1372, 1995.

[29] J. J. Murray, C. J. Cox, G. G. Lendaris, and R. Saeks, “Adaptive dynamic pro-
gramming,” IEEE Trans. Syst., Man Cybern. C, vol. 32, no. 2, pp. 140–153, 2002.

[30] R. Enns and J. Si, “Helicopter flight control reconfiguration for main
rotor actuator failures,” AIAA J. Guidance, Control, Dynamics, vol. 26, no. 4,
pp. 572–584, 2003.

[31] C. Lu, J. Si, and X. Xie, “Direct heuristic dynamic programming method
for power system stability enhancement,” IEEE Trans. Syst., Man, Cybern. B,
vol. 38, no. 4, pp. 1008–1013, 2008.

[32] G. G. Lendaris, L. Schultz, and T. Shannon, “Adaptive critic design for
intelligent steering and speed control of a 2-axle vehicle,” in Proc. Int. Conf.
Neural Networks, 2000, pp. 73–78.

[33] X. Liu and S. N. Balakrishnan, “Convergence analysis of adaptive
critic based optimal control,” in Proc. American Control Conf., June 2000,
pp. 1929–1933.

[34] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time nonlin-
ear HJB solution using approximate dynamic programming: Convergence
proof,” IEEE Trans. Syst., Man, Cybern. B, vol. 38, no. 4, pp. 943–949, Aug. 2008.

[35] C. Darwin, On the Origin of Species by Means of Natural Selection. London,
U.K.: John Murray, 1859.

[36] D. G. Luenberger, Introduction to Dynamic Systems. New York: Wiley, 1979.

[37] D. Vrabie, O. Pastravanu, M. Abu-Khalaf, and F. L. Lewis, “Adaptive
optimal control for continuous-time linear systems based on policy itera-
tion,” Automatica, vol. 45, no. 2, pp. 477–484, 2009.

[38] A. Papoulis, Probability Random Variables and Stochastic Processes. New
York: McGraw-Hill, 2002.

[39] R. M. Wheeler and K. S. Narendra, “Decentralized learning in finite Mark-
ov chains,” IEEE Trans. Autom. Control, vol. 31, no. 6, pp. 519–526, June 1986.

[40] P. Mehta and S. Meyn, “Q-learning and Pontryagin’s minimum princi-
ple,” in Proc. IEEE Conf. Decision Control, Dec. 2009, pp. 3598–3605.

[41] H. Zhang, J. Huang, and F. L. Lewis, “Algorithm and stability of ATC
receding horizon control,” in Proc. IEEE Symp. Adaptive Dynamic Program-
ming Reinforcement, Nashville, TN, Mar. 2009, pp. 28–35.

[42] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation,
Cambridge University, Cambridge, U.K., 1989.

[43] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, no.
3–4, pp. 279–292, 1992.

[44] G. A. Hewer, “An iterative technique for the computation of the steady
state gains for the discrete optimal regulator,” IEEE Trans Autom. Control,
vol. 16, no. 4, pp. 382–384, Aug. 1971.

[45] P. Lancaster and L. Rodman, Algebraic Riccati Equations. London, U.K.:
Oxford Univ. Press, 1995.

[46] K. L. Moore, Iterative Learning Control for Deterministic Systems. London,
U.K.: Springer-Verlag, 1993.

[47] A. J. Van, “L2-gain analysis of nonlinear systems and nonlinear state feed-
back H∞ control,” IEEE Trans. Autom. Control, vol. 37, no. 6, pp. 770–784, 1992.

[48] L. Ljung, System Identification: Theory for the User. Englewood Cliffs, NJ:
Prentice-Hall, 1999.

[49] S. Bradtke, B. Ydstie, and A. Barto, “Adaptive linear quadratic control
using policy iteration,” in Proc. Amer. Control Conf., Baltimore, MD, 1994,
pp. 3475–3479.

[50] F. L. Lewis and K. G. Vamvoudakis, “Reinforcement learning for
partially observable dynamic processes: Adaptive dynamic programming
using measured output data,” IEEE Trans. Syst., Man, Cybern. B, vol. 41, no.
1, pp. 14–25, Feb. 2011.

[51] M. Abu-Khalaf, F. L. Lewis, and J. Huang, “Policy iterations on the
Hamilton-Jacobi-Isaacs equation for state feedback control with input satu-
ration,” IEEE Trans. Autom. Control, vol. 51, no. 12, pp. 1989–1995, Dec. 2006.

[52] L. C. Baird, “Reinforcement learning in continuous time: Advantage
updating,” in Proc. Int. Conf. Neural Networks, Orlando, FL, June1994, pp.
2448–2453.

[53] K. Doya, “Reinforcement learning in continuous time and space,”
Neural Comput., vol. 12, no. 1, pp. 219–245, 2000.

[54] T. Hanselmann, L. Noakes, and A. Zaknich, “Continuous-time adap-
tive critics,” IEEE Trans. Neural Netw., vol. 18, no. 3, pp. 631–647, May 2007.

[55] D. L. Kleinman, “On an iterative technique for Riccati equation compu-
tations,” IEEE Trans. Autom. Control, vol. AC–13, no. 1, pp. 114–115, Feb. 1968.

[56] V. Nevistic and J. Primbs, “Constrained nonlinear optimal control:
A converse HJB approach,” Dept. Control Dynamical Systems, California
Institute of Technology, Pasadena, CA, Tech. Rep. 96–021, 1996.

[57] K. G. Vamvoudakis and F. L. Lewis, “Online actor-critic algorithm to
solve the continuous-time infinite horizon optimal control problem,” Auto-
matica, vol. 46, no. 5, pp. 878–888, 2010.

[58] D. Vrabie and F. L. Lewis, “Adaptive dynamic programming for online
solution of a zero-sum differential game,” J. Control Theory: Its Appl., vol. 9,
no. 3, pp. 353–360, 2011.

[59] K. G. Vamvoudakis and F. Lewis, “Multi-player non-zero sum games:
Online adaptive learning solution of coupled Hamilton-Jacobi equations,”
Automatica, vol. 47, no. 8, pp. 556–569, 2011.

[60] J. H. Kim and F. L. Lewis, “Model-free H-infinity control design for
unknown linear discrete-time systems via Q-learning with LMI,” Auto-
matica, vol. 46, no. 8, pp. 1320–1326, Aug. 2010.

�

